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Abstract

Enterovirus (EV) 71 is the main pathogen associated with hand-foot-mouth disease (HFMD)

and can lead to the disease with severe mortality in children. Since 2009, in the Republic of

Korea, an outbreak of EV71 C4a infection with neurologic involvement emerged, where in

HFMD involvement was identified and central nervous system complications were reported.

In this study, EV71 C4a virus-like particles (VLPs) produced by recombinant technology

were generated in a baculovirus expression system. To improve the production yield, EV71

VLP was constructed using the dual promoter system baculovirus P1 and 3CD (baculo-P1-

3CD), which harbored both the structural protein-encoding P1 region under the control of

the polyhedron promoter and the 3CD protease gene under the regulation of the CMV-IE,

lef3, gp41, or chitinase promoters to augment the level of gene transcription. Efficient VLP

expression was demonstrated through optimization of incubation time and insect cell type.

In addition, to evaluate the potential of VLP as a vaccine candidate, we tested the neutraliz-

ing antibodies and total anti-EV71 IgG from the purified EV71 C4a VLP serum. The recombi-

nant EV71 VLP exhibited the morphology of self-assembled VLP, as determined by electron

microscopy. Use of baculo-P1-3CD-gp41 led to a high yield (11.3mg/L < 40kDa) of VLPs in

High-FiveTM cells at 3 days post-infection. Furthermore, the potential of VLP as a vaccine

was evaluated through the neutralizing ability elicited by the purified EV71 VLP after immuni-

zation of BALB/c mice, which was shown to induce potent and long-lasting humoral immune

responses as evidenced by the cross-neutralization titer. Our results could be used to expe-

dite the developmental process for vaccines under clinical trials and to ensure manufactur-

ing consistency for licensing requirements.

PLOS ONE | https://doi.org/10.1371/journal.pone.0210477 March 7, 2019 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kim H-J, Son HS, Lee SW, Yoon Y, Hyeon

J-Y, Chung GT, et al. (2019) Efficient expression of

enterovirus 71 based on virus-like particles

vaccine. PLoS ONE 14(3): e0210477. https://doi.

org/10.1371/journal.pone.0210477

Editor: Florian Krammer, Icahn School of Medicine

at Mount Sinai, UNITED STATES

Received: September 4, 2018

Accepted: December 25, 2018

Published: March 7, 2019

Copyright: © 2019 Kim et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Within the

manuscript and/or Supporting Information files.

Funding: This work was supported by grants from

the Korea National Institute of Health (grant no.

2012-NG48001- 00, KNIH 4800-4859-300). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-2923-5597
https://doi.org/10.1371/journal.pone.0210477
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210477&domain=pdf&date_stamp=2019-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210477&domain=pdf&date_stamp=2019-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210477&domain=pdf&date_stamp=2019-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210477&domain=pdf&date_stamp=2019-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210477&domain=pdf&date_stamp=2019-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210477&domain=pdf&date_stamp=2019-03-07
https://doi.org/10.1371/journal.pone.0210477
https://doi.org/10.1371/journal.pone.0210477
http://creativecommons.org/licenses/by/4.0/


Introduction

Enterovirus 71 (EV71) is a non-enveloped virus with a positive-stranded RNA genome con-

sisting of three regions [1]. The P1 precursor region encodes the structural proteins, whereas

the P2 and P3 regions encode nonstructural proteins including the 3CD protease that cleaves

P1 into four viral shell proteins [2]. Based on VP1 sequence alignment, EV71 is currently clas-

sified into 3 genotypes (A, B, C) with B1-B5 and C1-C5 sub-genotypes [1, 3–7]. Strains of B5

have caused outbreaks in Asian countries since 1997 [8, 9]. EV71 identification has increased

since 1998, with continually emerging forms of the sub-genotype C4 in China [10]. Since 2009,

outbreaks of EV71 infection in the Republic of Korea have been reported 168 patients with

hand, foot, and mouth disease and 92 patients with neurological complications [11].

New vaccine development against human EVs using various technologies [12] includes sev-

eral EV71 candidates representing live-attenuated virus, inactivated whole virus, recombinant

viral proteins, virus-like particles (VLPs), and DNA vaccines that have been evaluated in ani-

mals. Furthermore, phase 1 to 3 clinical trials incorporating an inactivated EV71 vaccine have

been conducted in Asia [13, 14]; however, no approved effective antiviral drugs or vaccines are

currently available, and the inactivated EV71 vaccine was produced by chemical treatment

(i.e., formalin inactivation), which could pose a risk of contamination by host cell proteins

during downstream purification processes. On the other hand, the alternate platform VLP is

noninfectious as it lacks viral nucleic acids yet it preserves EV conformational epitopes.

VLP-based vaccines against a wide range of infectious disease viruses are in various stages

of development [15–20], and those against hepatitis B virus and human papillomavirus have

been approved commercially for use as human vaccines [21, 22]. Previously, VLPs against

poliovirus, an Enterovirus, have been generated using EV71 [23], as has co-expression of indi-

vidual VP0 (36 kDa), VP1 (33kDa), and VP3 (27 kDa) proteins mediated by three recombi-

nant baculoviruses [24]. EV71 VLP has been produced through co-expression of P1 and 3CD,

with yield enhancement using exogenous promoters [25, 26].

Relatively low VLP yield represents a major drawback for EV71 VLP vaccine development

[25, 26]. Here, to develop a vaccine against the EV71 C4a strain, we generated VLPs through

P1 and 3CD expression. We examined whether baculovirus harboring both P1 and 3CD genes

driven by the polyhedron or various exogenous promoters, respectively, increased VLP yield.

Furthermore, we evaluated the potential of VLP as a vaccine candidate by testing neutralizing

antibodies generated by the purified EV71 C4a VLPs.

Materials and methods

Cells and media used in VLP production

Spodoptera frugiperda (Sf)-9 (American Type Culture Collection, ATCC) and Sf-21 (Invitro-

gen) were cultured in spinner flasks using SF-900 II medium (Gibco) supplemented with 5%

(vol/vol) fetal bovine serum (Gibco) at 27˚C. High-FiveTM (Hi-5) insect cells (Invitrogen) were

cultured in spinner flasks using serum free SF-900 II medium (Gibco).

Generation of recombinant baculoviruses

Entry clones were constructed for P1and 3CD, respectively (S1 Fig). Restriction sites were

added to the 50 (BamHI) and 30 (ApaI, SalI, BglII, NdeI, and XhoI) regions of the P1 and (50,

BglII and NdeI; 30,XhoI) 3CD gene fragments, respectively (S1 Fig), which were generated

using pEntr-BHRNX (Newgex, Korea) containing attL1 and attL2 as the backbone (S1 Fig).

The gene products were digested with BamHI/XhoI or BglII/XhoI for P1 or 3CD, respectively.
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The gene fragments coding for P1 and 3CD were synthesized from the full-length clones of

C4a type (accession No. FJ158600) and B3 type (accession No. AB550334) cloned into

pGEM-T easy vectors (Promega), respectively. The gene products were cloned into the corre-

sponding sites in ccdB under the polyhedrin promoter to generate pEntr-P1 or pEntr-3CD as

well as the composite pEntr-P1-3CD. The recombinant plasmids were transformed into

DH5α E. coli (Invitrogen). The recombinant baculoviruses Baculo-P1, Baculo-3CD and

Baculo-P1-3CD were subsequently generated using the efficient high-throughput recombinant

BacHTS system, which incorporates the attR1 and attR2 gateway recombination acceptor

sequences for efficient recombination, as described previously [27]. Transfection and selection

of the recombinant viruses were performed according to manufacturer instructions of using

integrase/exosionase (ElPis, Korea), and cellfectin (Invitrogen), and SF-900 II medium

(Gibco), and then the mixture was transfected into Sf-9 cells at 25˚C over 4days. Single VLPs

were obtained by purification assay.

Promoter insertion for yield enhancement

The resultant entry clone plasmids were designated pEntr-P1, pEntr-3CD, and pEntr-P1-3CD

(S 1). In addition, whereas the polyhedron promoter was retained to drive the P1 gene fragment,

various promoter gene fragments were inserted between P1 and 3CD for yield enhancement.

The full-length cytomegalovirus immediately early (CMV-IE) promoter was PCR-amplified

from cytomegalovirus, and lef3, gp41, and chitinase promoters were PCR-amplified from Auto-
grapha californica multiple nucleopolyhedrosis virus (AcMNPV), one of the best-characterized

baculoviruses containing at least 154 open reading frames [28], respectively. Promoter frag-

ments were inserted into the pEntr-P1-3CD vector, and recombinant Baculo-P1-3CD-CMV-IE,

Baculo-P1-3CD-lef3, Baculo-P1-3CD-gp41, and Baculo-P1-3CD-chitinase baculoviruses were

generated using the BacHTS system as described above. The graphical diagram depicting the

pipeline for the generation of recombinant baculoviruses was indicated in S2 Fig.

Purification of VLPs by ultracentrifugation

To prove the expression of recombinant baculovirus, VLPs were produced by infecting Sf-9,

Sf-21, or Hi-5 cells cultured in SF-900 II medium with the recombinant baculovirus at a multi-

plicity of infection (MOI) 5. For large-scale production, Hi-5 cells were cultured in 1-L roller

bottles (Corning) with 200 mL working volume. The cells were inoculated at 5 × 107cells,

grown to 1 × 108, and then infected with EV71 VLP at MOI 5. At 3 days post-infection (dpi),

the infected cells were harvested by centrifugation (10,000 rpm for 10 min), and re-suspended

in 0.4μL protease inhibitor (Roche) and benzonase (Novagen) in phosphate buffered saline

(PBS) to inhibit proteases during infected cell extractions and preserve the integrity of VLP

proteins for further sample characterizations. The cell suspension was then disrupted by soni-

cation and centrifuged at 10,000 rpm for 15 min. Subsequently, the supernatant was ultracen-

trifuged at 25,000 rpm (SW32.1 rotor, Beckman) for 2 h. The pellets were re-suspended in PBS

and loaded onto sucrose gradients (10%, 20%, 30%, 40%, and 50% sucrose dissolved in PBS).

After ultracentrifugation at 25,000 rpm for 2 h, the milky white band between the interfaces at

35% sucrose was collected. This fraction was used for sodium dodecyl sulphate-polyacrylamide

gel electrophoresis (SDS PAGE), western blotting, and transmission electron microscopy

(TEM) analyses.

In vitro assessments

For the in vitro cleavage assay, Sf-9 cells were infected at MOI 5 by recombinant Baculo-P1-

3CD-CMV-IE, Baculo-P1-3CD-lef3, Baculo-P1-3CD-gp41, and Baculo-P1-3CD-chitinase
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baculoviruses, respectively, and harvested at 3 dpi. Expression of complete protein was demon-

strated by measuring expression of EV71 VLP-gp41 daily until 6 dpi. Hi-5 cells were infected

at MOI 5 by recombinant baculovirus. The infected cells were lysed by sonication, and exam-

ined by 10% (vol/vol) SDS-PAGE. Western blot analysis was performed using an iBlot gel

transfer device (Invitrogen) with Novex gel transfer stacks according to the manufacturer’s

instructions. Proteins were detected with mouse anti-EV71 monoclonal antibody 1:10,000

diluted (Mab979, Chemicon International) and mouse anti-EV71 VP1 Mab 1:10,000 diluted

(produced in-house) and with goat anti-mouse IgG conjugated with horseradish peroxidase

(GenDEPOT) secondary antibody 1:10,000 diluted, following development with GenDEPOT

developing reagent.

Detection and quantification of VLPs

The VLP proteins produced following complete processing and from the total protein in cul-

tured cell lysate were analyzed by Protein 230 Labchip (14–230 kDa) on the Agilent 2100 Bioa-

nalyzer (Agilent Technologies). Samples were prepared by mixing 4μL proteins with 2μL

reduced sample buffers containing 4% SDS, florescent dye, and protein markers as internal

controls. Samples were incubated in a heating block at 95˚C for 10 min, and diluted by adding

84μL distilled water; then, aliquots were loaded onto the microchip. Following electrophoresis,

detection was based on laser-induced fluorescence.

TEM

For TEM analysis, VLPs were suspended in 20μL distilled water and placed on ice. A 300 mesh

formvar coated grid was floated on a drop of the VLP suspension for 60s, and excess liquid

was removed with a piece of filter paper. The grid was then placed on a drop of 1% uranyl ace-

tate for 10s. Excess stain was removed, and the samples were examined by TEM (Libra-120,

Carl Zeiss, Germany) at 120kV.

Immunization and sera sample collection

EV71 VLP immunogens (purified gp41-EV71 VLPs) were prepared by sucrose gradient purifica-

tion. Groups of 5 female BALB/c mice (5 weeks old) were immunized intramuscularly with

0.1mL 5μg dosages of EV71 VLPs with or without aluminum adjuvant or phosphate-buffered

saline (PBS) as a control. The mice were primed, and boosted with the same dosage at week 2 and

week 8. Immunized mice were bled every 2 weeks after each immunization, and the serum was

collected and was heat inactivated and stored at -70˚C and used for immunological analysis.

Cells, media, and viruses used in VLP immunogenicity assays

The EV71 virus strains used in this study included C4a, B3, B4, and C5 sub-genotypes. EV71

strains were used with different genetic identities: MAL-97-B3 (received from the National

Institute of infectious Disease, Japan), Osaka JPN-97-B4 (Accession No. AB059818) and

EV71-KOR-C5 (Accession No. HM443663). These virus strains were propagated in Vero

(African Green Monkey) cells (ATCC) cultured at 37˚C using Dulbecco’s minimum essential

medium (GIBCO) containing 5% fetal bovine serum. The virus titers were determined based

on the cytopathic effects from the TCID50 assay.

Total specific IgG antibody response

Levels of total anti-EV71 IgG in sera were determined by enzyme-linked immunosorbent

assay (ELISA). The EV71 VLP (100ng/100μL) diluted in carbonate buffer (pH 9.6) as coating
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antigen was used as a coating antigen in 96-well plates at 4˚C overnight. After blocking with

5% skim milk in PBS at 37˚C for 2 h, the plates were washed with PBS-T(0.5% tween20) three

times. Serum samples (diluted 1:200) in dilution buffer (3% skim milk in PBS) was added

100μL into the plates. After 2 h incubation at 37˚C, 100 μL horseradish peroxidase (HRP)-con-

jugated goat anti-mouse IgG (H+L) antibody diluted 1:2000 in dilution buffer was added, and

samples were then incubated at 37˚C for 1 h. After washed five times, 50 μL of 3,3’,5,5’-tetra-

methylbenzidine (TMB) solution was added for development. The reaction was stopped by

adding 100 μL of 2M H2O4. Absorbance was measured at 450 nm using a microplate reader.

Virus neutralization assay

The virus neutralization titer of each serum sample was determined using Vero cells and a

standardized TCID50 assay according to Liu et al. [29]. The EV71 strains used C4a, B3, B4, and

C5 sub-genotype, which were obtained from the Korean Centers for Disease Control and Pre-

vention. The analysis of the cross-neutralization titer was used serum sample at 16 weeks. The

sera were inactivated at 56˚C for 30 min and subsequently diluted from 1:4 to 1:2048 in two-

fold serial dilutions (final volume, 50μL), in duplicate, and each dilution was incubated for 1h

at 36˚C to allow the antibodies to bind to the virus (100 TCID50). Next, the Vero cell suspen-

sions (1×105 cells/mL) were added to the virus-serum mixtures in 96-well plates. Virus and

cell controls were included for comparison. The plates were incubated at 36˚C and examined

daily for 5 days for proof of cytopathic effects. Serum with a titer of more than 1:8 was consid-

ered positive.

Statistical analysis

Statistical comparisons among groups were analyzed by one way ANOVA and t-test using

Graph Pad Prism version 5.00 for windows (Graph Pad software, San Diego California USA,

www.grapfhpad.com). A p-value less than 0.01 was considered statistically significant.

Ethical approval

The institutional review board of Korean Centers for Disease Control approved the use of the

samples and laboratory animals (approval number: KCDC-024-16-2A).

Results

Improvement of yield by promoter

Both EV71 B3 and C4a type after infection with Baculo-P1 with Baculo-3CD at ratios of 5:1,

the yield of VP1 production was the highest (S3 Fig). TEM examination EV71 C4a type VLP at

ratios of 5:1 showed particles (S4 Fig). However, for the simplicity of production, the forma-

tion of VLPs by single infection strategy was further examined. For enhancement of EV71 C4a

VLP production as major target, an additional promoter was inserted between P1 and 3CD to

express 3CD under the control of the CMV-IE, lef3, gp41, or chitinase promoters. Intracellular

VLP yield at 3 dpi after 200mL scale-up culture was quantified using an Agilent 2100 Bioanaly-

zer (Table 1). Comparison of respective protein yields indicated that maximum yield was

obtained from Baculo-P1-3CD-gp41, greater than that from Baculo-P1-3CD- lef3 or chitinase

and approximately 4 times higher than that of Baculo-P1-3CD-CMV-IE (Fig 1 and Table 1). In

Hi-5 cells in 200mL culture, Baculo-P1-3CD-gp41 produced a VLP yield (< 40 kDa) of 11.3

mg/L (Table 1). Comparison of total viral protein including incomplete processed viral poly-

peptides was also highest for the gp41 insertion construct.

Enterovirus 71 virus-like particles vaccine
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Optimized production and characterization of VLPs

To examine the P1 expression and cleavage into VP0 (an indicator of VLP assembly) in Sf-9,

Sf-21, and Hi-5 cells, these were infected with the 4 promoter variant vectors (MOI 5) at

2.5 × 105 cells/mL (Fig 1). In parallel, Baculo-P1:Baculo-3CD at a 5:1 ratio was infected as the

control. Hi-5 infection with Baculo-P1-3CD exhibited improved yield compared with infec-

tion of Sf-9 and Sf-21 cells. Expression of Baculo-P1-3CD-gp41 in Hi-5 cell showed the stron-

gest band intensity indicative of P1 to VP0 cleavage using anti-VP2 Mab (Fig 1A). An anti-

VP1 Mab used for examination of VP1 expression (Fig 1B) indicated distinctly higher protein

expression of Baculo-P1-3CD-gp41 in Hi-5 cells. Fig 2 shows that Baculo-P1-3CD-gp41 infec-

tion of Hi-5 cells led to correct P1 processing into VP0 and elevated intracellular expression

Table 1. Comparison of VLP yield according to promoter type (units: mg/L).

Predicted MW (kDa) Promoter type

CMV-IE Lef3 gp41 chitinase �gp41
extracellular

Viral antigen expected in the EV71 virion (<40kDa) 2.3 10 11.3 7 2.4

Total viral protein

(including incomplete processed viral polypeptides)

11.2 41.4 43.1 32.7 5.1

� Concentrated cell supernatant. VLP, virus-like particle; MW, molecular weight

https://doi.org/10.1371/journal.pone.0210477.t001

Fig 1. Western blot analysis of cell lysates infected by the Baculo-P1-3CD-gp41 construct. The proteins were separated by SDS-PAGE, electrotransferred to

a nitrocellulose membrane, and probed using anti-VP2 MAb (MAb979) as the primary antibody (A). Hi-5 cells used for EV71 VLP large-scale production were

infected with Baculo-P1-3CD-gp41 at MOI 5, and protein was analyzed using an anti-VP1 Mab produced in-house (B). Lane1: Baculo-P1-3CD-CMV-IE
infected cell lysates; Lane2: Baculo-P1-3CD-lef3 infected cell lysates; Lane3: Baculo-P1-3CD-gp41 infected cell lysates; Lane4: Baculo-P1-3CD-chitinase

infected cell lysates. The cells were harvested from 3 dpi.

https://doi.org/10.1371/journal.pone.0210477.g001
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levels at 2 and 3 dpi, along with persistent VLP formation beginning at 2 dpi. Following confir-

mation of the identity of VP1 (33kDa) and VP0 (36 kDa) bands of EV71 virions on SDS-PAGE

and western blot and of the equivalence of the molar ratios of VP0, VP1, and VP3 as predicted

[29], we subsequently performed VLP production by infecting Hi-5 cells with Baculo-P1-

3CD-gp41 (MOI 5). The particles were assembled in the infected cells, purified by ultracentri-

fugation and analyzed. Viral particles observed suggested that the purified sample contained

protein whose molecular masses corresponded to those of VP0 (36kDa) (S1 Table). TEM

examination (Fig 3) also showed that particles exhibited size and morphology similar to the

EV71 intact particle form [29]. These data confirmed that Baculo-P1-3CD-gp41 infection suc-

cessfully resulted in the formation of VLP (EV71 C4a-gp41) comprising VP1 and VP0 and that

these particles were purified by ultracentrifugation.

Immunogenicity of EV71 C4a-gp41 VLP

We investigated the ability of purified EV71 C4a-gp41 viral particles to initiate an antigen

immune response in mouse, and demonstrated that antisera from all of the immunized groups

had total anti-EV71 IgG titer and virus neutralization titers against the EV71 C4a virus (Fig 4A

and 4B). The Fig 4A indicated that total IgG reached the plateau at week 4 after the 1st boost-

ing. The EV71 VLP 5μg with adjuvant group induced slightly high levels in comparison to

group without adjuvant. The VLP 5μg group added to alum showed a 64-fold increase in the

neutralizing titer after first boosting at 4 weeks, and 32-fold increase compare with control

after second boosting at 8 weeks (p<0.01). In particular, the EV71 C4a-gp41 VLP 5μg with

alum group elicited a neutralizing antibody titer of 1:512 against the EV71 C4a virus that was

maintained until the end of the experiment. In contrast, titers in the control group remained

at baseline after vaccination. To evaluate cross-reactivity, the sera were subjected to neutraliz-

ing assays using other EV71 subtype strains (B3, B4, and C5); results indicated that the anti-

bodies were capable of cross-reacting with EV71 of different genogroups (Fig 4C), with cross-

neutralization titer significantly induced in the EV71 C4a-gp41 VLP 5μg with alum immunized

mice in comparison to the control group (p<0.01). Also, cross-neutralization titer significantly

Fig 2. Western blot analysis of Hi-5 cell lysates infected with Baculo-P1-3CD-gp41 at MOI 5 during different

times. Hi-5 cell lysate protein was analyzed using an anti-VP2 MAb (MAb979). The cells were harvested from 1–6 dpi.

https://doi.org/10.1371/journal.pone.0210477.g002
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induced in the EV71 C4a-gp41 VLP 5μg with alum immunized mice in comparison to the con-

trol group (p<0.01). The group vaccinated with EV71 C4a-gp41 VLP increased neutralization

titer against EV71 subtype strains C4a and C5 compare with B3, B4 subtype.

Fig 3. TEM image of EV71 C4a-gp41 VLP produced by Baculo-P1-3CD-gp41. The VLP preparation was purified by

sucrose gradient ultracentrifugation.

https://doi.org/10.1371/journal.pone.0210477.g003

Fig 4. Humoral immune response induced by EV71 C4a VLP-gp41 in mice. The titer of EV71 antibody in each of 5 groups of mice that received EV71 VLP

(5μg), VLP (5μg) with alum, or phosphate-buffered saline (PBS) as a control according to immunization schedule as indicated by the arrows. (A) Titers of total

IgG antibodies agains EV71 VLP were determined by ELISAs. (B) The titer of the neutralizing antibody against EV71 C4a was assayed by the titer of the serum

in a microneutralization assay. The virus titer of EV71 C4a was 100 TCID50. (circle, wild type; square, VLP 5μg; triangle, VLP 5μg with alum). (C) Mice

received EV71 VLP (5μg), VLP (5μg) with alum, or control and each titer was tested for cross-reactivity in mice against other EV71 subtypes by assaying the

titer of the serum in a microneutralization assay. The virus titers of EV71 B3, B4, and C5 were each 100 TCID50, respectively (dot bar, EV71 B3 type; black bar,

EV71 B4 type; white bar, EV71 C5 type; diagonal line bar, EV71 C4a). These data represent the means of two replicates and error bars indicate SD of the mean.

Data statically analysis was performed by one way ANOVA, p< 0.01.

https://doi.org/10.1371/journal.pone.0210477.g004
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Discussion

In the present study, we generated EV71 C4a VLP encoded P1 and 3CD proteins and per-

formed further analyses to enhance VLP yield. As previous data suggested that VLP assembly

required less 3CD than P1 [25], the present study presumed that the VLP yield might be opti-

mized by providing adequate 3CD expression potentially by incorporating different promot-

ers. Therefore, we designed constructs containing P1 driven by the polyhedrin promoter with

3CD under the control of various promoters. We further evaluated whether purified EV71

C4a VLP could be used as a vaccine.

To enhance baculovirus-mediated gene expression in insect cells, we incorporated open

reading frames of AcMNPV that serve as stimulators of transcription during early to late gene

transcription—lef3, gp41, and chitinase [28], as well as the CMV-IE promoter, known as a

strong promoter in mammalian cells and which is also active in insect cells [26], into the EV71

C4a Baculo-P1-3CD expression system. We found that the CMV-IE promoter was weaker

than the gp41 promoter, for which a reasonable production yield (approximately 11mg/L) was

achieved leading to improved EV71 VLP yield. The high expression level produced by this

dual promoter system might be used to expedite the production and purification of VLP vac-

cines to ensure manufacturing consistency for licensing requirements.

In this study the EV71 C4a-gp41 VLP particles had similar icosahedral structure (by TEM),

previously reported [29]. Generally, the morphogenesis of the Picornaviridae virus begins with

self-assembly of translated P1 polypeptides into a pentamer unit, followed by formation of the

empty capsid shell by additional pentamers [30]. Virion formation requires the specific cleavage

of the P1 polypeptide by the protease 3CD [25] into the VP0 (VP2+VP4), VP1, and VP3 pro-

teins, which spontaneously assemble into icosahedral procapsids and pack the RNA genome

into the provirions [24]. Therefore, in this study we employed three recombinant baculoviruses

to express P1, 3CD, or P1 with 3CD simultaneously in order to demonstrate the assembly pro-

cess. Infection by either Baculo-P1-3CD alone or co-infection at a 5:1 ratio (Baculo-P1:Baculo-

3CD) demonstrated the successful expression of both P1 and functional 3CD. Lack expression

of 3CD was occurred by inadequate P1 cleavage. Only P1 supply was lead to inadequate VLP

assembly that polypeptide size was 95kDa. Notably, co-infection was superior to Baculo-P1-

3CD single infection with regard to VP0 production; however, for simplicity of large-scale man-

ufacture and high expression yield we utilized the single Baculo-P1-3CD construct in this study.

EV71 VLP expression differs according to the insect cell type and incubation time. Follow-

ing optimization, we established a serum-free Hi-5 cell culture system for efficient EV71 VLP

production at 3dpi using low MOI seed, which could be easily adapted to a large-scale process.

This serum-free medium might avoid the problems associated with bovine serum such as caus-

ing allergic reaction in humans and the difficulty of removing the high serum protein content

during downstream purification steps.

In this study, we demonstrated the potential of EV71 VLP as a vaccine candidate against

EV71 infection by analyzing the neutralizing antibody elicited by purified VLP in mice. These

antibodies also exhibited cross-reactivity against the virulent EV71 B3, B4, and C5 sub-geno-

types. Thus, immunization with VLP derived from the C4a strain induced potent immune

responses as demonstrated by the elicitation of persisting neutralizing ability for other strains.

These results suggested that VLP vaccination might provide effective cross-strain protection.

EV71 is the main pathogen associated with HFMD and might lead to disease with severe

mortality in children. Thus, to develop an effective vaccine, we generated EV71 C4a VLP using

a gp41 promoter to enhance expression yield. Our results demonstrated that the purified EV71

C4a VLP could be used as candidate for EV71 vaccine development through its ability to gen-

erate neutralizing antibodies against EV71 C4a and other strains in mice. Our results could be
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used to expedite the developmental process for vaccines under clinical trials and to ensure

manufacturing consistency for licensing requirements.

Supporting information

S1 Fig. Structure of the pEntr-BHRNX vector and the entry clone constructs used for VLP

production. (A) Structure of entry clone constructs; and (B) schematic of the pEntr-BHRNX

vector used in VLP production. Recombinant VLPs were produced via the expression of con-

structs by C4a types. Entry clones for P1, 3CD, or co-expression constructs were prepared for

entry into the BHRNX vector containing the polyhedrin promoter. Entry clones were con-

structed for P1and 3CD, respectively (S1A Fig). Restriction sites were added to the 50 (BamHI)

and 30 (ApaI, SalI, BglII, NdeI, and XhoI) regions of the P1 and (50, BglII and NdeI; 30,XhoI)

3CD gene fragments, respectively (S1B Fig), which were generated using pEntr-BHRNX

(Newgex, Korea) containing attL1 and attL2 as the backbone (S1B Fig). The gene products

were digested with BamHI/XhoI or BglII/XhoI for P1 or 3CD, respectively.

(TIF)

S2 Fig. Pipeline for the generation of recombinant baculoviruses. The pipeline for genera-

tion of recombinant baculoviruses was indicated graphical diagram as process for the improve-

ment of protein expression by the insertion of different promoters, the validation of VLP

expression, purification, and structural and immunological characterization.

QC; quality check.

(TIF)

S3 Fig. Western blot analysis of cell lysates infected with Baculo-P1, Baculo-3CD, Baculo-

P1 and 3CD, and Baculo-P1 with Baculo-3CD at ratios of 5:1. The Sf-21 cells were infected

by the viruses at a total MOI 5 and harvested at 3 dpi. The proteins were separated by

SDS-PAGE, electro transferred to a nitrocellulose membrane, and probed using anti-VP2

mAb as the primary antibody. EV71 B3 used as stand for EV71 group B. Lane 1: Baculo-EV71

B3 P1-infected cell lysates; Lane 2: 5:1 ratio mixture of Baculo-EV71 B3 P1 and 3CD-infected

cell lysates; Lane 3: Baculo-EV71 B3 P13CD-infected cell lysates; Lane 4: Baculo-EV71 C4a

P1-infected cell lysates; Lane 5: 5:1 ratio mixture of Baculo-EV71 C4a P1 and 3CD-infected

cell lysates; Lane 6: EV71 C4a P1-3CD-infected cell lysates. The cleavage of the polyprotein P1

into VP0 (36 kDa) by the proteolytic activity of 3CD demonstrated by confirmation of com-

plete viral protein expression. The production levels were compared between Baculo-P1 only,

Baculo-P1-3CD only, Baculo-P1 and Baculo-3CD at ratios of 5:1 as indicated by the strongest

band intensity.

(TIF)

S4 Fig. TEM image of VLPs produced by 5:1 ratio mixtures of Baculo-EV71 B3 P1 and

3CD infected Sf-21 cells. The VLP preparation was purified by sucrose gradient ultracentrifu-

gation. Infection with Baculo-P1 with Baculo-3CD at ratio of 5:1 yielded the highest viral pro-

tein production. For confirmation of VLP capsid structure, the infected cells were subjected to

lysis by sonication and purified by ultracentrifugation.

(TIF)

S1 Table. The characteristics of the EV71 VLPs [29].

(DOCX)

Author Contributions

Conceptualization: Hye-Jin Kim, Ho Sun Son.

Enterovirus 71 virus-like particles vaccine

PLOS ONE | https://doi.org/10.1371/journal.pone.0210477 March 7, 2019 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0210477.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0210477.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0210477.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0210477.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0210477.s005
https://doi.org/10.1371/journal.pone.0210477


Project administration: Ji-Yeon Hyeon.

Resources: Youngsil Yoon.

Supervision: Sang Won Lee, Gyung Tae Chung, June-Woo Lee, Jung Sik Yoo.

Writing – original draft: Hye-Jin Kim.

Writing – review & editing: Hye-Jin Kim.

References
1. Brown BA, Pallansch MA. Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus.

Virus Res1995; 39:195–205. PMID: 8837884

2. Chung YC, Ho MS, Wu JC, Chen WJ, Huang JH, Chou ST, et al. Immunization with virus-like particles

of enterovirus 71 elicits potent immune responses and protects mice against lethal challenge. Vac-

cine2008; 26:1855–62. https://doi.org/10.1016/j.vaccine.2008.01.058 PMID: 18329759

3. Zoll GJ, Melchers WJ, Kopecka H, Jambroes G, van der Poel HJ, Galama JM. General primer-mediated

polymerase chain reaction for detection of enteroviruses: application for diagnostic routine and persis-

tent infections. J ClinMicrobiol1992; 30:160–5.

4. Nix WA, Oberste MS, Pallansch MA. Sensitive, seminested PCR amplification of VP1 sequences for

direct identification of all enterovirus serotypes from original clinical specimens. J Clin Microbiol2006;

44:2698–704. https://doi.org/10.1128/JCM.00542-06 PMID: 16891480

5. Bible JM, Iturriza-Gomara M, Megson B, Brown D, Pantelidis P, Earl P, et al.Molecular epidemiology of

human enterovirus 71 in theUnited Kingdom from 1998 to 2006. J Clin Microbiol2008; 46:3192–200.

https://doi.org/10.1128/JCM.00628-08 PMID: 18650362

6. Chan YF, Sam IC, AbuBakar S. Phylogenetic designation of enterovirus 71 genotypes and subgeno-

types using complete genome sequences. Infect Genet Evol2010; 10:404–12. https://doi.org/10.1016/j.

meegid.2009.05.010 PMID: 19465162

7. Huang SW, Hsu YW, Smith DJ, Kiang D, Tsai HP, Lin KH, et al. Reemergence of enterovirus 71 in 2008

in Taiwan: dynamics of genetic and antigenic evolution from 1998 to 2008. J Clin Microbiol2009;

47:3653–62. https://doi.org/10.1128/JCM.00630-09 PMID: 19776232

8. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. Virology, epidemiology, patho-

genesis, and control of enterovirus 71. Lancet Infect Dis2010; 10:778–90. https://doi.org/10.1016/

S1473-3099(10)70194-8 PMID: 20961813

9. Yip CC, Lau SK, Woo PC, Yuen KY. Human enterovirus 71 epidemics: what’s next? Emerg Health

Threats J2013; 6:19780. https://doi.org/10.3402/ehtj.v6i0.19780 PMID: 24119538

10. Tan X, Huang X, Zhu S, Chen H, Yu Q, Wang H, et al. The persistent circulation of enterovirus 71 in

People’s Republic of China: causing emerging nationwide epidemics since 2008. PLoS One2011; 6:

e25662. https://doi.org/10.1371/journal.pone.0025662 PMID: 21980521

11. Ryu WS, Kang B, Hong J, Hwang S, Kim A, Kim J, et al. Enterovirus 71 infection with central nervous

system involvement, South Korea. Emerg Infect Dis2010; 16:1764–6. https://doi.org/10.3201/eid1611.

100104 PMID: 21029539

12. Zhang D, Lu J, Lu J. Enterovirus 71 vaccine: close but still far. Int J Infect Dis 2010; 14:e739–43. https://

doi.org/10.1016/j.ijid.2009.12.002 PMID: 20400350

13. Chen YJ, Meng FY, Mao Q, Li JX, Wang H, Liang ZL,et al.Clinical evaluation for batch consistency of

an inactivated enterovirus 71 vaccine in a large-scale phase 3 clinical trial. Hum Vaccin Immun-

other2014; 10:1366–72. https://doi.org/10.4161/hv.28397 PMID: 24633366

14. Chong P, Hsieh SY, Liu CC, Chou AH, Chang JY, Wu SC, et al. Production of EV71 vaccine candidates.

Hum Vaccin Immunother2012; 8:1775–83. https://doi.org/10.4161/hv.21739 PMID: 22992566

15. Benen TD, Tonks P, Kliche A, Kapzan R, Heeney JL, Wagner R. Development and immunological

assessment of VLP-based immunogens exposing the membrane-proximal region of the HIV-1 gp41

protein. J Biomed Sci2014; 21:79. https://doi.org/10.1186/s12929-014-0079-x PMID: 25160824

16. Branco LM, Grove JN, Geske FJ, Boisen ML, Muncy IJ, Magliato SA, et al. Lassa virus-like particles dis-

playing all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever. Virol

J2010; 7:279. https://doi.org/10.1186/1743-422X-7-279 PMID: 20961433

17. Chang LJ, Dowd KA, Mendoza FH, Saunders JG, Sitar S, Plummer SH, et al. Safety and tolerability of

chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet2014;

384:2046–52. https://doi.org/10.1016/S0140-6736(14)61185-5 PMID: 25132507

Enterovirus 71 virus-like particles vaccine

PLOS ONE | https://doi.org/10.1371/journal.pone.0210477 March 7, 2019 11 / 12

http://www.ncbi.nlm.nih.gov/pubmed/8837884
https://doi.org/10.1016/j.vaccine.2008.01.058
http://www.ncbi.nlm.nih.gov/pubmed/18329759
https://doi.org/10.1128/JCM.00542-06
http://www.ncbi.nlm.nih.gov/pubmed/16891480
https://doi.org/10.1128/JCM.00628-08
http://www.ncbi.nlm.nih.gov/pubmed/18650362
https://doi.org/10.1016/j.meegid.2009.05.010
https://doi.org/10.1016/j.meegid.2009.05.010
http://www.ncbi.nlm.nih.gov/pubmed/19465162
https://doi.org/10.1128/JCM.00630-09
http://www.ncbi.nlm.nih.gov/pubmed/19776232
https://doi.org/10.1016/S1473-3099(10)70194-8
https://doi.org/10.1016/S1473-3099(10)70194-8
http://www.ncbi.nlm.nih.gov/pubmed/20961813
https://doi.org/10.3402/ehtj.v6i0.19780
http://www.ncbi.nlm.nih.gov/pubmed/24119538
https://doi.org/10.1371/journal.pone.0025662
http://www.ncbi.nlm.nih.gov/pubmed/21980521
https://doi.org/10.3201/eid1611.100104
https://doi.org/10.3201/eid1611.100104
http://www.ncbi.nlm.nih.gov/pubmed/21029539
https://doi.org/10.1016/j.ijid.2009.12.002
https://doi.org/10.1016/j.ijid.2009.12.002
http://www.ncbi.nlm.nih.gov/pubmed/20400350
https://doi.org/10.4161/hv.28397
http://www.ncbi.nlm.nih.gov/pubmed/24633366
https://doi.org/10.4161/hv.21739
http://www.ncbi.nlm.nih.gov/pubmed/22992566
https://doi.org/10.1186/s12929-014-0079-x
http://www.ncbi.nlm.nih.gov/pubmed/25160824
https://doi.org/10.1186/1743-422X-7-279
http://www.ncbi.nlm.nih.gov/pubmed/20961433
https://doi.org/10.1016/S0140-6736(14)61185-5
http://www.ncbi.nlm.nih.gov/pubmed/25132507
https://doi.org/10.1371/journal.pone.0210477


18. Garrone P, Fluckiger AC, Mangeot PE, Gauthier E, Dupeyrot-Lacas P, Mancip J, et al. A prime-boost

strategy using virus-like particles pseudotyped for HCV proteins triggers broadly neutralizing antibodies

in macaques. 2011 Sci Transl Med2011; 3:94ra71. https://doi.org/10.1126/scitranslmed.3002330

PMID: 21813755

19. Betenbaugh M, Yu M, Kuehl K, White J, Pennock D, Spik K, et al. Nucleocapsid- and virus-like particles

assemble in cells infected with recombinant baculoviruses or vaccinia viruses expressing the M and the

S segments of Hantaan virus. Virus Res1995; 38:111–24. PMID: 8578853

20. Plummer EM, Manchester M. Viral nanoparticles and virus-like particles: platforms for contemporary

vaccine design. Wiley Interdiscip Rev Nanomed Nanobiotechnol2011; 3:174–96. https://doi.org/10.

1002/wnan.119 PMID: 20872839

21. Monie A, Hung CF, Roden R, Wu TC. Cervarix: a vaccine for the prevention of HPV 16, 18-associated

cervical cancer. Biologics2008; 2:97–105.

22. Zhang X, Lu X, Li S, Fang M, Zhang J, Xia N, et al.Lessons learned from successful human vaccines:

delineating key epitopes by dissecting the capsid proteins. Hum Vaccin Immunother2015; 11:1277–92.

https://doi.org/10.1080/21645515.2015.1016675 PMID: 25751641

23. Urakawa T, Ritter DG, Roy P. Expression of largest RNA segment and synthesis of VP1 protein of blue-

tongue virus in insect cells by recombinant baculovirus: association of VP1 protein with RNA polymer-

ase activity. Nucleic Acids Res1989; 17:7395–401. PMID: 2552409

24. Bräutigam S, Snezhkov E, Bishop DH. Formation of poliovirus-like particles by recombinant baculo-

viruses expressing the individual VP0, VP3, and VP1 proteins by comparison to particles derived from

the expressed poliovirus polyprotein. Virology1993; 192:512–24. https://doi.org/10.1006/viro.1993.

1067 PMID: 8380663

25. Chung YC, Huang JH, Lai CW, Sheng HC, Shih SR, Ho MS, et al. Expression, purification and charac-

terization of enterovirus-71 virus-like particles. World J Gastroenterol2006; 12:921–7. https://doi.org/10.

3748/wjg.v12.i6.921 PMID: 16521221

26. Chung CY, Chen CY, Lin SY, Chung YC, Chiu HY, Chi WK, et al. Enterovirus 71 virus-like particle vac-

cine: Improved production conditions for enhanced yield. Vaccine2010; 28:6951–7. https://doi.org/10.

1016/j.vaccine.2010.08.052 PMID: 20797455

27. Son H, Jeong HS, Cho M, Lee J, Lee H, Yoon K, et al. Seroepidemiology of predominant norovirus

strains circulating in Korea by using recombinant virus-like particle antigens. Foodborne Pathog

Dis2013; 10:461–6. https://doi.org/10.1089/fpd.2012.1300 PMID: 23627928

28. Jiang SS, Chang IS, Huang LW, Chen PC, Wen CC, Liu SC, et al. Temporal transcription program of

recombinant Autographa californica multiple nucleopolyhedrosis virus. J Virol2006; 80:8989–99.

https://doi.org/10.1128/JVI.01158-06 PMID: 16940511

29. Liu CC, Guo MS, Lin FH, Hsiao KN, Chang KH, Chou AH, et al. Purification and characterization of

enterovirus 71 viral particles produced from vero cells grown in a serum-free microcarrier bioreactor

system. PLoS One 2011; 6:e20005. https://doi.org/10.1371/journal.pone.0020005 PMID: 21603631

30. Pallansch M, Roos R. Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enterovi-

ruses, In: Knipe DM, Howley PM, editors. Fields virology. 5th ed, Philadelphia: Lippincott Williams and

Wilkins;2007, p. 839–93.

Enterovirus 71 virus-like particles vaccine

PLOS ONE | https://doi.org/10.1371/journal.pone.0210477 March 7, 2019 12 / 12

https://doi.org/10.1126/scitranslmed.3002330
http://www.ncbi.nlm.nih.gov/pubmed/21813755
http://www.ncbi.nlm.nih.gov/pubmed/8578853
https://doi.org/10.1002/wnan.119
https://doi.org/10.1002/wnan.119
http://www.ncbi.nlm.nih.gov/pubmed/20872839
https://doi.org/10.1080/21645515.2015.1016675
http://www.ncbi.nlm.nih.gov/pubmed/25751641
http://www.ncbi.nlm.nih.gov/pubmed/2552409
https://doi.org/10.1006/viro.1993.1067
https://doi.org/10.1006/viro.1993.1067
http://www.ncbi.nlm.nih.gov/pubmed/8380663
https://doi.org/10.3748/wjg.v12.i6.921
https://doi.org/10.3748/wjg.v12.i6.921
http://www.ncbi.nlm.nih.gov/pubmed/16521221
https://doi.org/10.1016/j.vaccine.2010.08.052
https://doi.org/10.1016/j.vaccine.2010.08.052
http://www.ncbi.nlm.nih.gov/pubmed/20797455
https://doi.org/10.1089/fpd.2012.1300
http://www.ncbi.nlm.nih.gov/pubmed/23627928
https://doi.org/10.1128/JVI.01158-06
http://www.ncbi.nlm.nih.gov/pubmed/16940511
https://doi.org/10.1371/journal.pone.0020005
http://www.ncbi.nlm.nih.gov/pubmed/21603631
https://doi.org/10.1371/journal.pone.0210477

