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Abstract: Clean water supply is an essential element for the entire sustainable human society, and the
economic and technology development. Membrane filtration for water and wastewater treatments
is the premier choice due to its high energy efficiency and effectiveness, where the separation is
performed by passing water molecules through purposely tuned pores of membranes selectively
without phase change and additional chemicals. Ceramics and polymers are two main candidate
materials for membranes, where the majority has been made of polymeric materials, due to the
low cost, easy processing, and tunability in pore configurations. In contrast, ceramic membranes
have much better performance, extra-long service life, mechanical robustness, and high thermal
and chemical stabilities, and they have also been applied in gas, petrochemical, food-beverage, and
pharmaceutical industries, where most of polymeric membranes cannot perform properly. However,
one of the main drawbacks of ceramic membranes is the high manufacturing cost, which is about
three to five times higher than that of common polymeric types. To fill the large gap between the
competing ceramic and polymeric membranes, one apparent solution is to develop a ceramic-polymer
composite type. Indeed, the properly engineered ceramic-polymer composite membranes are able to
integrate the advantages of both ceramic and polymeric materials together, providing improvement
in membrane performance for efficient separation, raised life span and additional functionalities. In
this overview, we first thoroughly examine three types of ceramic-polymer composite membranes,
(i) ceramics in polymer membranes (nanocomposite membranes), (ii) thin film nanocomposite
(TFN) membranes, and (iii) ceramic-supported polymer membranes. In the past decade, great
progress has been made in improving the compatibility between ceramics and polymers, while
the synergy between them has been among the main pursuits, especially in the development of
the high performing nanocomposite membranes for water and wastewater treatment at lowered
manufacturing cost. By looking into strategies to improve the compatibility among ceramic and
polymeric components, we will conclude with briefing on the perspectives and challenges for the
future development of the composite membranes.

Keywords: composite membrane; wastewater treatment; polymeric membrane; ceramic mem-
brane; nanocomposite

1. Introduction

In pace with the ever rapid urbanization, industrialization, and population growth,
the water shortage, especially clean water, has become one of the most critical problems
globally. There is also a concurrent environmental issue, if and when untreated wastew-
ater is released into rivers, lakes and seas directly, leading to surface and ground water
contamination and depletion of the clean water supply [1]. Moreover, the ever rapid
growing population in many regions has increased the demand for freshwater supply
more recently. The United Nations has predicted that half of the countries worldwide will
suffer from water shortage in the coming decade [2]. Therefore, water and wastewater
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treatments have been considered to be an essential and critical factor for sustainable human
society development.

Several treatment processes can be used to treat wastewater and supply clean water.
For example, membrane separation, adsorption, chemical precipitation, electrochemical
treatment, ion-exchange, chlorination, and ozonation, etc., are among the commonly used
techniques to remove hazardous materials for clean water supply [3]. Among them,
membrane separation has been the most widely used, due to its high energy efficiency and
relatively low cost. The membrane separation is performed by passing desired molecules
through pores in membranes selectively based on their sizes, and the interaction between
the molecules and the pores without phase change and additional chemicals [4]. The
membrane systems are generally simple and consist of limited ancillary equipment. Due to
the low cost and high efficiency, membrane technology has been widely employed for the
production of various types of water [5], dialysis of blood and urine [6], ion separation in
the electrochemical processes [7], and filtration of particulates from liquid suspensions [8].

The separation through membranes occurs via three different mechanisms: (i) size-
exclusion induced by the pores across the membrane, which allows passage of compounds
smaller than the pore size, (ii) pore flow caused by the interaction between pore surface and
passing molecules, which induces selective transportation of molecules with similar size to
the pores, (iii) solution diffusion induced by the diffusion of molecules into the membrane,
resulting in migration of the molecules across the membrane, which occurs exclusively
in polymeric membranes. The fundamental properties that determine membrane perfor-
mance are mainly the flux rate, selectivity, mechanical/chemical/thermal stabilities under
operating conditions, fouling properties, and service durability. Since the membranes act as
a barrier in the separation process, their surface properties, such as pore size, pore structure,
surface roughness, and physicochemical properties largely influence the overall membrane
performance. The roughness and hydrophilicity of the membranes influence the fouling
behavior of the membrane significantly, while the mechanical/chemical/thermal stabilities
determine the lifespan of the membranes [9].

Pore size, pore size distribution, morphology and surface properties of membranes pri-
marily define membrane properties. For example, the pore size and its distribution mainly
determine the selectivity, while properties of membrane materials influence permeability,
fouling and selectivity. The overall thickness and pore shape in the membranes also affects
the membrane flux. According to the pore size range, the membrane separation process for
water purification and desalination can be classified into microfiltration (MF), ultrafiltration
(UF), nanofiltration (NF) and reverse osmosis (RO) (Figure 1) [10]. In macroporous MF and
mesoporous UF membranes, the principle phenomenon of solute rejection is the molecular
sieving/size exclusion mechanism [11,12]. MF membranes typically reject those suspended
particles, asbestos, and cellular materials, such as particles, bacteria, protozo, a and red
blood cells. Contrarily, UF membranes have smaller pores and can reject smaller particles,
microsolutes such as sugars and salts and macromolecules such as pyrogens, proteins, and
viruses. NF membranes can reject low molecular weight-uncharged solutes by the size
exclusion mechanism such as MF and UF membranes and charged molecules by a com-
bination of the size exclusion mechanism, Donnan exclusion/equilibrium and dielectric
exclusion (electrostatic interactions) [13,14]. They include most organic molecules, viruses,
and salts. In particular, NF membranes can reject divalent ions and are often used for
water softening [15]. In contrast to MF, UF, and NF membranes, RO membranes possess
extremely small pores (0.3–0.6 nm), therefore, they can be considered to be non-porous.
Molecular transport in RO membranes is governed by a solution diffusion mechanism in
which solutes are dissolved into the membrane material and diffuse along with the concen-
tration gradient [16]. The separation is performed in different solubility and diffusibility of
the solutes. The most common application of RO membranes is the desalination of brackish
groundwater and seawater [17,18].
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Figure 1. Pore size ranges of various membranes and the ability to reject particular foulants [19].
Reproduced with permission. Copyright in 2019, Elsevier.

Ceramics and polymers are the two main materials for various membranes. In par-
ticular, ceramic membranes have gained more attention recently, due to their superior
performance, hydrophilicity, mechanical robustness, and high thermal and chemical stabili-
ties, which allow at least double lifespan compared with the polymer membranes [20,21].
The common ceramic materials used in membrane applications are Al2O3, TiO2, ZrO2,
SiO2 [19,22], and those containing a combination of them such as Al2O3-ZrO2 [23] and TiO2-
SiO2 [24], and various metal nanoparticles embedded in ceramics such as Ag-TiO2 [25].
However, the relatively high production cost of the ceramic membranes is a restricting
parameter in widening of their applications. Indeed, polymeric materials are still more
widely used, although there is a steadily decrease in the overall market share. Polymer
membranes have the merits of being low cost, tunable in porous structure, and ease in
scale-up. Therefore, the polymer membranes have been dominantly employed for water,
wastewater treatment, and desalination [1]. Among them, Poly-ethersulfone (PES) [26],
Poly-sulfone (PSf) [27], poly-vinylidene fluoride (PVDF) [28,29], poly-vinylpyrrolidone
(PVP) [30], poly-acrylonitrile (PAN) [31,32], poly-vinyl alcohol (PVA) [33,34], and poly-
vinyl acetate (PVAc) [35] are widely used as the polymeric membranes (Table 1). In addition
to the poor life span, most of these polymeric membranes are inherently hydrophobic to
certain extent, leading to low water flux, high fouling tendency, which often causes even
shorter lifetime and higher operating cost.

One of the recent trends in membrane development is the ceramic-polymer composite
membranes, which are able to integrate the advantages of ceramics and polymer materials,
providing improvement in membrane performance for efficient separation and additional
functionalities, while maintaining low cost. For example, the low flux and high fouling
tendency due to hydrophobicity of polymer membranes could be mitigated by the addition
of certain hydrophilic ceramic materials. Moreover, the material cost of ceramic-polymer
composite membranes would be lower than that of ceramic membranes, since only a small
amount of ceramic materials is included in the composite membranes. The concept of
ceramic-polymer nanomembranes was reported in the 1970s. Ceramic fillers (SiO2, Al2O3,
etc.) were mixed into cellulose acetate (CA) membranes [36]. Since the 1980s, ceramic-
polymer composite membranes have been applied for gas separation [37–39], where the
ceramic fillers enhanced the membrane rigidity for better separation.

In this overview, we first examine the different types of inorganic-organic composite
membranes and then recent progress of these ceramic-polymer composite membranes
for water treatment, in three categories: (i) Ceramic fillers in polymer (nanocomposite)
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membranes, (ii) thin film nanocomposite (TFN) membranes, and (iii) Ceramic-supported
polymer membranes (Figure 2). The technologies to improve the compatibility of the
two components, which is the key to successfully fabrication of high performance and
stable ceramic-polymer composite membranes, are discussed. Finally, the perspectives and
challenges for the future development of the ceramic-polymer composite membranes will
be visited.

Table 1. Structures of common polymer membranes.

Polymer Abbreviation Structure

poly-acrylonitrile PAN
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2. Composite Membranes

Composite membranes are commonly defined as polymer membranes, into which
inorganic nanoparticles are incorporated, on which inorganic nanoparticles are deposited
or which are supported by ceramic substrates as shown in Figure 2. There has been a steady
rise in the published papers on the ceramic-polymer composite membranes, which have
been employed in a large number of applications. More recently, new types of composite
membranes are emerging, including those with MOFs (Metal-Organic Frameworks)/COFs
(Covalent-Organic Frameworks) being incorporated/integrated. Moreover, there are also
the composite-type membranes containing three/multi components, such as ceramic-
(different) ceramic-polymer, GO-CNT-polymer, carbon-ceramic-polymer MOF-carbon-
polymer etc.
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2.1. Advantages of Inorganic-Polymer Composite Membranes

1. Simultaneous enhancement of flux and rejection

In general, flux and rejection are of the trade-off relationship. When large pores are
created in a membrane in order to improve the flux, this leads to reduce the rejection. Both
enhancement of flux and rejection can be achieved by the composite membranes. For
example, Nambikkattu et al. improved both glucose flux and rejection simultaneously by
addition of MgFe2O4 on PSf membrane [40], where the addition of MgFe2O4 enhanced
hydrophilicity of the membrane, but did not influence the pore structure, thus resulting in
an improvement of both flux and rejection simultaneously.

2. Addition of antibacterial and photocatalytic properties

Certain metal nanoparticles, such as Ag and Cu, are well-known for their antibacterial
properties. Thus, by incorporation of Ag and Cu nanoparticles (NPs) into polymeric
matrix, antibacterial properties can be added to the polymeric membranes. Indeed, high
antibacterial behavior against E. coli, Bacillus Subtilis, etc. was reported in Ag and Cu
NPs-containing polymeric membranes [41–43]. The superior antibacterial properties were
also observed in GO-added PA membrane [44]. Likewise, photocatalytic property can be
added into polymeric membranes by incorporation of TiO2 and ZnO [45–47]. Polymeric
membrane themselves would not exhibit these antibacterial and photocatalytic properties.

3. Modification of morphology of polymeric membrane

The hydrophilicity of polymeric membrane can be enhanced by addition of certain
hydrophilic inorganic NPs. Other properties can be also influenced by the addition of
inorganic components into polymeric membranes. In particular, the morphology of poly-
meric components such as roughness, porosity, pore size, etc. can be strongly influenced,
resulting in improvement of membrane performance [48–50].

4. Improvement of mechanical properties and thermal stability

The addition of certain inorganic component into polymeric membrane can improve
the mechanical properties and thermal stability. For example, Poly-vinylidene chloride
membrane with MCM-41 demonstrated higher tensile strength and then those of pristine
polymeric membrane [51]. This phenomenon is more obvious in polymeric membrane
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on ceramic support [52]. Additionally, rGO addition to PDMS membrane increased the
decomposition temperature of the polymer composite membrane [53].

2.2. Disadvantages of Composite Membranes

1. Compatibility between inorganic and organic components

One of the major issues with the nanocomposite membranes is the low compatibility
between polymeric and inorganic components, which can cause aggregation of inorganic
particles and separation of the two components, leading to poor performance, particularly
in membrane stability. The stability of inorganic components in polymeric matrix has
been performed by leaching test, exclusively in metal NPs-polymer membranes [54–56].
By contrast, in ceramic-polymer composite, the stability has been usually examined by
the long-term antifouling test [57–59]. In the past decade, great progress has been made
with improving the compatibility between both components, and a range of composite
membranes with high stability have been prepared. Challenges in improvement of the
compatibility between ceramic and polymeric components are summarized in Section 4.

2. Manufacturing cost

For polymeric membranes, phase inversion and casting have been widely used. These
techniques can be directly applied for the nanocomposite-type membrane using polymer
solution including inorganic NPs. In the case of TFN-type membrane, a polymeric support
layer can be prepared first and the top inorganic layer is deposited on the support layer. In
the case of ceramic-supported polymeric membrane, porous ceramic support is prepared
first by sintering and then polymeric top layer is deposited by techniques such as dip
coating, spin coating etc. These extra processes lead a degree of increase in membrane
fabrication cost.

3. Ceramic-Polymer Composite Membrane

As shown in Figure 2, ceramic-polymer composite membranes can be divided into
three groups. Nanocomposite membranes are composed of a polymeric membrane in which
inorganic NPs are dispersed. This type of membranes has been most widely researched.
The preparation for the nanocomposite membrane is mostly-based those well developed
for polymer membranes, such as the phase inversion or casting of a polymer solution
containing ceramic NPs. Either flat sheet or hollow fiber configurations can be obtained.
The nanocomposite membrane has been used for both MF and UF processes. In the TFN
membranes, a thin nanocomposite membrane is supported on a polymeric support, where
ceramic NPs are located on the surface of the membrane and provide minimal influence
on the intrinsic properties of polymeric substrate such as the pore structure. The surface
properties of the resultant membrane are basically governed by ceramic NPs. The ceramic-
supported polymer membranes consist of a thin polymer layer on a porous ceramic support.
In contrast to the other two types of membranes, relatively dense and bulk ceramics, not
ceramic NPs, are used in this type of membranes. The high chemical and thermal stability of
ceramic supports restrict swelling of the thin polymer layer and improve flux and provide
long membrane life. Highly tunable pore distribution and pore size of the polymeric
surface layer influence the rejection properties of composite membranes. Coating on a
polymer solution or in situ polymerization on a ceramic support has been employed to
prepare the ceramic-support membranes. In all three types of membranes, not only the
intrinsic properties of ceramic and polymeric components but also the interface properties
between them influence the membrane performance significantly.

3.1. Ceramics in Polymer (Nanocomposite) Membranes

This type of membranes is composed of polymeric membranes in which ceramic NPs
are dispersed in. Incorporation of the ceramic NPs into polymers could influence not
only the hydrophilicity, pore size and distribution, surface roughness, but also can add
new properties such as photocatalytic properties, antibacterial properties, etc. [60]. The
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fabrication of these membranes is mainly performed by casting and phase inversion (PI)
using a polymer solution containing ceramic NPs [61].

Metal oxides such as SiO2, Al2O3, TiO2, Fe3O4 have been exclusively used as ceramic
fillers for the nanocomposite membranes, where TiO2 is one of the most widely used ceram-
ics in this type of membranes (Table 2). Additionally, natural minerals such as kaolin [62],
cloisite [63] and montmorillonite [64] are studied to reduce material cost for inorganic
components. The main advantages of TiO2 incorporation include the enhancement in hy-
drophilicity as well as antibacterial behavior by photocatalytic properties of TiO2 [65]. By
the addition of TiO2, a decrease in contact angle and improvement of water flux have been
reported by several groups. Additionally, UV-radiation enhances fouling resistance and
antibacterial capability of TiO2-nanocomposite membranes due to the superhydrophilicity
and photocatalysis of TiO2 under UV irradiation [66,67]. The UV irradiation also promote
flux recovery of the TiO2-nanocomposite membrane [68].

Table 2. Summary of TiO2-based nanocomposite membranes.

Ceramics Polymer Membrane Improved Properties by
Addition of Filler Ref.

TiO2 (25 nm) PVDF Hollow fiber UF Hydrophilicity [68]
TiO2 PVDF Hollow fiber UF Hydrophilicity [28]

TiO2 (25 nm) + dopamine PVDF + PVP UF Hydrophilicity, Photocatalycity [69]

TiO2 (20 nm) PES UF Hydrophilicity, antifouling
performance [70]

TiO2 (20 nm) PVDF MF antifouling performance [71]
TiO2 PES NF Permeability, antifouling performance [72]

TiO2 (21 nm) PSf Hollow fiber UF antifouling performance [73]
TiO2 (62 nm) CA - Thermal stability, Water flux [74]

TiO2 (20 nm) PVDF-sulfonated-PES Flat sheet UF Hydrophilicity, Antifouling,
photo-bactericidal effect [75]

TiO2 (20 nm) PVDF UF Hydrophilicity, antifouling
performance [76]

TiO2 (20 nm) PVDF UF Hydrophilicity, Photocatalycity [77]

TiO2 PAN - Mechanical properties, Hydrophilicity,
Photocatalycity [78]

TiO2 PVDF - Oil rejection, Water flux [79]
TiO2 PSf - Dye removal [80]

The enhancement in hydrophilicity by the addition of ceramic NPs has also been ob-
served in other transition metal oxides, such as SiO2 [81–86], Al2O3 [87–90], Fe3O4 [91–95],
and ZrO2 [96]. The influence of these ceramic fillers on the properties of polymeric mem-
branes is dependent on the type and amount of fillers being added. For example, the
addition of mesoporous silica into PES UF membrane does not affect the pore size signifi-
cantly, but increases the level of porosity, resulting in an improved water flux (Table 3) [85].
Contrarily, the addition of Fe3O4 into PES membrane largely influences both pore size and
the level of porosity (Table 4) [94]. The level of porosity increased by the Fe3O4 addition,
while the pore size drastically decreased.

Table 3. Porosity, pore size and water flux of SiO2-contained PES membrane [85].

Membrane Porosity (%) Pore Size (nm) Water Flux (L m−2 h−1 at 200 kPa)

PES 69.2 12.9 122
1wt% SiO2-PES 74.8 13.7 145
2wt% SiO2-PES 75.9 14.6 180
4wt% SiO2-PES 74.9 12.8 137
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Table 4. Level of porosity, pore size and water flux of Fe3O4-contained PES membrane [94].

Membrane Porosity (%) Pore Size (nm) Water Flux (L m−2 h−1 at 200 kPa)

PES 17 89.3 5
1wt% Fe3O4-PES 33 40.1 6
5wt% Fe3O4-PES 44 3.9 12

10wt% Fe3O4-PES 59 5.8 21

Arsuaga et al. had compared the properties of TiO2, Al2O3, ZrO2-added PES UF
membranes [96]. These ceramic fillers decreased the contact angle and enhance the level of
porosity. The enhancement of water flux was in order of Al2O3 > TiO2 > ZrO2 (Table 5).

Table 5. Contact angle, level of porosity and water flux of TiO2, Al2O3, ZrO2-added PES mem-
brane [96].

Membrane Contact Angle (◦) Porosity (%) Water Flux (L m−2 h−1 at 300 kPa)

PES 52.3 51.8 182
TiO2-PES 44.1 66.6 199

Al2O3-PES 37.8 62.1 209
ZrO2-PES 48.6 64.3 190

The effects of ceramic fillers in polymer membranes are significantly influenced by
the properties of base polymeric membranes [83]. Table 6 summarizes the properties of
various TiO2-nanocomposite membranes. For example, in the CA (cellulose acetate)-based
nanocomposite, the contact angle is slightly increased by the addition of TiO2, while a
decrement in contact angle is observed in PES, PPESK (poly-phthalazine ether sulfone
ketone), and PSf-based composites. The TiO2 addition impacts the level of porosity of
PES, PPESK, and PSf membranes, although it does not affect the level of porosity of PVDF
membrane significantly. The ceramic fillers must be chosen carefully depending on the
properties being improved.

Table 6. Properties of various TiO2-added membranes reported.

Membrane Contact Angle (◦) Porosity (%) Ref.

PES 52.3 51.8 [96]
0.4 wt.% TiO2-PES 44.1 66.6 [96]

PPESK 50.7 80.5 [97]
1 wt.% TiO2-PPESK 45.9 86.8 [97]

PSf 70.1 63.4 [98]
1 wt.% TiO2-PSf 52.0 81.0 [98]

CA 69.3 - [99]
5 wt.% TiO2-CA 71.1 - [99]

PVDF - 72.2 [54]
1 wt.% TiO2-PVDF - 73.9 [54]

3.2. Thin Film Nanocomposite (TFN) Membranes

This type of membranes is composed of a thin nanocomposite membrane supported
on polymer substrates. The concept of TFN membrane was first suggested in the 1970s, and
it has been widely studied for desalination of seawater/brackish water, removal of heavy
metals, organic micropollutants and pharmaceutically active compounds [61]. PSf has
widely been used as a supporting layer while PA (polyamide) has been widely employed
in the thin top layer. As inorganic compounds, (a) metal oxide NPs, (b) metal NPs and
(c) carbon materials such as CNT and GO have been studied (Table 7).
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Table 7. Summary of surface nanocomposite membranes.

Top Layer Polymeric Support Improved Properties References

TiO2-PI PES Salt rejection, Water flux [100]
Halloysite nanotube-PA PSf Antifouling performance, Water flux [101]

TiO2-PA PSf Antifouling performance [102]
Fe3O4/ZnO-PA PSf Hydrophilicity, Water flux [48]

SiO2-PA PSf Hydrophilicity, Permeability, Salt rejection [103]
Al2O3-PA PSf Antifouling performance, Water flux [104]

TiO2/Halloysite nanotube-PA PSf Antifouling performance, Recovery [49]
NaY-PA PSf Hydrophilicity, Permeability [50]

Mesoporous-silica-PA PSf Antifouling performance, Water flux [105]
ZnO-PDMS PI UV resistance, Superoleophilicity [106]

Clay-Chitosan PVDF Dye adsorption [107]
TiO2 PS Hydrophilicity, Water flix [108]
TiO2 PAN Water flux, Dye rejection [109]
SiO2 PVDF Dye rejection, Oil rejection [110]

Bi12O17Cl2 CA Dye removal [111]
MoS2 PVDF Salt rejection, Dye rejection [112]

ZnWO4 PVDF Dye rejection [113]
TiO2 CA Water flux, Dye rejection [114]

Au-Ag-PAA PA Antifouling and antibiofouling performance [115]
Arginine-Fe-PA PES Antifouling performance, Permeability [116]

CNT-PA PSf Antifouling performance, Salt rejection [117]
Amine-MWCNT-PA PSf Permeability, Salt rejection [118]

MWCNTs-PA PSf Antifouling performance, Water flux [119]
GO-PA PAN Antifouling performance, Hydrophilicity [120]

PVP-GO-PA PSf Salt rejection, Water flux [121]
GO/Fe3O4-PA PES Water flux, Antifouling performance [122]

GO-PA PSf Water flux, Slat rejection [123]
GO-PA PSf Water flux, Hydrophilicity [124]

rGO-PDMS PES Thermal stability [125]
Quantum dot graphene-PA PES Anti-bacterial property, long-term stability [126]
Fullerenol (C60(OH)n)-PA PSf Hydrophilicity, antifouling property [127]

As in the nanocomposite membranes, TiO2 nanoparticles are among the most used in
the thin top layer, and the water flux and antifouling properties are improved [49,100–102].
An optimum TiO2 loading in this type of membrane is reported as 0.05~0.1 wt.%. This is
much lower than that in TiO2-nanocomposite membranes, which is around 1 wt.%. In the
TFN configuration, TiO2 content can be drastically reduced. Exposing TiO2 NPs on the
surface significantly influences surface properties of membranes, resulting in reduction of
TiO2 content. The TFN membrane could be fabricated at lower material cost compared to
the nanocomposite membrane. In contrast, photocatalytic properties of TiO2 in the TFN
membranes have not been widely reported. The optimum ceramic NP content is also in
the same range (0.05–0.1 wt.%) in the case of SiO2 NPs (Table 8) [103].

Table 8. Separation properties of PA/PSf membranes with various SiO2 contents [103].

Membrane Pure Water Permeability (L m−2 h−1 bar−1) NaCl Rejection (%)

PA/PSf 2.94 72
0.01 wt.% SiO2-PA/PSf 5.88 82
0.05 wt.% SiO2-PA/PSf 9.52 89
0.1 wt.% SiO2-PA/PSf 12.36 78

Like the nanocomposite membranes, metal NPs [115,116] and carbon mater-
ials [117,118,120–122,124–139] have been studies as additives for the TFN membranes.
In particular, the unique properties of carbon materials (CNT, GO, rGO, etc.) and their
derivatives influence membrane properties drastically even with small amounts of addition.
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3.3. Ceramic-Supported Polymer Membranes

This type of membrane is composed of a thin polymeric film (selective layer, active
layer) supported on a ceramic porous substrate (Figure 3, [140]). The ceramic substrates
provide the superior chemical, mechanical and thermal stabilities as well as negligible trans-
port resistance and defines the external shape of the membrane [44]. The ceramic-supported
polymer composites have attracted much attention for their significant performance in
UF [141], pervaporation [44,133–147], gas separation [148], etc. The thin polymeric layer,
which can consist of one or more intermediate layers, is prepared by processes, such as inter-
facial polymerization, dip coating, etc. The level of air humidity during dip coating, drying
process and polymer solution affected quality of top thin layer significantly [148,149].
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Figure 3. Structure of the ceramic-supported polymer composites.

Table 9 summarizes the ceramic-supported polymer nanocomposite membranes re-
ported. For the ceramic substrates, Al2O3, SiO2, TiO2, and ZrO2 have been extensively used
in forms of tubular, monolith, hollow fiber, and flat sheet. Additionally, natural minerals
such as clay and kaolin have been applied to reduce the cost of ceramic substrates. Several
types of polymeric thin films such as hydrophilic PA, PVA, PVP, PVAc, Chitosan, and
hydrophobic polydimethylsiloxane (PDMS) have been employed for the thin top layer.

Table 9. Summary of the ceramic-supported polymer membranes.

Polymer Thin Film Ceramic Support Improved Properties References

PDMS Al2O3 hollow fiber Butanol/water separation factor, long-term stability [150]
PA Al2O3 tubular UF membrane Dye rejection, methanol permeability [151]
PA Al2O3 tubular Salt rejection, water permeability [152]

PDMS ZrO2/Al2O3 Sulfur removal efficiency [153]
PVA Fumed silica Water selectivity, Pervaporation separation index [52]

Melamine-terephthaldehyde Al2O3 n-heptane permeability, dye rejection [154]
PDADMAC/poly(sodium 4-styrene

sulfonate Al2O3 monolith Stability for backwashing, reusable ceramic support [155]

PA Al2O3 hollow fiber Water flux [156]
Poly (maleic

anhydride-alt-1-alkenes) γ-Al2O3 NF membrane Dye rejection, permeability [157]

Sulfonated polybenzimidazole TiO2, TiO2/ZrO2 tubular Mechanical ruggedness, flux [148]
PDMS β-sialon Long-term stability, recovery ability [158]
PDMS ZrO2/Al2O3 tubular High flux, recovery ability [159]

PA Al2O3 High H2/CO2 selectivity [160]
PVP ZrO2 Oil rejection, anti-fouling performance [161]

Chitosan Clay+Kaolin Rejection of mercury and arsenic, cost of membrane [162]
PDMS (polydimethylsiloxane) ZrO2/Al2O3 tubular High flux, Membrane stability [163]

PVAc, PVP Al2O3 tubular Separation factor [164]
PVAc SiO2 tubular Water flux [165]
PDMS γ-Al2O3 IPA selectivity [166]
PVA ZrO2/Al2O3 tubular Water permeability, Selectivity of water to ethyl acetate [167]

PSf-PEI Flat Pozzolan Water permeability, Dye rejection [168]
Sulfonated polybenzimidazole TiO2/ZrO2 tubular Flux, Pervaporation stability [149]
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The benefits offered by the ceramic-supported polymer membranes are mainly in
high flux and long-term stability. For example, PDMS/Al2O3-ZrO2 nanocomposite mem-
brane shows about two times higher pervaporation flux of ethanol/water than that of the
PDMS/Blend cellose acetate (BCA) membrane [163] (Figure 4). Additionally, the separation
factor decreased with temperature monotonically in the PDMS/BCA membrane, while the
peak of separation factor was shown at 50 ◦C in the PMDS/Al2O3.
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Figure 4. A comparison of pervaporation performance between (a) PDMS/Al2O3-ZrO2 and
(b) PDMS/BCA membranes [163]. Reproduced with permission. Copyright in 2011, Elsevier.

Additionally, their superior long-term stability are reported by several research
groups [148,150,159,163], where it is considered to be arising from the high structural,
thermal, and chemical stabilities of ceramic supports in operating condition. In the polymer-
supported membranes, swelling of the polymeric support in the operation could damage
the thin top layer, resulting in poor stability of the polymer-supported membranes. The
swelling tendency is more prominent at high temperatures. Therefore, most of the com-
mercial PA membranes with polymer support cannot be used above 50 ◦C. Contrarily, PA
supported on Al2O3 tubular membrane demonstrated stable rejection and permeation of
MgCl2 at 70 ◦C, due to the high stability of Al2O3 support which could stabilize the PA top
layer [152].

It must be noted that the swelling process is different between the polymer-supported
and ceramic-supported polymer membranes (Figure 5) [163]. In the polymer support, top
and support layers are swollen in a parallel direction together (Figure 5a). The swelling
influences pore structure and membrane performance. On the contrary, only the top
layer can be swollen in the ceramic-support membranes (Figure 5b). The ceramic support
maintains its pore structure and can suppress the swelling of top polymeric layer. Therefore,
influence of the swelling is reduced in the polymer-supported membranes. This would be
one of the reasons behind the superior performance of the ceramic-supported composite
polymer membranes.

Ceramic-supported polymer composite membranes can recover their performance
completely by back washing after fouling [158]. For example, PDMS/β-Sialon membrane
is fouled by the crystallization of NaCl. After the membrane is scoured and dried to remove
the crystallized NaCl on the surface, the flux could be completely recovered. Interestingly,
for example, Menne et al. reported a reusable Al2O3 monolith support for PDADMAC/PSS
(poly(sodium 4-styrene sulfonate)) film [157]. After fouling, the top PDADMAC/PSS layer
is removed by sodium hypochlorite (NaOCl) treatment. Then, a new top layer is built
by the coating on the same Al2O3 monolith. Pure water permeability does not change by
the removal and rebuilding of the top layer. This reusable ceramic support is expected to
reduce material and production costs drastically.

By properly matching the properties between the ceramic support and a polymeric top
layer, the ceramic-supported polymer composite membranes can feature high permeability.
Additionally, the confinement in swelling of the polymeric top layer by a stable ceramic
support provides long-term stability and allows high temperature operation. However,
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further research would be required to optimize the polymer-ceramic interface, in order to
tailor the high performance of the ceramic-supported polymer composite membranes.
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Figure 5. Swelling in (a) polymer-supported PDMS top layer and (b) ceramic-supported PDMS top
layer [163]. Reproduced with permission. Copyright in 2011, Elsevier.

4. Strategies to Fabricate Ceramic-Polymer Composite Membranes

One of the challenges in fabrication of ceramic-polymer composite membranes is the
incompatibility of the ceramic-polymer interface. According to the basic thermodynamic
principles, the poor interfacial compatibility between ceramic and polymeric components
would lead to separation and severe aggregation of each component, leaching out of ce-
ramic nanoparticles, reduction in mechanical strength of the membranes, degradation in
pore structure, change in hydrophilicity, and decrease in the stability of the composite
membranes. In particular, some of the incorporated ceramic particles are usually highly
polarized because of abundant polar moieties on their surfaces, while some commer-
cial polymer membranes, such as PE and PP have a nonpolar nature. To address these
issues, modification of both components is widely conducted to improve the compati-
bility of the ceramic-polymer interfaces. By an appropriate modification, the undesired
differences between the ceramic particles and polymer matrix can be reduced. Surface
modification can also improve membrane performance, such as increase in flux and fouling
resistance [167,168]. The type of modifications is dependent on the membrane structure.
In the nanocomposite membranes, ceramic surface and/or whole polymeric components
can be tailored, while in the TFN membranes, mainly the surface modification of poly-
meric support is performed. Herein, some strategies to improve the compatibility between
ceramic and polymeric components are described.

4.1. Modification of Ceramic Nanoparticles

In this strategy, ceramic NPs are modified with certain functional moieties for better
compatibility with polymeric matrix. Intrinsically, cationic transition metals, such as
Ti4+ in TiO2, can bond to the oxygen-containing functional groups such as COOH and
SO2OH in the polymer matrix through coordination, stabilizing ceramic NPs in the polymer
matrix [169]. However, in order to further improve the stability of the ceramic-polymer
interface, the modification of ceramic NPs has been studied. For modifications of ceramic
NPs, there are mainly three strategies, (1) surface modification, (2) surface functionalization,
and (3) organic grafting on the particle surfaces.

4.1.1. Surface Modification

Hydroxyl groups on the surface of ceramic NPs can form hydrogen bonds with
carboxyl groups, amino groups, hydroxyl groups, etc. in the polymeric matrix, resulting
in stabilization of the NPs (Figure 6) [170]. Wang et al. applied a hydrothermal treatment
to grow gibbsite (Al(OH)3) on the surface of γ-Al2O3 NPs and then added them into the
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PVDF membrane [171]. The gibbsite can form hydrogen bonds with fluoride atoms in
the PVDF membrane. The gibbsite/γ-Al2O3 NPs were stable for at least two days in
dead-end filtration of MilliQ water at the flux of 5 × 10−6 to 2.5 × 10−5 m s−1. In addition,
bio-fouling by E. coli could be greatly reduced. The stabilization of ceramic NPs in the
polymeric matrix by the interaction between surface hydroxyl group on the ceramic NPs
and functional groups in the polymeric matrix was also observed in MnO2 [172], ZnO, and
ZrO2 [173] as well.
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Surface sulfonation of inorganic particles has been also performed because the sur-
face sulfonate group can react with the amide group in the polymetric matrix, leading
to a high stability of the nanocomposite membrane [174]. For example, Sun et al. incor-
porated 3-mercapto-propyltrimethoxysilane-modified H-ZSM-5 zeolite into a chitosan
membrane [175]. The SO3H group could be easily grafted on the surface of H-ZSM-5
and interacted with NH3

+ group in the chitosan membrane. By the interaction, not only
leaching of ceramic NPs, but also the creation of nonselective voids at the interface between
H-ZSM-5 and chitosan membrane could be suppressed, resulting in a high separation
factor of 274.46 in the pervaporative dehydration of aqueous ethanol solution.

Additionally, the surface SO3H group on ceramic NPs can increase the negative charge
of the nanocomposite membrane and enhance protein rejection due to electrostatic repul-
sion with negatively charged proteins. For example, sulfonated-TiO2 (S-TiO2) composited
with PES UF membrane showed a higher bovine serum albumin (BSA) rejection as well as
the level of porosity and hydrophilicity than those of pristine PES and non-sulfonated TiO2
composite membranes (Table 10) [176].

Table 10. Selected properties of PES, non-sulfonated TiO2/PES and S-TiO2/PES membranes.

Membrane Porosity (%) Contact Angle (◦) BSA Rejection (%)

PES 68.4 75 88
Non-sulfonated TiO2/PES 77.3 60 92

S-TiO2/PES 87.6 49.2 99

The surface modification of ceramic NPs can provide not only an improvement in
compatibility with polymeric matrixes but also influences on surface charge and pore struc-
ture of polymeric matrixes, resulting in better performance of the composite membranes.
However, the relationship between the modification and influence on the pore structure is
still unclear in several cases.
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4.1.2. Surface Functionalization on Ceramic Nanoparticles

Surface functionalization by in situ generation/growth of an inorganic component is
also an effective approach to reduce the agglomeration and provide additional functionality
for ceramic particles in polymer matrix [177]. For example, Zhang et al. coated SiO2
on Fe3O4 particle by the hydrolysis of tetraethyl orthosilicate [178], where the surface
hydrated SiO2 layer prevented the aggregation of Fe3O4 NPs in PES polymer matrix and
interacted with oxygen atom in the PES matrix. The membrane could be operated for
168 h, continuously, in which the effect of coating of hydrated SiO2 is similar to surface
hydration of ceramic NPs. However, hydrophilic SiO2 possesses more hydroxyl groups on
the surface, giving rise to a higher stability in the polymeric matrix compared with direct
surface modification of Fe3O4 NPs. Same strategy is applied for ZrO2-coated SnO2 [179],
MCM-41-coated SrCoxCu1-xO3-λ [180], and TiO2-coated hollysite nanotube [181].

The surface functionalization can change the stability of ceramic NPs in the polymeric
matrix drastically compared with the surface modification. The functionalization is not
limited to oxides and hydroxides. Recently, superior performance of CuS-coated CuO
in PVDF was reported [182]. The superior performance could be observed in 60 min.
Although long-term stabilization must be examined, the surface functionalization by other
compounds such as sulfide and phosphide is a new research area.

4.1.3. Organic Grafting

Polymeric matrixes are highly compatible with polymer components. The introduction
of the grafted polymer chain on ceramic NPs shall increase the stability of the NPs in the
polymeric matrix and suppresses aggregation of ceramic particles (Figure 7). For example,
a hydrophilic polymer, poly (2-hydro-xyethyl methacrylate) (p(HEMA), was grafted on
TiO2 nanoparticles. The surface p(HEMA) group helps improve the dispersibility of TiO2
nanoparticles in PSf flat UF membrane [183]. Compared to unmodified TiO2, the p(HEMA)-
grafted TiO2 enhances hydrophilicity and pure water flux and reduces BSA UF resistances.
Similar research on polymer grafting was performed using various polymer including
zwitter ionic polymers (Table 11). In all these studies, aggregation of inorganic NPs is
suppressed and hydrophilicity and water flux of the composite membranes are enhanced.
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Figure 7. Schematic illustration of composite membrane using graft polymer chain on ceramic NPs.
The grafting polymer suppress aggregation of the ceramic NPs and interacts with polymer matrixes,
improving stability of the ceramic NPs in the polymer matrixes.
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Table 11. Grafted ceramic NPs-polymer membranes.

Grafted Ceramic NPs Host Polymer Reference

PHEMAb-PMMA@-SiO2
(1) PVDF [184]

silylated ZSM-5 PDMS [57]
Polyester-MWCNT PVDF [185]

PEG-GO PVDF-co-HFP [186]
PMMA-CNT PVDF [58]

PEG-nanodiamond CA [187]
PMMA-SiO2 PES [188]

P(PEGMA)-GO PSf [189]
PSBMA-MoS2

(2) PES [190]
(1) PHEMAb-PMMA: poly(hydroxyethyl methacrylate)-block-poly(methyl methacrylate). (2) PSBMA: 2-methac-
ryloyloxy ethyl dimethyl (3-sulfopropyl)-ammonium hydroxide sulfobetaine methacrylate.

The introduction of certain grafted polymer chains onto ceramic NPs clearly shows
improving dispersity and compatibility of ceramic NPs with polymer matrix, resulting in
enhancement in performance of the nanocomposite membranes. By grafting various types
of polymers, not only tailoring the properties but also adding on one or more new functions
to the nanocomposite membranes. However, the introduction of a complicated functional
group on the surface of ceramic NPs needs rather complicated processing steps, making
membrane production difficult and costly. Finding effective and simple functional groups
and the development of novel functionalizing processes would be desirably required.

4.2. Modification of Polymers

Another direction to improve the compatibility between ceramic and polymeric com-
ponents is the modification of polymeric matrixes by introducing functional groups that
can interact with ceramic NPs. Polar groups such as sulfonic and carboxyl groups can
provide active sites to capture on the surface of ceramic components as well as an increase
in hydrophilicity [191–193].

4.2.1. Modification of Bulk Polymer Matrix

PVDF contains fluorine atoms, which exhibit a high electronegativity, in its polymer
chain. Therefore, a negatively charged fluorine atom and positively charged adjacent
hydrogen atom can contribute the hydrogen bond to surface hydroxyl groups on certain
ceramic NPs. To further stabilize ceramic NPs, grafting of other polymers containing polar
groups has been performed. For example, Zhang et al. grafted poly(acrylic acid) into
PVDF membrane [97]. Carboxyl groups in poly (acrylic acid) (PAA)-grafted PVDF can
interact with Ti(OBu)4 that is a precursor for TiO2. As a result, TiO2 NPs are uniformly
dispersed in the PAA-grafted PVDF composite membrane. A similar study is performed
using CA as a polymer and TEOS (tetraethyl orthosilicate) as a precursor for SiO2 [194] and
poly-dopamine (PDA)-poly-ethyleneimine (PEI)-g-poly-acrylonitrile (PAN) as a polymer
and Zr(SO4)2 as a precursor for ZrO2 [195]. PDA is also employed to immobilize Ag NPs
in PSf UF membranes [196,197].

Adding a component into the polymeric matrix is also an effective method, but adding
an appropriate polymer does not require the polymerization like the grafting mentioned
above. Thus, the functional polymeric matrix can be embedded easily. For example, mixing
the triblock copolymer PEO-PPO (poly-phenyleneoxide)-PEO, which contains moieties
that can interact with both organic and inorganic components, into PES UF membrane
can improve the interfacial compatibility with TiO2 NPs [198]. As other additives, PDA
(polydopamine) has been exclusively researched [198–200]. In this strategy, many polymers
with moieties which can interact with both polymeric and ceramic components, can be
good candidates as the additives. There are still a lot of room to develop suitable additives
in this strategy.
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4.2.2. Surface Modification of Polymer Matrixes

In the TFN membrane, ceramic NPs are supported on polymer matrixes. Therefore,
surface modification of polymer matrixes has been extensively studied in order to prepare
stable TFN membranes. The modifications have been largely performed to solid polymers,
rather than the polymer solution. For example, γ-methacryloxy propyl trimethoxy silane
(MPTS) monomer is polymerized (grafted) onto the PVDF solid membrane and then
hydroxyl-rich TiO2, SiO2 and β-FeOOH are introduced [201]. The ceramic NPs were
then firmly anchored in the grafted poly-MPTS layer and the ceramic NPs were stable
even under ultrasonication for 30 min. The same effect was observed in (3-aminopropyl)-
triethoxysilane grafted PVDF with SiO2 NPs membrane [202] and trimesoyl chloride
which reacts with Si-OH groups, grafted PVDF membrane [203]. Additionally, functional
complexes such as polyoxometalate could be immobilized onto the surface modified
polymer membranes [204].

Recently, in order to create oxygen-containing functional groups on the polymeric
membrane surface, plasma treatment is applied. For example, PP (Polypropylene) mem-
brane was treated with the O2 plasma followed by the dip coating of TiO2 NPs [205]. By
the O2 plasma treatment, the C=O stretching band was formed on the PP membrane,
which facilitates stabilizing TiO2 NPs. Additionally, the oxygen-containing functional
groups were prepared on PVDF membrane by Ar plasma treatment, followed by oxygen
exposure [206]. The functional groups facilitated to graft PAA thin layer on the PVDF
membrane. The PAA layer helped immobilize TiO2 NPs by the coordination of Ti4+ to
carboxylic groups. As a result, the membrane possesses high hydrophilicity, water flux,
and oil rejection rate. In another example, negatively charged PMAA (Polymethacrylic
acid) chains are created onto the PVDF membrane surface via plasma-induced grafting
polymerization [207]. Carboxyl moieties on PMAA acted as the binding sites to attract
amino-grafted SiO2 NPs. In general, the plasma treatment is able to give rise to stable
composite membranes. Nonetheless, further research is needed to clarify the exact effect of
the plasma treatment in the performance of nanocomposite membranes.

4.3. Direct Deposition of Ceramic NPs in Polymer Matrixes

In situ growth of inorganic components on membrane surfaces cannot only improve
the compatibility between the two components, but also provide ease of tailoring the inor-
ganic layers. This strategy was first proposed by Xu et al. [208–210], where the creation of
an intermediate layer on polymer membrane surface could capture precursors of inorganic
particles, which are then converted into inorganic NPs on the membranes. The observed
difference from the modification of the polymer surface described in the previous section is
attributed that surface modified-polymer captures precursors of ceramic NPs, not directly
captures ceramic NPs.

For example, PAA brushes are grafted on PP membrane, where the PAA-PP mem-
brane is soaked into CaCl2 solution and then Na2CO3 solution. The COO− groups in the
PP brushes captures Ca2+ followed by CaCO3 formation through reaction with Na2CO3,
resulting in CaCO3 deposition on the membrane (Figure 8) [211]. The PAA intermedi-
ate layer could not only provide binding sites for CaCO3 growth but also stabilize the
amorphous CaCO3 to control the mineral layer thickness. In the follow-up works, it was
found that the PDA/PEI layer could provide positive amino groups for silicification and
catechol groups for chelating metal ions. Rigid hydrophilic ceramic coatings showed
excellent anti-oil properties in water, enabling these to be used in oil-in-water emulsion
separation [212–214]. Such properties are also desirable in Li-ion battery separators to
improve electrolyte wetting and resist thermal shrinkage [215].

Since the PDA-based interlayers being used, controlled growths of nickel-cobalt lay-
ered double hydroxides on a PDA-modified PVDF [216] and ZrO2 on PDA/PEI [195]
have been studied. Compared with a single intermediate PDA layer, an additional pos-
itively charged CS layer could overcome the partial congregating of PDA and served as
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a smooth platform for uniform in situ growth of SiO2, leading to a dense and defect-free
SiO2 layer [217]. Other groups have also studied this strategy [218–221].
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The in situ growth of inorganic NPs supported by grafting functional polymer compo-
nents can form rather uniform and stable inorganic particles, leading to superior membrane
performance. The popularization of this technique largely relates to the simplification in
grafting processes of functional polymer components and the in situ growth process of
inorganic components. For the in situ growth process, a moderate heating is sometimes
performed, and however, the process could cause a slight change in the level of porosity
and pore sizes of the polymer component. The grafting and growing processes must be
chosen carefully.

As an alternative method for in situ growth of inorganic components on polymer
membranes, surface coating techniques can be applied. Among the surface coating tech-
niques, the Atomic Layer Deposition (ALD) technique is the most widely studied for the
deposition of inorganic particles on polymeric membranes [222]. In a typical ALD process,
reactive precursor vapors of inorganic materials are pulsed into a chamber alternately
under the protection of inert gas, leading to the layer-by-layer growth of metals, metal
oxides, and even organic materials [223,224]. The deposition of a series of oxides ZnO,
Al2O3, TiO2, and SnO2 on PVDF membranes, can be performed by the ALD and tested
anti-crude-oil properties (Figure 9) [225]. The ALD would be a good choice to prepare
TFN membranes because the ALD can deposit various inorganic layers with a controllable
thickness. However, for certain extremely inert substrate materials (e.g., PP or PTFE),
ALD coating becomes difficult and an effective surface treatment is needed [226–228]. The
TFN membranes prepared by the ALD technique is summarized in a review [222]. The
application of the ALD technique for membrane preparation is a relatively new topic.
Further intensive research is needed.
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Figure 9. ZnO, Al2O3, TiO2 and SnO2 deposited on PVDF membrane by ALD [225]. Reproduced with permission.
Copyright in 2018, American Chemical Society.

4.4. Ceramic-Supported Polymer Membranes

For the ceramics-supported polymer membranes, in addition to interfacial adhesion,
penetration of polymer solution into pores of ceramic support can inhibit the formation of
a dense and defect-free polymeric separation layer on the ceramic support. To prevent the
penetration, an increase in viscosity of polymer solution and pre-wetting pores of ceramic
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support has been performed [223]. The pores of ceramic support are filled with water
first and then polymer solution was cast on the ceramic support. Because of the blocking
effect of the filled water, the penetration of polymer solution can be greatly reduced. The
interfacial adhesion strength between the polymeric layer and ceramic supports must be
high enough to ensure long-term operation of the ceramic-supported polymeric membrane.
The interfacial adhesion is largely influenced by the roughness of ceramic support and
viscosity of polymer solution [229]. An increase in the adhesion strength was obtained by
lowering viscosity and roughing the support surface. For example, Jin’s group developed
a home-made in situ nano-indentation/scratch technique and studied critical load on
the interfacial adhesion of the PDMS/Al2O3 membrane [230]. Recently, tubular Al2O3
substrate was dip-coated into PEI solution short time (~10 s) to prevent the penetration
of the polymer solution and then phase-inverted from both inner and outer surface of the
substrate [231]. In this case, the penetration could be suppressed completely.

By contrast, interfacial polymerization can also be employed to prepare a thin poly-
meric layer directly on the ceramic support. For example, Chong et al. prepared a PA
thin layer with a thickness of 30–40 nm on the Al2O3 tubular membrane by interfacial
polymerization [153]. Xia et al. also succeeded in fabricating PA thin layer on the Al2O3
tubular UF membrane by interfacial polymerization [151]. The interfacial polymerization
is suitable for tubular support which is difficult to be cast polymer solutions. Shi et al.
deposited a PEI gutter layer on tubular Al2O3 support by dip coating, which enhances the
adhesion of the PDMS top layer [232]. The third component must have high compatibility
with both the ceramic support and the thin polymeric top layer.

As an alternative strategy, the silane grafting approach reveals enhancement of the
interfacial adhesion and performance of ceramic-support polymer membranes for ultra-
filtration of oil-water emulsions [233] and pervaporation [150]. In this approach, methoxysi-
lane with polymer chains reacts with hydroxyl groups on the ceramic surface. The Si-O
covalent improve surface adhesion with ceramic support and the polymer chains enhance
compatibility with the polymeric top layer (Figure 10).
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5. Perspective

Ceramic-polymer composite membranes have been intensively researched in recent
years. To successfully develop the designed types of composite membranes, different
fabrication techniques have been established, especially to improve compatibility be-
tween ceramic and polymeric components. Tuning the overall membrane structure can
dramatically change the physicochemical properties, such as the type and level of poros-
ity, surface hydrophilicity, chemical and mechanical stabilities, which impact the overall
filtration/separation performance. Additional functionalities such as antibacterial, photo-
catalytic, and antifouling properties can also be anchored in ceramic-polymer composite
membranes. Well-designed ceramic-polymer composite membranes would be able to solve
current problems of polymeric and ceramic membranes and be a good candidate for next
generation membrane technology.
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To further develop into practical applications of the composite membranes, there are
several perspectives and challenges, which are summarized as follows:

1. Fundamental study: Fundamental understandings for the influence of certain ce-
ramic NPs on membrane structures and membrane performance is still unclear, in
several cases. There have been several studies reporting influence of ceramic NPs
on polymeric matrixes; however, the origin of the influence has not been researched
in detail. As shown in Table 4, the influence of TiO2, Al2O3 and ZrO2 on the level
of porosity and contact angle of polymeric matrix were different. However, it is still
unclear how and what properties of the ceramic NPs influence the polymeric matrix.
Detail studies on a relationship between surface properties of ceramic NPs, structures
and performance of the membrane would be needed. This will help design new
composite membranes.

2. Structural study: Structural studies of the composite membranes have mostly been
carried out by observation of morphology using SEM and sometimes by EDS, FT-
IR and XPS. These rather simple structural analyses can lead to a wrong conclu-
sion. For example, Fe-Boemite-PVB/PVDF membrane was prepared by (i) casting
Boehmite-PVDF-PVB solution, (ii) immersing Boehmite-PVB-PVDF membrane into
FeSO4 solution, and (iii) Reduction of Fe2+ on the Boehmite-PVB-PVDF membrane
by KBH4 [234]. In the structural analysis of the membrane made by using SEM and
FT-IR, the TFN-type membrane structure was envisioned. In the solution casting, the
boemite particles could exist not only surface of the PVDF-PVB membrane, inside
the PVDF-PVB membrane as well. Fe2+ ion would be captured by OH groups of
boehmite inside the polymeric matrix. Thus, the membrane would be concluded
as nanocomposite-type membrane, not TFN-type. The lack of structural analysis
of membrane could cause misunderstanding of membrane structure, leading to the
wrong conclusions.

3. Long-term stability: there are several research works conducted in improving the
compatibility between ceramic NPs and polymeric matrix, as described. However,
knowledge of long-term compatibility is still not enough. In short term studies, there
have been suggestions to suppress the aggregation of NPs in composite membranes
and nanoparticle leakage. Studies on long-term compatibility between ceramic NPs
and polymeric matrix, change of the membrane properties and environmental impact
by the nanoparticle leakage would be required. Particularly, in addition to photo-
catalytic properties by TiO2, photocurrent would oxidize and damage/change the
polymeric matrix. This should become more prominent after any long-term usage.
However, studies on extended long-term stability of the photocatalytic membranes
have not been performed. To understand the stability of the membranes and fate
of nanoparticles, several characterizations, e.g., leaching tests, scanning electron mi-
crophotographs of the membrane surface and cross-section, roughness and FTIR with
attenuated total reflectance (ATR) scans of used membranes must be carried out.

4. Production cost: the expected application of the ceramic-polymer composite mem-
branes for water treatment is still at a rather early stage. There are numerous
laboratory-based works, but studies on large-scale production and industrial applica-
tion have not been properly conducted [235]. More efforts have to be made to evaluate
the long-term durability under the application conditions and cost-effectiveness in-
cluding the supply of nanoparticles and methods for nanoparticle incorporation.
Compared to current polymetric membranes, composite membranes require addi-
tional production processes, leading to higher production costs. More recently, novel
fabrication techniques such as 3DP are emerging for membrane fabrication. Some
of the new techniques have been applied for ceramic and polymeric membranes so
far [236–238]; however, there were fewer for ceramic-polymer composite membranes.
The 3DP would be able to reduce the production cost for the composite membranes,
when properly developed. Give the Al2O3 membrane is several times more expensive
than the PES polymeric membrane [164], development of cost-effective new ceramic
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NPs and the corresponding preparation process of composite membranes would be
needed. Natural polymers, such as cellulose acetate and polysaccharide, normally
possess polar groups in their structures, which can provide interacting sites for ce-
ramic particles [239,240]. Additionally, the material cost of natural minerals such as
kaolin, natural clay, etc. is much lower than Al2O3 [167]. Additionally, these natural
minerals possess high hydrophilicity, which is expected to improve the hydrophilicity
of composite membranes, if they are incorporated into the polymeric matrix. The
usage of natural polymers and natural minerals would be a strategy to reduce the
production cost of the composite membranes. Further study must be performed to
reduce the production cost of the nanocomposite membranes.
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