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Abstract: Background and Objective: Medical microwave radiometry (MWR) is used to capture the
thermal properties of internal tissues and has usages in breast cancer detection. Our goal in this
paper is to improve classification performance and investigate automated neural architecture search
methods. Methods: We investigated extending the weight agnostic neural network by optimizing the
weights using the bi-population covariance matrix adaptation evolution strategy (BIPOP-CMA-ES)
once the topology was found. We evaluated and compared the model based on the F1 score, accuracy,
precision, recall, and the number of connections. Results: The experiments were conducted on a
dataset of 4912 patients, classified as low or high risk for breast cancer. The weight agnostic BIPOP-
CMA-ES model achieved the best average performance. It obtained an F1-score of 0.933, accuracy of
0.932, precision of 0.929, recall of 0.942, and 163 connections. Conclusions: The results of the model
are an indication of the promising potential of MWR utilizing a neural network-based diagnostic tool
for cancer detection. By separating the tasks of topology search and weight training, we can improve
the overall performance.

Keywords: breast cancer; passive microwave radiometry (MWR); network architecture search (NAS);
weight agnostic neural network (WANN); CMA-ES algorithm

1. Introduction

Medical microwave radiometry (MWR) is used to obtain the internal tissue temper-
ature of the body [1]. This is done by measuring the naturally emitted thermal radiation
from the tissues. Additionally, it is a noninvasive, nonionizing, and cost-effective approach.
Due to the device’s accuracy, there are already multiple clinical applications using the
temperature readings and patterns to identify various conditions [1–11]. In this paper, we
focus on using MWR to detect breast cancer. This is viable since the growth rate of tumors
is correlated with the tissues’ temperature [12,13]. In addition to the thermal information
of the tissue, we can derive from MWR the cancer cells’ reproduction rate and mutagenesis
risk levels [14].

MWR is a relatively new clinical imaging technique. Thus, for it to be adopted
successfully, an artificial intelligence (AI) diagnostic tool needs to be developed in parallel.
The diagnostic tool alleviates the need for training clinicians to interpret the data and
prevents workload increase, while also providing a more accurate prediction. Thus, our
first objective is to further improve the diagnostic accuracy of the model. Furthermore,
while this research is focused on breast cancer, MWR has clinical applications at different
anatomical locations [1,14] and in various conditions. To reduce the development time of
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models for each of these cases, we explore adapting automatic machine learning (AutoML)
techniques for MWR data.

There has been previous work with AutoML for MWR using a cascade correlation neu-
ral network (CCNN) [15]. Subsequent improvements were made by expanding the pool of
layers and activation functions the model could explore [15,16]. Despite the improvements,
it was not able to outperform predefined architectures [16]. However, it resulted in a small
network that was desirable when considering edge computing and hardware limitations.
Various classification models have been explored in the past, such as deep neural networks,
convolution neural networks, support vector machines, and random forests [15,16]. Addi-
tionally, a rule-based classification model was introduced that improved the interpretability
of the results [16].

In summary, our contributions in the field of MWR for breast cancer detection are two-
fold. First, we evaluate the application of weight agnostic Neural Network (WANN) [17]
on MWR data and compare it against the CCNN that was used in previous research [15].
Secondly, we improve the WANN model for MWR classification. Once the topology of the
network is found using WANN, we use the bi-population covariance matrix adaptation
evolution strategy (BIPOP-CMA-ES) [18] to find the optimal weight candidates. Combin-
ing the WANN and BIPOP-CMA-ES strategies, we obtain state-of-the-art classification
performance on MWR breast cancer data. Furthermore, we conclude that a random search
strategy to optimize the weights yields better results than those achieved by a gradient
descent method for architectures generated by WANNs for MWR data.

2. Methods
2.1. Cascade Correlation Neural Network

Cascade correlation neural network (CCNN) is an early neural architecture search
(NAS) technique for supervised tasks [19]. The idea of a CCNN is to start with a minimum-
sized network, input and output layers, and add one additional node at a time until
convergence. The steps of the algorithm are as follows [19]:

1. Initialize network topology with input and output nodes.
2. Create a pool of candidate hidden layer nodes initialized at different starting weights.

The hidden layer node takes input from all previous layers. Its output is connected to
the output layer nodes. Each candidate node is trained until convergence.

3. From the pool of candidates, select and add to the network the candidate node that
maximizes the magnitude of the correlation between the output and target on the
validation set. The input weights of the added hidden layer nodes are frozen.

4. If the correlation does not improve or improves by a small margin, then terminate the
algorithm. Otherwise, proceed to step two.

An example of the connections created after adding the 3rd hidden layer can be seen
in Figure 1.

The loss function we used is the cross-correlation loss and optimize using stochastic
gradient descent. The optimizer’s learning rate was set to 5× 10−6. Each of the nodes used
a sigmoid activation function. Furthermore, their weights were sampled from a Gaussian
distribution with a mean of 0 and 0.5 standard deviation, and the bias was set to 0. A
combination of batch normalization and dropout layers (rate of 0.5) was added after the
node. The candidate node pool size was set to 30. Additionally, we reinitialized the weights
of the output layers after each iteration to avoid being stuck in a bad local minimum.
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Figure 1. The cascade correlation neural network after adding three hidden layers.

2.2. Weight Agnostic Neural Network

Another NAS method is the weight agnostic neural network (WANN) approach [17].
The main difference between WANN and CCNN is that during the architecture search,
the weights of the model are not trained. Instead, a set of fixed shared weights are used
to evaluate the average performance. According to the authors, the idea behind this is to
automatically find architectures that have inductive biases and can perform well in their
given task without training.

Inspired by genetic evolution, WANN starts with a population of small initial networks.
The initial networks consist of the input and output layers. However, the nodes between the
layers are sparsely connected. Then, once the population of networks is established, a series of
fixed shared-value weights, which we set to [−2,−1.5,−1,−0.5, +0.5, +1, +1.5, +2], are used
to evaluate the performance of each topology. The evaluation metric we used is the geometric
mean between the predicted and actual values.

The topologies were ranked on the basis of three criteria: mean performance across
all fixed shared weights, best performance between any of the fixed shared weights, and
the number of connections. Similar to the authors of WANN, we used the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [20] to sort the network topologies based on the
previous criteria. NSGA-II is a multi-objective sorting genetic algorithm that combines
elitism and does not require a priori selection of shared parameters. The highest-ranking
topologies were selected for the next step using the tournament algorithm [21].

Once the new population was selected, they were subsequently varied to generate
the next generation of population. There were three mutation operations used to increase
the complexity of the model. First, a node can be inserted between two connected nodes.
Secondly, a new connection can be added between two existing nodes. Finally, the acti-
vation function of a node can be changed according to the list in Table 1. This process of
evaluating, ranking, and generating a new population was repeated until there was no
longer improvement.

The hyperparameters for the WANN model are summarized in Table 2. These hy-
perparameters were defined through extensive experimentation. Specifically, we searched
200 generations, each having a population size of 200. The existence of the initial connec-
tions between input and output layers was set to 0.2. For topology variation, we set a
likelihood of changing the activation function to 0.5, adding a node to 0.25, and creating a
new connection to 0.25. Finally, for the tournament algorithm, we set the size to 4.
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Table 1. Summary of the pool of activation functions that the weight agnostic neural network
samples from.

Name Equation Range

Linear f (x) = x (1) (−∞, ∞)

Binary step f (x) = {1 f or x ≥ 0 0 f or x < 0} (2) {0, 1}

Sin f (x) = sin(x) (3) [−1, 1]

Cosine f (x) = cos(x) (4) [−1, 1]

Sigmoid f (x) =
1

1 + e−x (5) (0, 1)

Gaussian f (x) = e−x2
(6) (0, 1]

TanH f (x) = tanh(x) (7) (−1, 1)

Inverse f (x) = −x (8) (−∞, ∞)

Absolute Value f (x) = abs(x) (9) [0, ∞)

ReLu f (x) = {x f or x ≥ 0 0 f or x < 0} (10) [0, ∞)

Squared f (x) = x2 (11) [0, ∞)

Table 2. The hyperparameter selection for the weight agnostic neural network.

Hyperparameter Value

Generations 200
Population Size 200

Change Activation Probability (%) 50
Add Node Probability (%) 25

Add Connection Probability (%) 25
Initial Active Connections (%) 20

Tournament Size 4

2.3. Weight Agnostic Neural Network BIPOP-CMA-ES

For MWR breast cancer data, we can determine patterns and relationships between the
points to identify high-risk patients. By using a WANN model, the resulting architecture
relies on creating node connections to identify similar properties, in addition to new ones.
Thus, the architecture acts as a prior. However, there are more subtle cases to distinguish
between those that are low- and high-risk. Specifically, these cases will be when the tumors’
growth rate slows down. This can be achieved through weight optimization once the
optimal architecture has been found.

Based on the research results of WANN, while it performs better than chance in most
cases, it is not able to outperform fixed topologies that have had their parameters tuned [17].
A way to circumvent this is by taking the best topology found by the WANN model and
proceeding to optimize the parameters via a gradient descent algorithm. However, a
network with various activation functions results in a difficult gradient traversal [17].

Thus, a better way of optimizing the weights is through a black-box optimization
method such as the CMA-ES algorithm [17,22]. With the randomized search of the CMA-ES,
it is suitable for a rigged landscape in which there are many bad local minima, discontinu-
ities, and noise. The steps of the CMA-ES algorithm are summarized in Figure 2.
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Figure 2. The pseudo-code of the CMA-ES algorithm [23].

We used a variant of the CMA-ES algorithm, the bi-population covariance matrix
adaptation evolution strategy (BIPOP-CMA-ES) [18]. Through our experiments, we found
it to perform better than CMA-ES. BIPOP-CMA-ES uses a variable population size. It
initially starts with a small population size, which we set to 50, and doubles after each
restart. Additionally, to speed up convergence, we fine-tuned the initial single shared
weight of the model. We achieved this by linearly evaluating values between −2 and 2.
Finally, the cross-entropy loss was used to find the best fit.

3. Results
3.1. Data

The MWR breast cancer data were captured using the MMWR-2020 (RTM-01-RES)
(http://www.mmwr.co.uk accessed on 26 July 2022) device in clinics over the world.
The data were classified as either low or high risk for breast cancer. Classification of
the patients was done by clinicians using MWR, mammography, and/or biopsy data
as necessary. In total, 4912 cases were recorded, with 4377 as low-risk and 535 as high-
risk. Subsequently, we class-balanced and separated our data into train, validate, and
test sets using 60%, 20%, and 20%, respectively. The data are publicly available from
http://www.mmwr.co.uk/dataset_cleanbreast.csv accessed on 26 July 2022.

The MWR data consist of temperature readings of the skin surface and internally
at a depth of 3–5 cm. There were in total 44 points recorded on the mammary glands
and surrounding regions. On each gland, a point was recorded on the nipple and nine
equidistant around the nipple. Additionally, two reference points were captured just below
the chest. Finally, two more points were captured under each axillary area. Each of these
points was captured both on the skin and at a depth. The positions described are shown in
detail in Figure 3.

http://www.mmwr.co.uk
http://www.mmwr.co.uk/dataset_clean breast.csv
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Figure 3. Capture positions for each mammary gland (0–8) and at the axillary point (9). There are the
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a depth of 3–5 cm.

3.2. Experimental Results

Each model was trained three times using a different random number generator
seed. For the analysis, we obtained from the test set results the mean and standard
deviation. We explored additional NAS techniques that are available from the Neural
Network Intelligence [24] package. Specifically, the exploration strategies we investigated
are Differentiable Architecture Search (DARTS) [25,26], regularized evolution [27], and Tree-
structured Parzen Estimator (TPE) [28]. The model search space is based on a previously
developed fully connected (FC) network [15], with the extended search space specified in
Table 3. To also consider the impact of our model, we compared the output results of our
model against the other models using a statistical significance t-test. We consider a p-value
of <0.05 to be statistically significant.

Table 3. The model search space of a fully connected neural network. It was used by DARTS,
regularized evolution, and TPE NAS algorithms.

Model Search Space Range

Number of Layers [2, 8]
Number of Units per Dense Layer {32, 64, 128, 256, 512}

Activation Function See Table 1
Batch Normalization {Include, not Include}

Dropout Rate {0, 0.1, 0.25, 0.5}
Skip Connection {Include, not Include}

From the models presented, the best performing on the test set across all metrics is
the proposed WANN BIPOP-CMA-ES. The model obtained an average F1-score of 0.933,
accuracy of 0.932, precision of 0.929, recall of 0.942, and required 163 connections. It needed
106 function evaluations before converging on the validation set. When assessing the
p-value, our model’s results are statistically significant compared to all other models. All
but the WANN model result in a much lower p-value of at most 0.005. The WANN model is
still statistically significant but with a marginal value of 0.045. The summary of the results
is shown in Table 4. The accuracy and loss during training of the WANN BIPOP-CMA-ES
can be seen in Figure 4.
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Table 4. The summary of the results on the test set for all models. Each model was trained three times,
in which a different random number generator seed was used each time, and the metrics presented
are the average and standard deviation of those runs.

Model F1-Score Accuracy Precision Recall Connections p-Value

FC-Evolution 0.905 ± 0.004 0.903 ± 0.004 0.892 ± 0.012 0.919 ± 0.009 1342 k ± 373 k <<0.05
FC-TPE 0.9 ± 0.018 0.9 ± 0.017 0.903 ± 0.016 0.897 ± 0.02 1254 k ± 124 k <<0.05

FC-DARTS 0.849 ± 0.037 0.846 ± 0.04 0.834 ± 0.047 0.866 ± 0027 1166 k ± 124 k <<0.05
CCNN 0.809 ± 0.011 0.816 ± 0.011 0.825 ± 0.012 0.795 ± 0.033 672 ± 28 <<0.05
WANN 0.673 ± 0.013 0.697 ± 0014 0.727 ± 0.042 0.631 ± 0.047 163 ± 9 <0.05

WANN BIPOP-CMA-ES 0.933 ± 0.007 0.932 ± 0.008 0.929 ± 0.005 0.942 ± 0.021 163 ± 9 -

Figure 4. Cross-entropy loss and accuracy curve of the BIPOP-CMA-ES optimization algorithm
during training of the best WANN topology.

To further analyze the models, we also compared the mean element-wise difference of
the values between WANN BIPOP-CMA-ES against WANN and FC-Evolution (second-
best-performing model). They obtained respectively a mean difference of 0.49 (±0.57) and
0.76 (±0.78). Furthermore, we observed from the networks’ output that most erroneous
cases from the WANN were close to the threshold of value 0.5. On the other hand, the
erroneous cases of the FC models differed by a large amount. In contrast to WANN’s
p-value, it was the worst-performing model when no weight optimizations were done.

The architecture and optimized weights obtained from the CCNN had an average
performance on the F1-score with a value of 0.809. It required a total of 17 iterations before
terminating due to the validation loss not decreasing given patience of five iterations for
this execution. The accuracy and loss during training can be viewed in Figure 5. However,
it required a total of 672 connections before converging.
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correlation neural network during training.

Additionally, we evaluated the robustness of the WANN’s generated topology to
weight changes. Specifically, we evaluated the performance of the network when using
fixed, randomly generated, and fine-tuned shared weights. For each of these cases, we ran
them 10 times and took their average. In Table 5, we show a summary of the results of the
test set. By tuning the weights, we improved the performance. In contrast, using random
weights, we obtained the worst performance.

Table 5. Performance of WANN on the test set using different weight schemes.

WANN F1-Score Accuracy Precision Recall

Random weight 0.5209 0.5591 0.5571 0.4892
Shared weight 0.5979 0.6628 0.7212 0.5105

Tuned shared weight 0.6546 0.6947 0.7363 0.5892

4. Discussion

Similar to the observations of the authors of WANN [17], the generated model we
obtained can achieve better performance than that of chance based on the generated
topology of the network. We can further improve the performance by optimizing the
weights. However, despite the improvement when we used a gradient descent optimizer,
the performance is still subpar to that of the other models. We gained a much larger
improvement in performance when utilizing a random search evolution strategy.

Our proposed model obtains the best performance on all metrics evaluated and has
the least number of connections. The WANN and CCNN models have a small number
of connections as they start from a minimum-sized network and gradually expand. In
contrast, FC-Evolution, FC-TPE, and FC-DARTS search from a predefined architecture
space that allows them to start from a large or small network. The trend of these approaches
was to opt for larger network sizes early in their architecture search, as they have a higher
learning capacity. Additionally, we showed that the predicted results from the network are
statistically significant when paired against all other evaluated models. However, while the
WANN’s performance is the worst, it has the highest p-value. This is probably an indication
of the importance of the architecture and that inductive biases are maintained to some
degree, despite weight training.

A general summary of the advantages and disadvantages of all models is shown in
Table 6. Furthermore, there are domain-specific advantages of WANN BIPOP-CMA-ES
and an extension of NAS for healthcare applications. First, the generated topology of the
network is optimized to have a small number of parameters and sparse connections due
to the inclusion of the model size as a minimization objective [17]. This allows the model
to be deployed on low-end devices and on already existing clinical hardware, which is
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particularly important for accessibility to low- and mid-income countries. Second, we
decrease the development time, as architecture tunning through manual trial-and-error is
reduced. Additionally, the model becomes more accessible to nontechnical experts, such as
clinicians, as they do not require vast knowledge of machine learning to develop a model.
Without this barrier, they can more effectively contribute to and improve the diagnostic tool.
Finally, from the aforementioned benefits, it reduces the complexity and time of adapting
MWR for different anatomical locations and pathologies.

Table 6. Summary of the main advantages and disadvantages of the models explored.

Model Advantages Disadvantages

FC-Evolution

• With an evolutionary algorithm,
it is simpler to define
population mutations.

• Evolution strategies can be
parallelized easier.

• The diversity of the connections
is limited to predefined layers.

• Has a fixed outer structure, such
as the number of layers or units.

• Favors larger model sizes.

FC-TPE

• It is a sequential model-based
optimization method that
approximates the architecture’s
hyperparameters based on
previous results.

• Architecture search is
computationally efficient.

• The diversity of the connections
is limited to predefined layers.

• Has a fixed outer structure, such
as the number of layers or units.

• Favors larger model sizes.

FC-DARTS

• Gradient descent is used to
search for optimal architecture
hyperparameters.

• Since it is a one-shot NAS
approach, it can converge to an
optimal architecture and
weights faster. To achieve this, it
uses two-step training: one to
search for model architecture
and the other for
parameter optimization.

• Training data are divided into
architecture and weight training.
For a small (pathological)
dataset like the one used, it
limits the performance as the
divided data do not share the
same distribution.

• The diversity of the connections
is limited to predefined layers.

• Has a fixed outer structure, such
as the number of layers or units.

• Favors larger model sizes.

CCNN
• Small network size.
• Freezes previously added nodes

to improve training time.

• Slow to train as each node in the
pool has to be
trained individually.

• Depends on a larger node pool
size to avoid bad local minima.

• Training individual nodes at a
time can make the model more
prone to overfitting.

• Node connections are
predefined. Thus, there is
limited diversity and complexity
in the resulting architecture.

WANN

• Small network size (model size
is an optimization objective).

• Evolution strategies can be
parallelized easier.

• Promotes connection sparsity
between the nodes.

• No weight optimization leads to
faster architecture convergence.

• Allows for diverse and complex
connections between nodes that
are not practical to
define manually.

• Finds a more optimal network
architecture compared to other
methods explored. The
performance is exclusively
obtained from the network’s
architecture (which has
inductive biases).

• Subpar performance when
compared to other models.

• The model’s weights are not
optimized for the given task and
hence they are underutilized.

• The WANN architecture search
space is unconstrained. Thus,
there are no clear stopping
criteria. Too few trials might
result in a poor-performing
network, or too many can lead
to unnecessary high
compute time.
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Table 6. Cont.

Model Advantages Disadvantages

WANN BIPOP-CMA-ES

• Small network size (model size
is an optimization objective).

• Evolution strategies can be
parallelized easier.

• Promotes connection sparsity
between the nodes.

• Allows for diverse and complex
connections between nodes that
are not practical to
define manually.

• By separating the architecture
search and weight training, it
benefits from the inductive
biases from the WANN and
weights fine-tuning from the
BIPOP-CMA-ES to
improve performance.

• A small architecture during the
first phase results in fast weight
training during the
second phase.

• Low performance when using
the more common gradient
descent methods used in neural
network training.

• It is currently unclear which
WANN model should be
selected to be trained. The
highest-performing WANN on a
given set of metrics might not
yield the best performance when
weight has been optimized.

• While it is computationally
efficient to train a single WANN,
it is computationally demanding
when training multiple
WANN models.

The mutation operations of WANN only increase the complexity of the network
topology. For future work, we will expand it to include operations such as deleting nodes
and deleting connections so there is more flexibility in defining the architecture. In addition,
there is no crossover mutation operation in the WANN model, which will reduce population
diversity. Hence, we will explore different crossover mutation operations [29–31] and restart
techniques to increase model performance [32,33]. Finally, we will investigate cross-trial
information sharing, such as including in the mutation pool more complicated building
blocks generated from previous trials.

Furthermore, we will look at improving our model by searching for the best loss
function [34], utilizing a one-shot learning search [35,36], and conducting a hyperparameter
search [37]. We will also compare against additional NAS methods such as reinforcement
learning-based searching methods [38,39], ensemble methods [40], and transfer learn-
ing [41]. Our main aim is to determine if a performance improvement can be made without
significantly increasing computational complexity.
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