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Abstract

Microbiome data consists of operational taxonomic unit (OTU) counts characterized by

zero-inflation, over-dispersion, and grouping structure among samples. Currently, statistical

testing methods are commonly performed to identify OTUs that are associated with a phe-

notype. The limitations of statistical testing methods include that the validity of p-values/q-

values depend sensitively on the correctness of models and that the statistical significance

does not necessarily imply predictivity. Predictive analysis using methods such as LASSO is

an alternative approach for identifying associated OTUs and for measuring the predictability

of the phenotype variable with OTUs and other covariate variables. We investigate three

strategies of performing predictive analysis: (1) LASSO: fitting a LASSO multinomial logistic

regression model to all OTU counts with specific transformation; (2) screening+GLM:

screening OTUs with q-values returned by fitting a GLMM to each OTU, then fitting a GLM

model using a subset of selected OTUs; (3) screening+LASSO: fitting a LASSO to a subset

of OTUs selected with GLMM. We have conducted empirical studies using three simulation

datasets generated using Dirichlet-multinomial models and a real gut microbiome data

related to Parkinson’s disease to investigate the performance of the three strategies for pre-

dictive analysis. Our simulation studies show that the predictive performance of LASSO with

appropriate variable transformation works remarkably well on zero-inflated data. Our results

of real data analysis show that Parkinson’s disease can be predicted based on selected

OTUs after the binary transformation, age, and sex with high accuracy (Error Rate = 0.199,

AUC = 0.872, AUPRC = 0.912). These results provide strong evidences of the relationship

between Parkinson’s disease and the gut microbiome.

Introduction

The microbiome comprises all of the genetic material within a microbiota (the entire collec-

tion of microorganisms in a specific niche, such as the human gut). This can also be referred to
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as the metagenome of the microbiota [1]. The far-reaching effects of the microbiome on

human diseases and many other biological phenotypes have only recently been discovered [2].

Bacteria in the body and on its surface have a significant impact on the development of health

and disease states. For example, microbial changes are shown to be associated with Parkinson’s

disease [3]. The abundance of a bacterium species or genus is quantified by OTU counts using

genetic sequence similarity, produced via targeted amplification and sequencing of the 16S

rRNA gene [4].

OTU counts often have number of zeros more than what is expected in Poisson or negative

binomial (NB) models. One source of the zero microbiota abundance is that only a few major

bacterial taxa of the microbiota are shared across samples and the rest are detected only in a

small percentage of the samples. The zero counts may also be observed when the counts are

present with a low frequency but not observed because of sampling variation (sampling zeros).

When OTU counts are non-zero, it is often observed that they are highly right skewed, often

called over-dispersion. Many studies have been developed to account for the over-dispersion

of microbiome data such as logistic normal multinomial regression [5] and Dirichlet-multino-

mial regression [6]. However, those methods do not consider the grouping structure of micro-

biome data; for example, plants from the same plot, and individuals from the same family. The

grouping structure in the sample causes correlation among the samples and thus further com-

plicates the analysis and interpretation of microbiome count data. Ignoring the correlation

among samples can result in biased inference and misleading results. Generalized linear mixed

effect models (GLMMs) are often adopted to account for the grouping structure by treating

the group identities as random factors [7, 8].

It is of great interest to find the association between the abundances of a subset of OTUs

and a host factor, such as a health disorder; see [9–11]. For example, Huttenhower et al. [12]

report various relationships between the gut microbiome and cancer, inflammatory bowel dis-

ease, and obesity. Currently, researchers fit each OTU variable with GLMM given the pheno-

type variable and other factors, and then apply a statistical testing method to each OTU to test

whether the OTU is differentiated by the phenotype variable [7, 8]. OTU selection can be

achieved by thresholding the p-values/q-values returned by the statistical testing procedure.

However, statistical testing methods have a number of limitations. First, the validity of p-val-

ues/q-values relies on the correctness of assumed models, which may not hold for real datasets.

Second, p-values/q-values only measure statistical significance but not practical significance.

Small q-values do not necessarily imply strong predictivity. For example, many SNPs selected

by genome-wide association studies are not good predictors [13–15].

Considering the limitations of statistical testing methods, we are interested in performing

predictive analysis for microbiome data. We employ statistical machine learning methods to

make predictions of a phenotype based on microbial composition and other covariates. The

strength of the association between microbial composition and the phenotype is measured by

predictive metrics such as error rate, AUC, etc. In this paper, we consider fitting a logistic

regression model for a phenotype variable given microbial composition and other covariates.

Due to the large number of OTUs, which is often larger than the sample size, a penalization for

the regression coefficients is necessary for controlling over-fitting, for which LASSO [16] is a

popular choice. LASSO uses a L1 penalization that can shrink some coefficients to exactly 0 for

OTU selection and for controlling over-fitting. To the best of our knowledge, fitting the distri-

bution of a phenotype given OTU composition with a method such as LASSO has not been

adopted very often by researchers in microbiome studies. Statistical methods based on fitting

GLMM models for OTU counts given a phenotype and other covariates are typically used for

identifying the association between microbial composition and a phenotype; see [7, 8]. The

primary advantage of fitting a model for a phenotype given OTU composition data is that this
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approach can capture the joint effect of OTU composition on the phenotype. Statistical testing

methods that model each OTU individually [17–19] may fail to discover such a complex rela-

tionship. For example, a phenotype may be associated with the proportion of a microbial

taxon rather than individual OTUs within the taxon; in such a scenario, each OTU within the

taxon may exhibit weak association with the phenotype.

In this paper, we emphasize that classical statistical testing method is not enough for micro-

biome data. Strong association does not imply good predictive performance. Moreover,

wrongly specified model can give biased results. Simple statistical learning method such as

LASSO with appropriate transformation works well for microbiome data. We combine the sta-

tistical testing and learning method for microbiome data. We consider three strategies of pre-

dictive analysis for microbiome data: (1) fitting a LASSO multinomial logistic regression

(LASSO-MLR) model to all OTU counts with specific transformation, shortened by LASSO;

(2) screening OTUs with q-values returned by fitting a GLMM to each OTU, then fitting a

GLM model using a subset of selected OTUs, shortened by screening+GLM; (3) fitting a LAS-

SO-MLR to a subset of OTUs selected with GLMM, shortened by screening+LASSO. In the

meantime, we investigate the predictive effect of random effect on phenotypes. We have con-

ducted empirical studies using synthetic datasets and a real gut microbiome data related to

Parkinson’s disease (PD) to investigate the performance of the three strategies for predictive

analysis. Three synthetic datasets were generated using Dirichlet-multinomial model. Then

phenotypes are generated using logistic regression given OTUs, fixed and random effects. For

OTU screening, we apply the likelihood ratio test (LRT) to three GLMMs that can handle

zero-inflation and over-dispersion of OTU counts.

Our studies with the synthetic datasets show that the predictive performance of LASSO

without variable screening is remarkably excellent for zero-inflated data. The screening+GLM

and screening+LASSO methods also work reasonably well if the power of screening is high.

The analysis also shows that random effects can help to improve the predictive accuracy. The

applications of the three strategies of predictive analysis methods in the PD microbiome data-

set show that LASSO can predict PD with microbial composition and two covariates (age and

sex) accurately with error rates near 0.2 and AUCs higher than 0.8. The best predictive accu-

racy for PD with this dataset is obtained with a screening+LASSO method, which gives predic-

tive metrics as follows: ER = 0.199, AUC = 0.872, AUPRC = 0.912. Our predictive analysis

results provide strong evidences of the relationship between PD and the gut microbiome.

Methods

Notations for micorbiome data

A typical OTU dataset contains measurements of abundance for OTUs, the total reads, a num-

ber of fixed factors and random factors for each sample, as shown by Table 1:

We will describe the mathematical details of the notations in Table 1:

Table 1. A general form of microbiome data.

OTU1 � � � OTUm Total reads Phenotype Fixed factors Random factors

Sample 1 Zð1Þ1
� � � ZðmÞ1

T1 Y1 Xð1Þ1 ; � � � ;XðsÞ1 Wð1Þ

1 ; � � � ;WðtÞ
1

..

. ..
. � � � ..

. ..
. ..

. ..
. ..

.

Sample n Zð1Þn � � � ZðmÞn Tn Yn Xð1Þn ; � � � ;X
ðsÞ
n Wð1Þ

n ; � � � ;W
ðtÞ
n

https://doi.org/10.1371/journal.pone.0237779.t001
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• ZðjÞi , i 2 [1, n], j 2 [1, m] is the count of OTU j in sample i. This number can be the abun-

dance of taxa grouped at different levels such as species, genus, and family.

• Ti, i 2 [1, n] is the total number of sequence reads for sample i. If all measured OTUs are

included in our model, Ti ¼
Pm

j¼1
ZðjÞi . However, Ti may be smaller than

Pm
j¼1

ZðjÞi if some

OTUs are omitted for measurement quality control reasons.

• Yi, i 2 [1, n] is the phenotype of interest.

• XðjÞi , i 2 [1, n], j 2 [1, s] represents the jth fixed factor associated with the ith sample. s is the

total number of fixed factors considered in the mixed effect model. They could be host or

clinical factors. When the jth fixed factor is a categorical variable with k classes, XðjÞi is a row

vector of k − 1 binary variables indicating the class of sample i.

• WðjÞ
i , i 2 [1, n], j 2 [1, t] represents the jth random factor associated for the ith sample. t is the

number of random factors considered in the mixed effect model. They are used to account

for the correlations between samples since microbiota from the same group of samples are

more similar than the ones from different groups. Similar to XðjÞi , the WðjÞ
i is a row vector of

binary indicator variables to represent the group identity of sample i in the jth random

factor.

An important goal of microbiome studies is to identify a subset of OTUs that are associated

with a phenotype Y, for example, a variable indicating disease status or plant traits. A typical

way is to treat Y as a fixed factor and to fit each OTU variable Z(j) with GLMM given all fixed

and random factors, and then apply a statistical testing method to test whether the relative

abundance of the jth OTU, which is defined as ZðjÞi =Ti, is differentiated (i.e., associated) with Y
[7, 8]. Selection of OTUs can be achieved by thresholding the q-values returned by the statisti-

cal testing procedure. Using statistical learning methods is another important alternative

approach to selecting OTUs. In statistical learning methods, the phenotype Y is treated as a

response variable; the predictor variables are OTU variables Z(1), . . ., Z(m) after transformation

and some fixed and random factors. Selection of OTUs can be achieved by looking at the coef-

ficients associated with OTU variables and the strength of the association can be measured

with predictive metrics such as error rate and AUC. Different from using all OTU variables

Z(1), . . ., Z(m) as predictors, another approach is to do feature selection twice by fitting LASSO

after implementing statistical testing methods. This approach requires us to perform a statisti-

cal testing method on each OTU and select a subset of top OTUs by thresholding q-values.

Then we can fit a LASSO MLR with the selected subset of OTUs and other factors as predic-

tors. The performance of these three distinct methods for feature selection will be compared

using synthetic datasets and a real gut microbiome dataset.

Variable screening with GLMMs

GLMMs for zero-inflated data. GLMM is a flexible modelling framework that can take

into account both fixed effects and random effects into the modelling of a response variable.

GLMM is an extension of generalized linear models (GLMs) [20]. In this section, we will

describe three GLMMs which are often used to model count data with zero-inflation and over-

dispersion. We will apply GLMMs to model each OTU variable ZðjÞi individually, conditional

on fixed and random factors as shown in Table 1. For simplicity in notations, we will omit the

OTU index j throughout in this section.
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In a NB mixed model, we use a NB distribution to model Zi given fixed and random factors.

The probability mass function (PMF) of Zi is given by:

f NBðzi; mi; yÞ ¼
Gðzi þ yÞ

GðyÞGðzi þ 1Þ

y

yþ mi

� �y
mi

yþ mi

� �zi

; ð1Þ

where zi takes values in {0, 1, . . .}, μi> 0 is the mean of zi, and θ> 0 is the inverse dispersion

parameter. In NB mixed models, the mean μi is linked to fixed factors and random factors as

follows:

log ðmiÞ ¼ log ðTiÞ þ XibþWib ð2Þ

where Xi ¼ ðX
ð1Þ

i ; . . . ;XðsÞi Þ is a vector representing all fixed factors, and similarly

Wi ¼ ðW
ð1Þ

i ; . . . ;WðtÞ
i Þ is a vector of binary dummy variables representing all random factors.

The total reads Ti exhibit big differences across samples. Thus, the log of total reads Ti is also

considered as a random factor and added to the link function with fixed coefficient 1. Such a

variable is often called the offset variable. In other words, Eq (2) links the log of μi/Ti—the pro-

portion of the abundance of an OTU among all OTUs—to fixed and random factors.

The NB distribution has heavier tails than the Poisson distribution. When θ!1, the NB

distribution converges to Poisson distribution. Compared to other distributions such as Pois-

son or normal, the advantage of using the NB distribution with small parameter θ, such as 1 or

2, is that the heavier tails of NB can reduce the influence of extraordinarily large (over-dis-

persed) counts Zi in estimating the parameters in μi. Other characteristics of microbiome data

are the presence of many zeros. To address the zero-inflation in Zi, two-part models and zero-

inflated models have been adopted for modelling Zi.

In two-part models, the modeling stage is divided into two parts. The first part models the

presence-absence outcome via a binary model. The probability that zi = 0 is modified by value

ϕi and ϕi is often linked to fixed and random factors using logistic regression. The second part

models the positive outcomes through a zero-truncated model; for example, a zero-truncated

Poisson or NB distribution. This is also called hurdle model. Here we consider a more compre-

hensive two-part NB (TPNB) model based on the zero proportion (ZP) of each OTU [11]: (a)

when ZP� 10%, we fit the data based on NB model; (b) when 10%�ZP� 80%, we fit the data

based on NB hurdle model; (c) when 80%�ZP� 90%, we fit the data based on logistic regres-

sion model; (d) OTU is dropped from the analysis if ZP� 90%.

Another way to model zero-inflated count data is to use a zero-inflated model, which is

modeling Zi as a mixture distribution of 0 and a standard distribution such as Poisson or NB

[21], instead of using a zero-truncated distribution for non-zero zi. Zero-inflated model is

often understood as zi being generated in two steps. The first step is to generate a binary indi-

cator from a logistic regression distribution. In the second step, if the indicator in the first step

is zero, then the zi is zero; otherwise, zi is generated from a standard distribution such as NB.

In particular, the PMF of a zero-inflated negative binomial (ZINB) model for Zi can be written

as:

f ZINBðziÞ ¼

(
�i þ ð1 � �iÞf NBð0; mi; yÞ; for zi ¼ 0

ð1 � �iÞf NBðzi; mi; yÞ; for zi > 0
ð3Þ

where 0< ϕi< 1 is the probability of an excess zero response. Here we do not consider a Pois-

son hurdle model or zero-inflated Poisson model. Those two models tend to have substantially

inflated type I error [7]. This is due to the conditional variance being greater than the
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conditional mean, which violates the assumption of the Poisson model, especially for micro-

biome data.

We fit GLMM models with an R package called glmmTMB [22], which is available in

CRAN.

Likelihood ratio test. In this paper, we applied the likelihood ratio test (LRT) to test

whether the phenotype Y is associated with each OTU ZðjÞi for j = 1, . . ., m based on a GLMM

model. In this section, we will briefly describe how to apply LRT to GLMM. A more detailed

discussion of the LRT for testing fixed effects of GLMMs can be found in the work of Bolker

et al. [23] and the references therein. We will omit OTU index j for simplicity. In LRT, we test

the following two model assumptions:

H0 : Zi � f ðzijX
ð1Þ

i ; � � � ;X
ðsÞ
i ;W

ð1Þ

i ; � � � ;W
ðtÞ
i Þ;

H1 : Zi � f ðzijY;X
ð1Þ

i ; � � � ;X
ðsÞ
i ;W

ð1Þ

i ; � � � ;W
ðtÞ
i Þ

ð4Þ

Let L0 and L1 represent the maximized likelihoods under models H0 and H1 respectively.

The log likelihood ratio statistic is defined as:

Tn ¼ 2ð logL1 � logL0Þ: ð5Þ

By Wilk’s theorem [24], the sampling distribution of Tn under H0 is asymptotically a chi-

square distribution with degrees of freedom α, which is equal to the difference of the numbers

of parameters in H0 and H1. Suppose the number of levels of Y is K. Then the degrees of free-

dom α is equal to K − 1 in NB mixed model, and α is equal to 2(K − 1) in TPNB and ZINB if Y
is used to model both μi and ϕi.

False discovery rate and q-value. Due to the large number of OTUs, we need to convert

p-values into FDR adjusted p-values, or q-values, to better understand the chance of false posi-

tives. The q-value of the jth test a p-value p(j) is the FDR if we use p(j) as the cutoff t in feature

selection; i.e., features with p-values�p(j) are selected. To ensure theoretical monotonicity,

q(p(j)) is defined as the minimum of FDR(t) for t� p(j) [25]:

qðpðjÞÞ ¼ min
t�pðjÞ

dFDRðtÞ; ð6Þ

where

dFDRðtÞ ¼
m � p̂0 � t
#fpj � tg

;

and p̂0 is the estimated proportion of null hypothesis,

p̂0ðzÞ ¼
#fpðjÞ � z; j ¼ 1; :::;mg

mð1 � zÞ
;

s:t: p � valuepðjÞ�z � Unif ð0; 1Þ:

If we order all the p-values, and denote the jth p-value by p[j], an approximation for the q-

value is q̂ðp½j�Þ ¼ m � p̂0 � p½j�=j, which may not be monotone with p[j], but is easy to calculate

and typically close to q(p[j]) when m is large; see a discussion of FDR by Yin et al. [26].

When the model for the response variable is correctly specified, the q-values are good esti-

mates of the actual FDRs, as explained above. In such cases, the q-value is useful guidance for

determining the cutoff t in feature selection. However, in practice, the correctness of a model

often lacks serious verification. This problem is particularly crucial in microbiome data
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analysis because OTU counts are difficult to model due to clustering, over-dispersion, and

zero-inflation.

Predictive analysis methods

Transformation of OTU counts. Statistical learning is another important alternative

approach to selecting OTUs. In microbiome data, it is often believed that the phenotype affects

the composition of OTUs, rather than the raw counts of OTUs, which are also affected by the

total reads Ti. As such, a reasonable transformation for OTU counts is the variance-stability

transformation of the proportion of the counts of the jth OTU among those of all OTUs:

~Z ðjÞi ¼ arcsin ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ZðjÞi =Ti

q

Þ; for j ¼ 1; . . . ;m

Other transformations can be investigated too. For example, if we believe that only the

presence or absence of certain OTUs is related to the phenotype, we transform ZðjÞi by

~Z ðjÞi ¼ IðZðjÞi > 0Þ. This binary transformation is useful for eliminating the adverse effect of

the over-dispersion in OTU counts.

To be consistent with conventional notations for statistical learning models, the predictor

variables are collectively denoted by xi, which includes ~Z ðjÞi and all other fixed and random fac-

tors (represented by binary indicator variables). The xi will be a column vector in this section.

The first value in xi is “1” for including an intercept. After we fit a statistical learning model for

yi given xi, selection of OTUs can be achieved by looking at the coefficients associated with the

transformed OTU variables ~Z ðjÞi .

LASSO multinomial logistic regression. LASSO adds the L1 of the regression coefficients

as a penalty term to the log likelihood function to achieve shrinkage of regression coefficients

for avoiding over-fitting and for achieving feature selection [16]. Suppose the response variable

yi has K levels, that is, yi takes values in {1, 2, . . ., K}. The multinomial logistic regression links

the probability of yi = k to xi using the soft-max function as follows:

Pðyi ¼ kjxi; b1; . . . ; bKÞ ¼
exp ðbT

k xiÞ
PK

k¼1
exp ðbT

k xiÞ
; ð7Þ

for k = 1, . . ., K, where βk is the collection of all regression coefficients related to yi = k, which

is a column vector of the same length of xi. We will denote all these regression coefficients col-

lectively by β. Given observations {(yi, xi), i = 1, . . ., n} and a tuning parameter λ, the LASSO-

penalized negative log likelihood function is

lLASSOðbÞ ¼ �
Xn

i¼1

log ðPðyijxi; bÞÞ þ l
XK

k¼1

jjbkjj1; ð8Þ

where ||βk||1 is the L1 penalty of βk, equal to the sum of absolute values in βk (except the inter-

cept). The LASSO estimate of β is the minimizer of the LASSO-penalized negative log likeli-

hood function lLASSO(β).

L1 penalty can shrink the coefficients associated with less important predictor variables

exactly into zeros. The OTU variables with non-zero coefficients will be selected. The degree of

coefficient shrinkage is controlled by the tuning parameter λ. Larger λ enforces greater shrink-

age to the coefficients β, resulting in selecting fewer predictors in xi. Therefore, the role of λ is

similar to that of the cutoff t for thresholding p-values in statistical testing methods. In a pre-

dictive analysis, a straightforward method for choosing λ is to look at the predictive perfor-

mance in test samples, which is measured by chosen metrics; for example, the error rate in
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predicting yi. Cross-validation (CV) is a procedure to split the dataset into artificial training

and test sets to obtain out-of-sample predictive metrics. K-fold CV means that we randomly

split the data into k folds of approximately equal size. The k-1 folds are used as training and

the remaining 1 fold is used as validation. The optimal λ is chosen with smallest CV error rate.

LASSO-MLR with variable screening. Variable screening is a commonly used feature

selection method for high dimensional data to reduce dimentionality. We conduct LRT for

each feature on training data and convert the p-values calculated from LRT on training data to

q-values. A subset of features Z(1�), . . ., Z(m�) is selected by thresholding q-values with a specific

cutoff. LASSO is built based on Z(1�), . . ., Z(m�) and other covariates.

Predictive metrics. Let P̂iðkjxiÞ be a predictive probability of yi = k for k = 1, . . .K. We can

assess the goodness of P̂ðyijxiÞ with actually observed {yi;i = 1, . . ., n}. The first metric is error

rate. We predict yi by ŷi ¼ argmax kP̂iðkjxiÞ: The error rate is defined as the proportion of

wrongly predicted cases:

ER ¼
1

n

Xn

i¼1

Iðŷi 6¼ yiÞ:

ER should be interpreted relatively, not absolutely. Let fk be the observed frequency of yi = k
for k = 1, . . ., K. Without including any predictor in xi (called the null model), the naive predic-

tive probabilities are P̂ð0Þi ðkÞ ¼ fk for k = 1, . . ., K. The actual CV predictive probabilities will

estimate fk with the yi removed, but the frequency without considering yi is very close to fk.
Based on these naive predictive probabilities, the point prediction is that ŷi

ð0Þ ¼ argmax kfk for

i = 1, . . ., n. The ER with P̂ð0Þi ðkÞ is ER(0) = 1 − max{fk;k = 1, . . ., K}, which we will call the base-

line error rate. Similar to R2 used in linear regression, a relative predictivity metric based on

ER is defined as the percentage of the reduction of ER from ER(0):

R2
ER ¼

ERð0Þ � ER
ERð0Þ

:

R2
ER is a better metric to show the model performance when the dataset is highly unbalanced.

We use area under the (receiver operating characteristic) ROC curve (AUC) as the second

metric. AUC represents a trade-off between sensitivity (true positive rate) and specificity (false

positive rate). The latter are defined as:

sensitivity ¼
# of true positives

# of true positivesþ # of false negatives
;

specificity ¼
# of true negatives

# of true negativesþ # of false positives
:

Unlike error rate that requires a decision threshold (usually 0.5 is taken) to discriminate, AUC

is independent of the decision threshold. It measures each possible performance as the decision

threshold is varied. For every cutoff point c 2 [0, 1], yi is predicted by ŷi ¼ IðP̂iðyijxiÞ � cÞ,
where I(�) is the indicator function which is equal to 1 if the condition in the bracket is true, 0 oth-

erwise. Sensitivity and specificity are determined by comparing ŷi and the true label yi. The ROC

curve is plotted based on the sensitivity and specificity of each cutoff point. AUC is the area

under the ROC curve.

We also use area under the precision-recall (PR) curve (AUPRC) as the third predictive

metric. Similar to ROC curve, PR curve is a curve of precision verses recall at varying cutoff
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points for predictive probabilities. Precision and recall are defined as:

precision ¼
# of true positives

# of true positivesþ # of false positives
;

recall ¼
# of true positives

# of true positivesþ # of false negatives
:

ROC curves and PR curves are widely used in unbalanced data. PR curves are also used for

balanced dataset to highlight performance differences that are lost in ROC curves [27].

Data

Synthetic datasets

Synthetic datasets are generated to mimic the real microbiome data structure to assess the pre-

dictive performance of each method. Dirichlet-multinomial distribution has been shown as a

good model to account for overdispersion of microbiome dataset [6]. We estimate the the

parameters of the PD dataset that we use for real data analysis using Dirichlet-multinomial dis-

tribution. Then we generate the OTU counts based on Dirichlet-multinomial model given the

estimated parameters. The total reads for each sample are sampled from Unif(10, 000, 30,

0000). The uniform distribution is a commonly used distribution to generate total reads [6].

The parameters of the uniform distribution is empirically estimated from the PD dataset.

Besides OTUs, fixed factors X(1) and X(2), and random factor W are also generated. Phenotype

Y is generated from logistic regression given OTUs, fixed and random factors. We will con-

sider three different datasets with n samples and m OTUs, which are listed in Table 2. The

number of OTUs m = 587 is the same for each dataset. The sample size n = 500 for dataset 1

and 2, n = 262 for dataset 3 to mimic the sample size of real data. Dataset 1 and 3 include ran-

dom effect while dataset 2 does not include random effect when generating phenotype Y. We

generate 100 datasets using each of the three schemes. The details of data generation are

described as follows:

• Randomly select 20 OTUs out of 587 OTUs as true signals. The parameters b
i�

Z are sampled

from Unif(1.5, 2) for i� = 1, . . ., 10 and Unif(−2, −1.5) for i� = 11, . . ., 20 to ensure the balance

of phenotype. The parameters for all the other OTUs are set to be 0.

• Generate two fixed factors X(1) and X(2). X(1) is a continuous variable (such as age), where

X(1)� Unif(20, 50), βX(1) = −1. X(2) is a three level categorical variable, and βX(2) = (10, 15) to

balance the negative effect of X(1) to phenotype.

• In dataset 1 and 3, a random factor W is generated. We divide the n samples into 5 groups

(e.g., country), denoted as W. βW = (−100, −50, 0, 50, 100) represents effect of each group.

The gap of each group is set to be 50 to make sure the scale is similar to simulated OTU.

• Y is generated by Y� Bernoulli(p), where,

p ¼ 1=ð1þ exp ðb0 þ ZbZ þ XbX þWbW þ �ÞÞ; ð9Þ

Table 2. The setting of each synthetic dataset.

Dataset sample size n number of OTUs m random effect W
Dataset 1 500 587 ✓

Dataset 2 500 587

Dataset 3 262 587 ✓

https://doi.org/10.1371/journal.pone.0237779.t002
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for dataset 1 and 3, and

p ¼ 1=ð1þ exp ðb0 þ ZbZ þ XbX þ �Þ; ð10Þ

for dataset 2, where β0 = 1 and �� N(0, 10).

A human gut microbiome dataset related to PD

Parkinson’s disease (PD) is a progressive nervous system disorder that affects movement. The

etiology of PD is still unknown, although researches have identified genetic loci, genes, and

other environmental factors that are related to PD [28]. Evidence linking PD to the gut pre-

cedes the recent appreciation of the microbiome. Gastrointestinal symptoms often precede the

motor signs of PD. Recently, there are a number of studies conducted to study the connection

between the gut microbiome and PD [3, 29–33]. We use a dataset released by Hill-Burns et al.

[30]. A total of 327 subjects, comprising 197 cases (60%) of PD and 130 controls (40%), were

enrolled in the study cohort to investigate the association of the dysbiosis of the gut micro-

biome and potential confounders of PD. Stool samples were collected for DNA extraction and

16S rRNA amplicon sequencing. Sequencing was performed using an Illumina MiSeq. OTUs

were picked in QIIME using the August 2013 release of the Greengenes 16S rRNA gene

sequence database as reference at 97% similarity.

Hill-burns et al. [30] applied conventional statistical testing methods based on GLMMs to

the dataset and showed that the associations between PD and some gut microbial taxa are sta-

tistically significant. Statistical significance does not necessarily imply practical significance.

We apply the three strategies of predictive analysis methods described above to measure the

strength of the association by examining the predictability of PD given the OTUs and some

covariates. In our analysis, we apply more stringent quality control in the microbiome data.

Subjects with fewer than 10,000 reads and OTUs with a prevalence less than 20% are removed

for controlling data quality. The final dataset consists of n = 262 subjects, in which there are

160 cases (61%) of PD and 102 controls (39%). The proportion of PD in this subset is nearly

the same as in the 327 subjects. 587 non-redundant bacterial taxa are retained after quality fil-

tering. These taxa are comprised of 42 orders, 227 families, 245 genera, and 73 species. The

mean age of the cohort is 69.13±9.04(SD) years (range of 44-94 years), and 45% of the cohort

is female.

Results and discussions

Results of analyzing synthetic datasets

In this section, we investigate LASSO, screening+GLM, and screening+LASSO on the syn-

thetic datasets. We split each dataset into a training set with 80% subjects and a test dataset

with the remaining 20% subjects. Only the training set is used to select features (OTUs) and to

train the GLM or LASSO-MLR models. The test set is used to check the predictive perfor-

mance of selected features through GLM or LASSO-MLR. We also investigate whether ran-

dom effect will help to improve the predictive performance. Therefore, the analysis of dataset 1

includes two parts: part 1 is to include random effect W in screening and prediction; part 2 is

to exclude random effect W in screening and prediction. The analysis of dataset 2 is similar to

part 2 of dataset 1 and the analysis of dataset 3 is the same as part 1 of dataset 1.

In statistical testing, we are interested in whether the presence or absence of phenotype will

affect the reads of OTU counts. Hence, we treat phenotype Y as fixed effect in fitting the

GLMM model. We conduct the screening by using LRT to test whether phenotype Y has an
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effect on each OTU. We drop the OTUs which have zero proportion (ZP) greater than 90% by

setting the p-values of those OTUs to be 1. A vector of m = 587 p-values is calculated for each

model and each dataset. Table 3 shows the average number of true signals selected by each

model and the power under a cut of q-value of 0.05 over 100 iterations. We can see that TPNB

model can select the most of the true signals, it also has higher power than ZINB and NB

model. The performance of ZINB and NB model is similar. It is of interest to notice that when

we exclude random effect in part 2 of dataset 1, the power of all the three methods increases

significantly. When the sample size decrease in dataset 3, the power of each method also drops.

This shows that the screening method is drastically affected by the sample size and whether

random effects are considered.

We implement three strategies of predictive analysis on our simulated datasets: (1) LASSO:

fitting LASSO-MLR using the factors X(1), X(2), and W if applicable, and all 587 transformed

OTU variables as predictors; (2) screening+GLM: conducting variable screening on all the 587

OTUs using LRT methods applied to GLMMs, then fitting a GLM using fixed and random

effects and a selected subset of OTUs as predictors; (3) screening+LASSO: conducting variable

screening and then fitting LASSO to fixed and random effects and a selected subset of OTUs

as predictors. 200 values of λ are chosen in a reasonable range for shrinking coefficients

towards zeros and thus to select OTUs. The choice of λ is guided by predictive metrics esti-

mated from the 10-fold CV in the training dataset. We transform OTU counts through the

variance-stability transformation and binary transformation as described above. For variable

screening, we use the R function p.adjust from the package stats to convert p-values

into q-values. Calculating q-value is a method for estimating actual FDRs given only p-values.

We choose the conservative method called “BH” [34].

Table 4 shows the predictive performance of each approach based on variance-stability

transformed OTU counts for dataset 1. We calculate the mean and standard deviation (SD)

of predictive metrics over 100 iterations. For comparison, it also shows the predictive

Table 3. The average number of included true signals and power for each method under a cut of q-value of 0.05.

Model Average number of included true signals Power

Dataset 1 (part1) 1 (part2) 2 3 1 (part1) 1 (part2) 2 3

ZINB 7.090 7.430 7.920 2.400 0.388 0.418 0.444 0.156

TPNB 11.200 11.380 11.550 4.910 0.644 0.657 0.663 0.336

NB 7.790 7.930 8.110 2.480 0.405 0.414 0.423 0.134

https://doi.org/10.1371/journal.pone.0237779.t003

Table 4. Predictive performance of different approaches based on the variance-stability transformation for dataset 1.

Dataset 1, including random effect W Dataset 1, excluding random effect W
Method ER (SD) AUC (SD) AUPRC (SD) ER (SD) AUC (SD) AUPRC (SD)

Oracle 0.04 (0.02) 0.98 (0.02) 0.97 (0.03) 0.04 (0.02) 0.98 (0.02) 0.32 (0.1)

LASSO 0.21 (0.05) 0.87 (0.04) 0.87 (0.07) 0.22 (0.05) 0.86 (0.05) 0.86 (0.07)

ZINB+GLM 0.24 (0.06) 0.82 (0.06) 0.82 (0.09) 0.25 (0.06) 0.81 (0.07) 0.81 (0.09)

TPNB+GLM 0.2 (0.05) 0.87 (0.05) 0.86 (0.08) 0.21 (0.05) 0.86 (0.05) 0.85 (0.09)

NB+GLM 0.23 (0.05) 0.83 (0.05) 0.83 (0.08) 0.24 (0.06) 0.82 (0.06) 0.82 (0.09)

ZINB+LASSO 0.24 (0.06) 0.82 (0.06) 0.82 (0.09) 0.25 (0.06) 0.81 (0.07) 0.81 (0.09)

TPNB+LASSO 0.2 (0.05) 0.87 (0.05) 0.86 (0.08) 0.21 (0.05) 0.86 (0.05) 0.85 (0.09)

NB+LASSO 0.23 (0.05) 0.83 (0.05) 0.83 (0.08) 0.24 (0.06) 0.82 (0.06) 0.82 (0.09)

https://doi.org/10.1371/journal.pone.0237779.t004
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performance of the oracle method, which fits a GLMM given the 20 truly related OTUs, 2

fixed factors X(1), X(2), and random effect W as predictors. The ER of oracle case is 0.04. To

better understand the predictive metrics, we mention that the naive prediction without con-

sidering any predictor will give an error rate of 0.4 for dataset 1. We can see that LASSO

without variable screening performs remarkably well on dataset 1 based on variance-stability

transformation. The ER of LASSO is 0.21 (R2
ER ¼ 0:475) and both the AUC and AUPRC are

0.87. The features selected by LASSO include 20 true signals, which shows LASSO is able to

identify the truly related features when there are signal predictors for the response. The

screening+GLM and screening+LASSO methods also work well for these datasets when the

screening is based on TPNB models, with predictive metrics close to those of LASSO. This is

due to the high power of TPNB. The SDs of AUC and AUPRC of LASSO are smaller than

that of TPNB+GLM and TPNB+LASSO, which shows LASSO is more stable over 100 itera-

tions. It is interesting to notice that when we exclude the random effect from each model, the

ER of all methods increase by 0.01, and the AUC and AUPRC decrease by 0.01. However,

Table 3 shows that the power increases without considering random effect. This result indi-

cates that random effect can help to increase the predictive performance when random effect

really exists. Table 5 shows the performance of each approach based on binary transformed

OTUs for dataset 1. In this case, LASSO is not able to improve the predictive performance

from baseline. ERs of Screening+GLM or Screening+LASSO increase by 0.02 or 0.03 from

baseline ER of 0.4. This shows that binary transformation is not an appropriate transforma-

tion for this dataset.

Table 6 shows the predictive performance of each method based on variance-stability trans-

formation for dataset 2 and 3. Dataset 2 is generated without random effect. LASSO, TPNB

Table 5. Predictive performance of different approaches based on the binary transformation for dataset 1.

Dataset 1, including random effect W Dataset 1, excluding random effect W
Method ER (SD) AUC (SD) AUPRC (SD) ER (SD) AUC (SD) AUPRC (SD)

LASSO 0.43 (0.06) 0.56 (0.06) 0.56 (0.13) 0.44 (0.06) 0.56 (0.05) 0.55 (0.13)

ZINB+GLM 0.38 (0.06) 0.62 (0.06) 0.62 (0.12) 0.39 (0.06) 0.6 (0.06) 0.61 (0.12)

TPNB+GLM 0.38 (0.06) 0.63 (0.07) 0.63 (0.13) 0.38 (0.06) 0.62 (0.06) 0.62 (0.13)

NB+GLM 0.37 (0.06) 0.63 (0.07) 0.64 (0.12) 0.38 (0.06) 0.62 (0.07) 0.62 (0.13)

ZINB+LASSO 0.37 (0.06) 0.63 (0.06) 0.63 (0.12) 0.39 (0.06) 0.6 (0.06) 0.61 (0.12)

TPNB+LASSO 0.38 (0.06) 0.63 (0.07) 0.63 (0.13) 0.38 (0.06) 0.62 (0.06) 0.62 (0.13)

NB+LASSO 0.37 (0.06) 0.64 (0.06) 0.64 (0.13) 0.38 (0.06) 0.62 (0.07) 0.62 (0.13)

https://doi.org/10.1371/journal.pone.0237779.t005

Table 6. Predictive performance of different approaches based on the variance-stability transformation for dataset 2 and 3.

Dataset 2 Dataset 3

Method ER (SD) AUC (SD) AUPRC (SD) ER (SD) AUC (SD) AUPRC (SD)

Oracle 0.04 (0.02) 0.97 (0.02) 0.97 (0.03) 0.08 (0.04) 0.96 (0.04) 0.94 (0.07)

LASSO 0.2 (0.04) 0.87 (0.04) 0.87 (0.06) 0.28 (0.07) 0.79 (0.07) 0.79 (0.1)

ZINB+GLM 0.23 (0.05) 0.84 (0.06) 0.84 (0.08) 0.36 (0.08) 0.68 (0.11) 0.68 (0.15)

TPNB+GLM 0.19 (0.05) 0.88 (0.04) 0.88 (0.06) 0.3 (0.08) 0.75 (0.09) 0.74 (0.13)

NB+GLM 0.23 (0.05) 0.84 (0.06) 0.84 (0.08) 0.36 (0.08) 0.68 (0.11) 0.68 (0.15)

ZINB+LASSO 0.23 (0.05) 0.84 (0.06) 0.84 (0.08) 0.34 (0.08) 0.69 (0.1) 0.69 (0.15)

TPNB+LASSO 0.19 (0.05) 0.88 (0.04) 0.88 (0.06) 0.3 (0.07) 0.75 (0.09) 0.75 (0.12)

NB+LASSO 0.23 (0.05) 0.84 (0.05) 0.84 (0.08) 0.34 (0.07) 0.7 (0.09) 0.7 (0.14)

https://doi.org/10.1371/journal.pone.0237779.t006
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+GLM, TPNB+LASSO still outperform other methods. In dataset 3 with only around half of

the sample size, LASSO performs better over other methods. The average number of true sig-

nals selected by LASSO over 100 iterations is 16. This shows that when the sample size

decreases, LASSO is still able to detect 80% of true signals. However, the average number of

true signals selected by screening are less than 5 as shown in Table 3. The predictive perfor-

mance of screening+GLM and screening+LASSO will be highly affected by the performance of

screening since the power of test will be affected by sample size and the model we use. Table 7

shows that the the binary transformation still does not work well for this dataset. These results

show that LASSO has very stable and excellent performance on each dataset under the vari-

ance-stability transformation. The random effect can help to improve the predictive perfor-

mance and an appropriate transformation is crucial for achieving good predictions with such

zero-inflated and over-dispersed count data.

Results of analyzing the gut microbiome data

In this section, we apply the three approaches from simulation to the human gut microbiome

dataset released by Hill-Burns et al. [30]. The sample size n is 262. The total number of OTUs

is 587. This is a binary classification problem with PD as the response.

We first fit LASSO using Leave-one-out-cross-validation (LOOCV). We also implement

LOOCV within the training samples in each fold to choose the optimal λ from 200 values of λ,

which is the same set of λ used in analyzing the simulated datasets. The variance-stability

transformation and binary transformation are exploited to transform OTUs. We consider

models with different covariates, null (which means we only use transformed OTUs as predic-

tors) and age. Table 8 shows that by treating age and sex as covariates, the model performances

are improved significantly. Fig 1 shows how the error rate of predicting PD based on variance-

stability and binary transformation changes with different values of λ. The green dashed line is

the baseline and the blue dashed line shows the error rate of fitting the GLM model with only

Table 7. Predictive performance of different approaches based on the binary transformation for dataset 2 and 3.

Dataset 2 Dataset 3

Method ER (SD) AUC (SD) AUPRC (SD) ER (SD) AUC (SD) AUPRC (SD)

LASSO 0.44 (0.05) 0.56 (0.05) 0.56 (0.12) 0.45 (0.07) 0.56 (0.06) 0.55 (0.13)

ZINB+GLM 0.39 (0.05) 0.61 (0.06) 0.62 (0.11) 0.42 (0.08) 0.58 (0.07) 0.59 (0.13)

TPNB+GLM 0.39 (0.06) 0.62 (0.07) 0.63 (0.12) 0.41 (0.08) 0.59 (0.07) 0.6 (0.13)

NB+GLM 0.38 (0.05) 0.62 (0.06) 0.62 (0.12) 0.41 (0.07) 0.59 (0.07) 0.6 (0.13)

ZINB+LASSO 0.39 (0.05) 0.61 (0.06) 0.62 (0.11) 0.41 (0.07) 0.59 (0.07) 0.6 (0.13)

TPNB+LASSO 0.39 (0.06) 0.62 (0.07) 0.63 (0.12) 0.4 (0.07) 0.59 (0.08) 0.61 (0.13)

NB+LASSO 0.38 (0.05) 0.62 (0.06) 0.62 (0.12) 0.41 (0.07) 0.59 (0.08) 0.61 (0.13)

https://doi.org/10.1371/journal.pone.0237779.t007

Table 8. LASSO predictive performance based on the optimal choice of λ.

covariate (OTU transformation) ER AUC AUPRC

null (variance-stability) 0.309 0.736 0.804

null (binary) 0.275 0.750 0.818

age (variance-stability) 0.260 0.785 0.844

age (binary) 0.256 0.794 0.855

age and sex (variance-stability) 0.248 0.811 0.872

age and sex (binary) 0.221 0.812 0.856

https://doi.org/10.1371/journal.pone.0237779.t008
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age and sex as predictors. For variance-stability transformation, the optimal error rate of 0.248

is achieved by including 83 OTUs, and age and sex as covariates. The optimal error rate of

0.221 by binary transformation is achieved by including 97 OTUs as predictors, and age and

sex as covariates. This error rate reduces from the baseline error rate (0.39, the proportion of

control patients in samples) by 43% (R2
ER ¼ 0:43), and reduces by 36% from the error rate of

GLM model with only age and sex as predictors.

Then we implement the screening+GLM and screening+LASSO methods on this dataset

using an external LOOCV method [35], in which the variable screening is re-done in each fold

with only the training samples. For variable screening we fit three GLMM models (ZINB,

TPNB, and NB) on each OTU by treating “PD”, “age”, and “sex” as fixed effects. We conduct

the LRT on each OTU to see whether it is affected by PD. Then we convert the p-values into

the q-values to look at the chance of each OTU being a false positive. The average numbers of

OTUs selected from ZINB, TPNB, and NB models across all the folds are 100, 119, and 63,

respectively by thresholding q-values with 0.05. Table 9 shows the predictive performance of

Fig 1. Predictive performance of LASSO under different choices of λ A: Error rate of LASSO based on variance-stability transformation with different

choices of λ. B: Error rate of LASSO based on binary transformation with different choices of λ.

https://doi.org/10.1371/journal.pone.0237779.g001

Table 9. Predictive performance of different approaches based on the variance-stability transformation and the binary transformation for the gut microbiome data

related to PD.

Dataset Variance-stability transformation Binary transformation

Method ER AUC AUPRC ER AUC AUPRC

LASSO 0.248 0.811 0.872 0.221 0.812 0.856

ZINB+GLM 0.291 0.720 0.771 0.318 0.706 0.758

TPNB+GLM 0.352 0.663 0.725 0.318 0.703 0.754

NB+GLM 0.268 0.743 0.765 0.264 0.758 0.768

ZINB+LASSO 0.249 0.801 0.861 0.199 0.872 0.912

TPNB+LASSO 0.256 0.810 0.873 0.218 0.853 0.890

NB+LASSO 0.222 0.810 0.871 0.249 0.787 0.818

https://doi.org/10.1371/journal.pone.0237779.t009
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the three approaches. We can see that binary transformation works better for this dataset. The

optimal accuracy is achieved by ZINB+LASSO with ER = 0.199 based on binary transforma-

tion, followed by TPNB+LASSO with ER = 0.218. The AUCs for LASSO, ZINB+LASSO,

TPNB+LASSO are above 0.8 and the AUPRCs are above 0.85 based on binary transformation.

These numbers provide a strong evidence to support the claim that there is a connection

between PD and the gut microbiome. The poor performance of screening+GLM shows that

there are a number of false positives. LASSO can further shrink the coefficients of false posi-

tives to 0.

Discussion and conclusions

In this paper, we conduct empirical studies using synthetic datasets and a real dataset to inves-

tigate the performance of three strategies of predictive analysis for zero-inflated microbiome

data. Our studies with the three synthetic datasets show that the predictive performance of

LASSO is remarkably excellent for zero-inflated data. The screening+GLM and screening

+LASSO methods also work reasonably well if the screening is based on an appropriate model

for the OTU counts, especially when the power of test is high. However, screening is highly

related to the sample size and the model we choose. TPNB model has higher power than ZINB

and NB model. Thus, TPNB+GLM and TPNB+LASSO have lower ER and higher AUC and

AUPRC compared to ZINB and NB model. The predictive performance of LASSO is much

better than screening+GLM and screening+LASSO when the sample size is small. Moreover,

ignoring random effect will also affect the predictive performance if random effect exists.

Compared to some statistical learning methods that have been developed for microbiome

data recently, LASSO with an appropriate transformation is a simple, robust, and effective

method. For example, Li et al. [36] proposed a linear log-contrast model with a penalty term

for microbiome data to predict continuous outcome (e.g. BMI). Other methods, such as using

phylogenetic-tree guided penalty term [37, 38] or using an inverse regression model [39] to

predict outcomes with count microbiome data. Those methods make use of the cluster struc-

ture among OTUs to improve the prediction. However, implementing their methods requires

tuning a large number of parameters.

The applications of the three strategies of predictive analysis methods in the PD micro-

biome dataset show that LASSO can predict PD with microbial composition and two covari-

ates (age and sex) accurately with error rates near 0.2 and AUCs higher than 0.8. The best

predictive accuracy for PD with this dataset is obtained with a ZINB+LASSO method, which

gives predictive metrics as follows: ER = 0.199, AUC = 0.872, AUPRC = 0.912. Our predictive

analysis results provide strong evidences of the connection between PD and the gut micro-

biome. Despite this strong connection, we clarify that the good predictive accuracies for PD

with microbial composition do not necessarily imply that PD is caused by the differentiation

of the gut microbial composition between PD and control patients. We notice that it is also

possible that the differentiation of the gut microbial composition is caused by the change of

the life style (such as dietary choice) of PD patients. In the future, we will continue to explore

the etiology of PD.

Although variance-stability transformation works consistently better than binary transfor-

mation in the simulation studies. In the real data analysis, binary transformation has better

predictive performance than variance-stability transformation. This may be related to the zero

proportion of related OTUs or the effect of count data to the phenotype. We will investigate

which transformation works better in different conditions in the future.

In a nutshell, we present that LASSO is a simple and robust method for zero-inflated micro-

biome data. Appropriate transformation is crucial for LASSO. Screening can be used to reduce
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the number of OTUs. However, screening+GLM or screening+LASSO only works well when

the power of test of screening method is high. In the meantime, random effects can improve

the predictive performance. They should be included if they are suspected to be relevant to the

phenotype.
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15. Gränsbo K, Almgren P, Sjögren M, Smith JG, Engström G, Hedblad B, et al. Chromosome 9p21

Genetic Variation Explains 13% of Cardiovascular Disease Incidence but Does Not Improve Risk Pre-

diction. Journal of internal medicine. 2013; 274(3):233–240. https://doi.org/10.1111/joim.12063 PMID:

23480785

16. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society

Series B (Methodological). 1996; 58:267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

17. Consortium IS. Common Polygenic Variation Contributes to Risk of Schizophrenia and Bipolar Disor-

der. Nature. 2009; 460(7256):748. https://doi.org/10.1038/nature08185

18. Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA. Polygenic Susceptibility to

Breast Cancer and Implications for Prevention. Nature genetics. 2002; 31(1):33. https://doi.org/10.

1038/ng853 PMID: 11984562

19. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, et al. Common Variants at

30 Loci Contribute to Polygenic Dyslipidemia. Nature genetics. 2009; 41(1):56. https://doi.org/10.1038/

ng.291 PMID: 19060906

20. Breslow NE, Clayton DG. Approximate inference in generalized linear mixed models. Journal of the

American statistical Association. 1993; 88(421):9–25. https://doi.org/10.2307/2290687

21. Yau KKW, Wang K, Lee AH. Zero-inflated negative binomial mixed regression modeling of over-dis-

persed count data with extra zeros. Biometrical Journal. 2003; 45(4):437–452. https://doi.org/10.1002/

bimj.200390024

22. Magnusson A, Skaug H, Nielsen A, Berg C, Kristensen K, Maechler M, et al. glmmTMB: Generalized

Linear Mixed Models Using Template Model Builder; 2017.

23. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, et al. Generalized Linear

Mixed Models: A Practical Guide for Ecology and Evolution. Trends in Ecology & Evolution. 2009; 24

(3):127–135. https://doi.org/10.1016/j.tree.2008.10.008

24. Wilks SS. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses.

Ann Math Statist. 1938; 9(1):60–62. https://doi.org/10.1214/aoms/1177732360

25. Storey JD, Tibshirani R. Statistical Significance for Genomewide Studies. PNAS. 2003; 100(16):9440–

9445. https://doi.org/10.1073/pnas.1530509100 PMID: 12883005

26. Yin Y, Soteros CE, Bickis MG. A Clarifying Comparison of Methods for Controlling the False Discovery

Rate. Journal of Statistical Planning and Inference. 2009; 139(7):2126–2137. https://doi.org/10.1016/j.

jspi.2008.10.010

27. Goadrich M, Oliphant L, Shavlik J. Gleaner: Creating ensembles of first-order clauses to improve

recall-precision curves. Machine Learning. 2006; 64(1-3):231–261. https://doi.org/10.1007/s10994-

006-8958-3

28. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, et al. Genome-wide association study

identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nature genetics.

2009; 41(12):1303. https://doi.org/10.1038/ng.485 PMID: 19915576

29. Hopfner F, Künstner A, Müller SH, Künzel S, Zeuner KE, Margraf NG, et al. Gut microbiota in Parkinson

disease in a northern German cohort. Brain research. 2017; 1667:41–45. https://doi.org/10.1016/j.

brainres.2017.04.019 PMID: 28506555

30. Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, et al. Parkinson’s Dis-

ease and Parkinson’s Disease Medications Have Distinct Signatures of the Gut Microbiome. Movement

Disorders. 2017; 32(5):739–749. https://doi.org/10.1002/mds.26942 PMID: 28195358

31. Matheoud D, Cannon T, Voisin A, Penttinen AM, Ramet L, Fahmy AM, et al. Intestinal infection triggers

Parkinson’s disease-like symptoms in Pink1-/- mice. Nature. 2019; 571(7766):565–569. https://doi.org/

10.1038/s41586-019-1405-y PMID: 31316206

32. Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut micro-

biome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—a critical review.

Molecular neurobiology. 2019; 56(3):1841–1851. https://doi.org/10.1007/s12035-018-1188-4 PMID:

29936690

33. Mihaila D, Donegan J, Barns S, LaRocca D, Du Q, Zheng D, et al. The Oral Microbiome of Early Stage

Parkinson’s Disease and Its Relationship with Functional Measures of Motor and Non-Motor Function.

PLOS ONE. 2019; 14(6):e0218252. https://doi.org/10.1371/journal.pone.0218252 PMID: 31247001

PLOS ONE Predictive analysis methods for human microbiome data

PLOS ONE | https://doi.org/10.1371/journal.pone.0237779 August 24, 2020 17 / 18

https://doi.org/10.1073/pnas.1518285112
https://doi.org/10.1073/pnas.1518285112
https://doi.org/10.1111/joim.12063
http://www.ncbi.nlm.nih.gov/pubmed/23480785
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1038/nature08185
https://doi.org/10.1038/ng853
https://doi.org/10.1038/ng853
http://www.ncbi.nlm.nih.gov/pubmed/11984562
https://doi.org/10.1038/ng.291
https://doi.org/10.1038/ng.291
http://www.ncbi.nlm.nih.gov/pubmed/19060906
https://doi.org/10.2307/2290687
https://doi.org/10.1002/bimj.200390024
https://doi.org/10.1002/bimj.200390024
https://doi.org/10.1016/j.tree.2008.10.008
https://doi.org/10.1214/aoms/1177732360
https://doi.org/10.1073/pnas.1530509100
http://www.ncbi.nlm.nih.gov/pubmed/12883005
https://doi.org/10.1016/j.jspi.2008.10.010
https://doi.org/10.1016/j.jspi.2008.10.010
https://doi.org/10.1007/s10994-006-8958-3
https://doi.org/10.1007/s10994-006-8958-3
https://doi.org/10.1038/ng.485
http://www.ncbi.nlm.nih.gov/pubmed/19915576
https://doi.org/10.1016/j.brainres.2017.04.019
https://doi.org/10.1016/j.brainres.2017.04.019
http://www.ncbi.nlm.nih.gov/pubmed/28506555
https://doi.org/10.1002/mds.26942
http://www.ncbi.nlm.nih.gov/pubmed/28195358
https://doi.org/10.1038/s41586-019-1405-y
https://doi.org/10.1038/s41586-019-1405-y
http://www.ncbi.nlm.nih.gov/pubmed/31316206
https://doi.org/10.1007/s12035-018-1188-4
http://www.ncbi.nlm.nih.gov/pubmed/29936690
https://doi.org/10.1371/journal.pone.0218252
http://www.ncbi.nlm.nih.gov/pubmed/31247001
https://doi.org/10.1371/journal.pone.0237779


34. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to

Multiple Testing. JRSSB. 1995; p. 289–300.

35. Dong M. Feature Selection Bias in Assessing the Predictivity of SNPs for Alzheimer’s Disease [Thesis].

University of Saskatchewan; 2019.

36. Shi P, Zhang A, Li H, et al. Regression analysis for microbiome compositional data. The Annals of

Applied Statistics. 2016; 10(2):1019–1040. https://doi.org/10.1214/16-AOAS928

37. Xiao J, Chen L, Johnson S, Yu Y, Zhang X, Chen J. Predictive modeling of microbiome data using a

phylogeny-regularized generalized linear mixed model. Frontiers in microbiology. 2018; 9:1391. https://

doi.org/10.3389/fmicb.2018.01391 PMID: 29997602

38. Wang T, Zhao H. Constructing predictive microbial signatures at multiple taxonomic levels. Journal of

the American Statistical Association. 2017; 112(519):1022–1031. https://doi.org/10.1080/01621459.

2016.1270213

39. Wang T, Yang C, Zhao H. Prediction analysis for microbiome sequencing data. Biometrics. 2019; 75

(3):875–884. https://doi.org/10.1111/biom.13061 PMID: 30994187

PLOS ONE Predictive analysis methods for human microbiome data

PLOS ONE | https://doi.org/10.1371/journal.pone.0237779 August 24, 2020 18 / 18

https://doi.org/10.1214/16-AOAS928
https://doi.org/10.3389/fmicb.2018.01391
https://doi.org/10.3389/fmicb.2018.01391
http://www.ncbi.nlm.nih.gov/pubmed/29997602
https://doi.org/10.1080/01621459.2016.1270213
https://doi.org/10.1080/01621459.2016.1270213
https://doi.org/10.1111/biom.13061
http://www.ncbi.nlm.nih.gov/pubmed/30994187
https://doi.org/10.1371/journal.pone.0237779

