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Abstract: There is a significant need to gain access to new and better antibacterial agents. Acalypha
arvensis, a plant from the Euphorbiaceae family, has been used in traditional medicine for centuries
to treat infectious diseases. This manuscript reports the isolation, characterization, and antibacte-
rial screening of 8 natural products extracted from maceration of aerial parts of Acalypha arvensis.
Specifically, three extracts were assessed (n-hexane, ethyl acetate, and ethanol), in which antibacterial
activity was evaluated against diverse bacterial strains. The ethanolic extract showed the best activity
against methicillin-sensitive and methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae,
and Pseudomonas aeruginosa strains, which supports the medicinal properties attributed to this plant.
The chromatographic fractions AaR4 and AaR5 were the most bioactive, in which the ellagitannin
natural product known as corilagin (1) was identified for the first time in this plant. Therefore, it can
be said that this is the main chemical responsible for the observed antibacterial activity. However,
we also identified chlorogenic acid (2), rutin (3), quercetin-3-O-glucoside (4), caffeic acid (5), among
others (6–8). Hence, this plant can be considered to be a good alternative to treat health-related issues
caused by various bacteria.

Keywords: Acalypha arvensis; ellagitannin; corilagin; Staphylococcus aureus; flavonoids; antibacterial

1. Introduction

The World Health Organization (WHO) has reported that microbial diseases (both
from bacteria and fungi) are a leading cause of death in humans [1], which can be transmit-
ted directly or indirectly from one individual to another, and that bacterial resistance causes
more than 10 million deaths per year [2–5]. The microorganisms of greatest interest that
cause infectious diseases in humans are bacteria such as Salmonella typhi (causing typhoid
fever), Staphylococcus aureus (causing skin infections, sometimes pneumonia, endocardi-
tis, and osteomyelitis), Streptococcus pneumoniae (causing pneumonia), among others [6,7].
The cosmopolitan increase of bacterial infections caused mainly by the inappropriate use
of antibiotics and/or a deficient control of infections has led to the rise of drug-resistant
strains, which represent a major threat to public health and the global economy [1]. There-
fore, seeking and development of new generations of antimicrobials to mitigate the spread
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of antibiotic resistance have become imperative [8]. In fact, a reexamination of tradi-
tional medicines has become more common among scientists. This approach has already
produced new antibiotics, and it is expected that more novel antibiotics will be discov-
ered/isolated from traditional medicinal plants in the future. [9] Those new bioactive
molecules from plant extracts could be essential secondary metabolites that will aid further
understand antimicrobial activity, while advancing drug discovery [10].

It is well known that the medicinal properties of plants are related to their ability
to synthesize a wide range of bioactive compounds. One of the main families of bioac-
tive molecules found in plant extracts is the phenolic family. These compounds have
shown excellent antibacterial activity against resistant pathogens through various reported
mechanisms [10–12] and therefore are an important group of potential medicines.

The species Acalypha arvensis Poepp Endl., usually known as “spider leaf”, “couch
grass”, “borreguillo”, and/or “worm weed”, belongs to the family Euphorbiaceae and
it can be found from Mexico to tropical South America [13,14]. In traditional medicine,
this plant has been used to treat illnesses such as diarrhea, vomiting, scabies, mouth sores
(canker sores), spider bites, snake bites, cancer, athlete′s foot, inflammation, fluid retention,
headache, and wound healing, among others [14–17]. One of the few pharmacological
studies carried out on A. arvensis reported that an ethanol extract from leaves and flowers
presented antimicrobial activity against enterobacteria pathogenic to humans; Salmonella
typhi was the most inhibited bacterium (33.73%), whereas Escherichia coli (7.35%) was the
most resistant [18]. The ethanol extract was also evaluated against three Gram-positive
bacteria that cause respiratory infections (Staphylococcus aureus, Streptococcus pneumoniae and
Streptococcus pyogenes), showing activity only against Staphylococcus aureus [19]. In another
study, conducted on five species of the genus Acalypha, biocidal activity was evaluated,
and it was demonstrated that A. arvensis has activity against Pseudomonas aeruginosa and
Cryptococcus neoformans at a concentration of 1 mg/mL. On the other hand, it did not
show activity against mosquito larvae (Aedes aegypti and Anophles albinamus). Groups of
compounds such as flavonoids, anthocyanins, anthraquinones, coumarins, saponins, and
cardenolides were identified in those extracts [20]. However, there are no prior reports
indicating the actual bioactive molecules present in this plant species. Thus, the main
aims of this work were (1) to evaluate the antimicrobial activity of three extracts and four
fractions from A. arvensis against microorganisms sensitive and resistant to methicillin and
(2) to determine the actual secondary metabolites responsible for the observed bioactivity.

2. Results
2.1. Antibacterial Effect of A. arvensis’s Extracts

Maceration of the aerial parts of Acalypha arvensis (Aa) species provided the following
extracts: hexane (AaHex, 7.4 g, 0.76%), ethyl acetate (AaAcOEt, 19.2 g, 1.98%), and ethanol
(AaEtOH, 11.24 g, 1.15%). The three extracts were evaluated against 13 strains of sensitive
and methicillin-resistant bacteria (Table 1).

Table 1. MICs of the three extracts obtained from A. arvensis.

Extract (mg/mL)

Bacteria AaHex AaAcOEt AaEtOH Control (+) Control (−)

Sa >2 2 2 — *
SaRM1 >2 >2 2 — *
SaRM2 >2 >2 2 — *
Se >2 >2 2 — *
Sh >2 >2 >2 — *
Ef >2 >2 >2 — *
Kp1 >2 >2 2 — *
Kp2 >2 >2 2 — *
Pa >2 2 2 — *
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Table 1. Cont.

Extract (mg/mL)

Bacteria AaHex AaAcOEt AaEtOH Control (+) Control (−)

Ec1 >2 >2 >2 — *
Ec2 >2 >2 >2 — *
Ec3 >2 >2 >2 — *
Sd >2 >2 >2 — *

(—): no growth; (*): growth.

According to the results in Table 1, the extract that showed the best antibacterial activity
in relation to the 13 strains of bacteria evaluated was the ethanolic extract (AaEtOH) with
good activity against four strains of Gram-positive bacteria (Sa, SaRM1, SaRM2, and Se)
and three strains of Gram-negative bacteria (Kp1, Kp2, and Pa), followed by the ethyl
acetate extract (AaAcOEt) that only showed activity against S. aureus (Sa) and P. aeroginosa
(Pa). Lastly, the hexane extract (AaHex) did not exhibit any relevant activity against any
of the strains evaluated at the screened concentration. Therefore, the AaEtOH extract was
selected for chromatographic fractionation and to carry out the bacterial evaluation.

2.2. Antibacterial Activity of the AaEtOH Fractions (AaR1, AaR2, AaR3, AaR4, and AaR5)

Chromatographic fractionation of the AaEtOH extract produced five clusters, of which
only four were evaluated (since AaR1 offered very low yield), against sensitive S. aureus
(Sa) and methicillin-resistant S. aureus (SaRM1) (Table 2).

Table 2. MIC determination of the fractions (AaR2, AaR3, AaR4, and AaR5) obtained with EtOH.

Fractions (mg/mL)

Bacteria AaR2 AaR3 AaR4 AaR5 Control (+) Control (−)

Sa >2 >2 1 0.5 — *
SaRM1 >2 >2 <0.5 <0.5 — *

(—): no growth; (*): growth.

Table 2 shows the significant antibacterial activity from fractions AaR4 and AaR5
against both S. aureus sensitive (Sa) and methicillin-resistant (SaRM1) strains.

2.3. HPLC Analysis of Extract and Fractions

Analysis of the AaEtOH extract by high-performance liquid chromatography (HPLC)
allowed the identification of four main compounds that have retention times of 8.5, 8.6, 9.3,
and 9.4 min and UV-Vis spectra of (λmax = 191.1, 219, 258, 268, and 355 nm), respectively.
Those values could correspond to groups of phenolic-type compounds (Figure 1).

Figure 2A,B show the HPLC chemical analysis of two active fractions (AaF4 and AaF5)
at 270 nm and Figure 2C shows fraction AaF5 at 350 nm.

In the chromatograms of Figure 2, it can be observed that compound 1 and other
derivatives of the same type (ellagitannins) that could not be identified (NI) are present in
the two fractions. Therefore, it could be said that the antimicrobial effect produced by the
two fractions (AaR4 and AaR5) could be mainly due to the ellagitannin known as corilagin
(1) and the presence of flavonoids. According to HPLC, the concentration of compound 1
(8.5 min, 270 nm) in the ethanol extract is 18.36 mg of corilagin/g of extract.
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Corilagin (1), corilagin derivative (Unidentified, NI), rutin (3), quercetin-3-O-glucoside (4) and caffeic
acid (5) are identified.

2.4. Isolation and Structural Elucidation of Compounds 1–3

Although both fractions (AaR4 and AaR5) were active, it was decided to isolate the
compounds from fraction AaR4 since it provided a higher yield.

Chromatographic fractionation of the AaR4 fraction yielded seven compounds. Com-
pound 1 was obtained as an amorphous yellow precipitate. The HPLC chromatogram and
UV absorption spectrum (Figure S1) showed a retention time of 8.5 min with absorption
lengths of λmax = 221 and 268 nm. Analysis of the 1H NMR spectrum showed three charac-
teristic signals for three aromatic rings at δ 7.06 (2H, s, H-2′ ′ and H-6′ ′), 6.69 (1H, s, H-3′)
and 6.67 (1H, s, H-3), assigned to gallic acid. Additionally, a doublet signal is observed
at δ 6.36 (1H, d, J = 2.2 Hz, H-1′ ′ ′ ′) and its 13C-NMR chemical shift at δ 95.0 (CH, C-1′ ′ ′ ′)
corresponds to an anomeric carbon of a sugar. The COSY experiment analysis allowed us
to identify by proton couplings a hexose named α-D-glucose. The anomeric proton (δ 6.36)
shows long range correlation (HMBC) with the signal of the carbonyl at δ 166.6 assigned to
C-7′ ′ of the gallic acid, so this acid is substituted at C-1′ ′ ′ position of glucopyranose. Like-
wise, it is observed a coupling to protons H-6′ ′ ′ ′a and H-6′ ′ ′ ′b (δ 4.15 and 4.96, respectively)
with another carbonyl at δ 170.0. Thus, this was assigned to C-7 of another gallic acid,
also for H-3′ ′ ′ ′ (δ 4.8) with the carbonyl signal at δ 168.5 from C-7′ of the third gallic acid.
Analysis of the obtained one-dimensional (1H, 13C, and DEPT) and two-dimensional (COSY,
HMQC, and HMBC) NMR spectra ( supplementary data Figures S2–S7), and comparison
with data described in the literature [21–23], this compound was identified as an ellag-
itannin (β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-α-D-glucose) known as corilagin
(1, Figure 3).

Additional analysis of fraction AaR4 was further separated using a second column
chromatography. This second separation delivered 3 fractions (fractions 8–10, 13–20,
and 23–27). Analysis of these fractions by HPLC and UV-Vis spectra indicated that peaks
at 8.36 min (λmax = 211 and 326 nm) co-respond with chlorogenic acid (2, Figure 4), 8.9 min
(λmax = 213, 255.7, and 355.3 nm) with rutin (3, Figure 5), 9.2 min (λmax = 213.4, 255.7 and
355.3 nm) with quercetin-3-O-glucoside (4, Figure 5), and 9.1 min (λmax = 219.2, 243.9 and
330.3 nm) with caffeic acid (5, Figure 6), respectively. These were compared with known
standards to stablish their identity.

Fraction 32–37 was analyzed by 1D and 2D NMR spectroscopy (Figures S8–S13) and
by comparison with spectroscopic data from the literature [24–27], it was found a mixture of
a polyol known as treitol (6), a dihydrochalcone known as (S,E)-1,3-diphenylprop-2-en-1-ol
(7), and a shikimic acid derivative (1R,2R,3R)-5-(hydroxymethyl)cyclohex-4-ene-1,2,3-triol
(8) (Figure 3).

Corilagin (1): 1H NMR (CD3OD, 600 MHz) δ 7.06 (2H, s, H-2′ ′ y H-6′ ′), 6.69 (1H, s, H-3′),
6.67 (1H, s, H-3), 6.36 (1H, d, J = 2.2 Hz, H-1′ ′ ′), 3.99 (1H, dd, 2.0, 3.5 Hz, H-2′ ′ ′), 4.8
(1H, m, H-3′ ′ ′), 4.46 (1H, dd, J = 1.7, 3.3 Hz, H-4′ ′ ′), 4.52 (1H, dd, J = 8.0, 10.9 Hz, H-5′ ′ ′),
4.15 (1H, dd, J = 8.0, 10.9 Hz, H-6a′ ′ ′), 4.96 (1H, dd, J = 10.9, 10.9 Hz, H-6b′ ′ ′); 13C NMR
(CD3OD, 150 MHz) δ 62.4 (CH, C-4′ ′ ′), 64.9 (CH2, C-6′ ′ ′), 69.4 (CH, C-2′ ′ ′), 71.5 (CH, C-3′ ′ ′),
76.1 (CH, C-5′ ′ ′), 95.0 (CH, C-1′ ′ ′), 108.3 (CH, C-3), 110.2 (CH, C-3′), 110.9 (2CH, C-2′ ′ y
C-6′ ′), 116.6 (C, C-1), 117.2 (C, C-1′), 120.7 (C, C-1′ ′), 125.4 (C, C-2), 125.5 (C, C-2′), 137.6
(C, C-5), 138.1 (C, C-5′), 140.3 (C, C-4′ ′), 145.1 (C, C-6′), 145.2 (C, C-6), 145.6 (C, C-4′), 146.0
(C, C-4), 146.3 (2C, C-3′ ′ y C-5′ ′), 166.6 (C, C-7′ ′), 168.5 (C, C-7′), 170.0 (C, C-7). Treitol o

(2R,3R)-butane-1,2,3,4-tetrol (6): 1H NMR (CD3OD, 600 MHz) δ 3.66 (2H, dd, J = 5.7, 5.9 Hz,
H-2, H-3), 3.52 (2H, dd, J = 5.9, 11.2 Hz, H-1a, H-4a), 3.60 (2H, dd, J = 4.9, 11.2 Hz, H-1b,
H-4b); 13C NMR (CD3OD, 150 MHz) δ 73.7 (CH, C-2 y C-3), 64.3 (CH2, C-1 y C-4).
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Figure 6. HPLC chromatograms of caffeic acid (5) compared to the standard and its UV spectrum.

(S,E)-1,3-Diphenylprop-2-en-1-ol (7): 1H NMR (CD3OD, 600 MHz) δ 5.31 (1H, d, J = 6.6 Hz,
H-1), 6.39 (1H, dd, J = 6.6, 15.8 Hz, H-2), 6.64 (1H, d, J = 15.8 Hz, H-3), 7.42 (1H, dd, J= 1.3,
8.4 Hz, H-2′ ′ y H-6′ ′), 7.39 (dd, J = 1.3, 8.4 Hz, H-2′ y H-6′), 7.20 (dd, J = 7.4, 7.4 Hz, H-3′ y
H-5′), 7.26 (dd, J = 7.4, 7,4 Hz, H-3′ ′ y H-5′ ′), 7.35 (dd, J = 7.5, 7,6 Hz, H-4′), 7.28 (dd, J = 7.6,
7.9 Hz, H-4′ ′); 13C NMR (CD3OD, 150 MHz) δ 75.8 (CH, C-1), 133.3 (CH, C-2), 131.1 (CH,
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C-3), 127.4 (4CH, C-2′,C-2′ ′, C-6′ y C-6′ ′), 128.3 (2CH, C-3′y C-5′), 128.5 (2CH, C-3′ ′y C-5′ ′),
129.5 (CH, C-6′ ′), 129.3 (CH, C-6′), 141.8 (C, C-1′ ′), 138.2 (C, C-1′).

(1R,2R,3R)-5-(hydroxymethyl)cyclohex-4-ene-1,2,3-triol (8): 1H NMR (CD3OD, 600 MHz) δ
6.78 (1H, d, 3.3 Hz, H-4), 4.37 (1H, dd, 3.6, 4.2 Hz, H-3), 3.67 (1H, m, H-2), 3.98 (1H, dd, 5.4,
7.5 Hz), 2.72 (1H, dd, 4.9, 18.0, H-6a), 2.19 (1H, dd, 5.9, 18.0, H-6b), 3.74 (1H, dd, 2.7, 11.0
Hz, H-7a), 3.60 (1H, m, H-7b): 13C NMR (CD3OD, 150 MHz) δ 138.2 (CH, H-4), 67.37 (CH,
C-3), 72.9 (CH, C-2), 68.3 (CH, C-1), 31.8 (CH2, C-6), 131.1 (C, C-5), 64.6 (CH2, C-7).

3. Discussion

Considering the current uses in traditional medicine and the antibacterial activity
reports from the title plant, the aim of this work was to evaluate the antibacterial properties
of Acalypha arvensis and the identification of molecules responsible for the activity.

The emergence and dissemination of methicillin-resistant Staphylococcus (MRS) strains
is a worrying problem in public health. Therefore, new anti-MRS agents are urgently
needed. Species of the genus Acalypha have shown antibacterial activity including A. al-
nifolia, A. alopecuroidea, A. arvenis, A. fimbriata, A. gaumeri, A. hispida, A. indica, A. monos-
tachya, A. platyphilla, A. racemose, A. wilkesiana, and A. torta [28]. In this work, it was
demonstrated that the ethanolic extract of A. arvensis exerts antibacterial effects against
methicillin-sensitive and methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae,
and Pseudomonas aeruginosa strains, which is consistent with what has been described
in the literature, where its effect against strains of Staphylococcus aureus, Salmonella typhi,
Shigella flexneri, Mycobacterium intracellurare, Thychophyton mentagrophyte, and Saccharomyces
cerevisiae has been reported [18,19,29,30]. There are also reports of antimicrobial potential
in other species of the same genus such as A. diversifolia where hexane, dichloromethane,
and methanol extracts were tested against Staphylococcus aureus (ATCC 6538), Bacillus sub-
tilis (ATCC 21556), Klebsiella pneumonia (ATCC 10031), and Escherichia coli (ATCC 9637)
and were bioactive [31]. It has also been mentioned that methanolic extract of Acalypha
fruticosa exhibit positive effects against Staphylococcus aureus, Bacillus subtilis, Myotis flavus,
and Staphylococcus epidermis, while the aqueous extract shows activity against Streptococcus
pyogene, Staphylococcus epidermis, Proteus vulgaris, and Escherichia coli [28].

The activity of AaEOH from A. arvensis could be due to phenolic acids and flavonoids
that were identified in this extract. In general, tannins, flavonoids, coumarins, saponins,
alkaloids, terpenes, coumarins, anthocyanins, and anthraquinones have been previously
described in species of this genus [28]. In this study, corilagin (1), an ellagitannin, was
isolated and identified; this compound has been isolated from different species as well,
including those of the genus Euphorbiaceae, such as Phyllantus niruri [32]. Some pharma-
cological activities of corilagin have already been described, such as antiatherogenic [33],
antioxidant [34], hepatoprotective [35], antitumor [36], and antibacterial [37]. Corilagin has
been reported to exhibit antimicrobial activity due to its inhibitory effect against S. aureus,
E. coli, P. aeruginosa, and K. pneumoniae with a MIC of 1024 pg/mL [38]. Tannins have
antibacterial effects, inhibiting the growth of Gram-positive and Gram-negative bacteria,
and most compounds have bacteriostatic properties. The MICs of several tannins range
from 61.5 to 3200 µg/mL [39]. Some of the proposed mechanisms of how these compounds
(gallotannins) act involve their iron chelating property. Iron is essential for optimal bacterial
growth. Siderophores, low-molecular-weight organic compounds produced by bacteria,
can solubilize iron in the external environment and make it available to bacteria. Gallotan-
nins can chelate ferric iron from their environment, making iron unavailable to bacteria,
leading to inhibition of bacterial growth due to iron deprivation. Furthermore, the iron
chelation efficiency of gallotannins is correlated with the number of galloyl groups, with
increasing degrees of galloylation reducing the iron-binding capacity due to steric effects.
It has also been shown that tannins can inhibit bacterial cell-wall synthesis by inactivating
the enzymes involved or by direct binding [40]. On the other hand, chlorogenic acid has
been shown to have broad-spectrum antibacterial activity and some inhibition against E. coli
and S. aureus. Reports indicate that the antibacterial mechanism of chlorogenic acid may
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be related to noncompetitive inhibition of arylamine acetyltransferase in bacteria, as well
as changing the permeability of cell membranes by inhibiting a change in β-galactosidase.
This reduces the concentration of sugar and acetone in the metabolic process of bacteria
and hindering the metabolism and protein synthesis of the strain, resulting in insufficient
energy and further affecting the bacteria’s growth and reproduction [41].

It has been reported that plants rich in phenolic acids and flavonoids, two types of
metabolites present in the ethanolic extract of A. arvensis, possess a broad spectrum of
antimicrobial activity [42]. In particular, the amount and position of the hydroxyl groups
in these types of compounds, such as rutin, quercetin glycoside, and caffeic acid present
in A. arvensis, have been shown to be related to their antibacterial effect, mainly against
S. aureus. The presence of these functional groups affects lipophilicity, damaging the
phospholipids and proteins, resulting in an increase in cell permeability [43,44].

Since there are numerous toxic plants, it is important to evaluate their preclinical
toxicological and pharmaceutical action before considering using them for a safe/beneficial
treatment and therefore validating them as medicinal plants [45]. As such, it is in our inter-
est to continue with further evaluation (in vivo) of the Acalypha arvensis extracts against
biological models. Thus far, it has been reported that studies carried out with corilagin re-
vealed that the applied therapeutic dose does not exert adverse effects on the liver [36]. Ad-
ditionally, the compounds quercetin, gallic acid, corilagin, and ellagic acid protect against
some cytotoxic effects of acetaminophen, microcystins, galactosamine, and lipopolysaccha-
rides [46]. Therefore, isolation and chromatographic analysis of polyphenolic compounds
such as flavonoids, hydroxycinnamic acid derivatives, and organic acids from plants aid
in the understanding of their inherited bioactivity [47–49]. In the case of A. arvensis ex-
tracts, it was found that around (8–10 min) ellagitannin was found during chromatographic
analysis. However, there were additional natural products that overlapped at that same
retention time. This low resolution could be improved using micro-pillar matrix columns,
which have proved to have better separation performance in HPLC [50].

4. Materials and Methods
4.1. Equipment and Reagents

NMR spectra were recorded on an Agilent DD2-600 at 600 MHz for 1H and 150 MHz
for 13C NMR, using CD3OD as the solvent. Chemical shifts are reported in ppm relative
to TMS. Thin-layer chromatography (TLC) was performed using TLC Silica gel 60, F254,
and 20 × 20 cm aluminum sheets (Merck KGaA, Darmstadt, Germany). High-performance
liquid chromatography (HPLC, Milford, MA, USA) analyses were performed on a Waters
2695 Separation module system, equipped with a photodiode array detector (Waters Co.
2996) and Empower 3 software (Waters Corporation, Milford, MA, USA).

4.2. Plant Material

The aerial parts of Acalypha arvensis were collected in Pechucalco 1st section of the
municipality of Cunduacán, Tabasco, Mexico; during the month of April 2021. One speci-
men was deposited in the Herbarium of the Academic Division of Biological Sciences of
the Universidad Juárez Autónoma de Tabasco for taxonomic identification and safekeeping
(Voucher No. 036228). The fresh plant material of Acalypha arvensis was dried at room
temperature, under shade for 72 h.

4.3. Extracts

Dried material (820 g) was milled in a grinder (Pulvex, particle size 4 mm). The extrac-
tion process was through a serial maceration with solvents of ascending polarity (n-hexane,
ethyl acetate and ethanol). This to extract all the secondary metabolites according to their
dissolution affinity. Initially, n-hexane (2.0 L, Merck) was added to the dry material and
allowed to stand for 24 h at room temperature (25–30 ◦C). Subsequently, it was filtered
(Whatman No. 4 paper) and concentrated in a rotary evaporator (Heidolph G3, Germany)
under reduced pressure, to obtain the hexane extract (AaHex, 7.4 g). This process was
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repeated in triplicate. The same plant material dried after extraction with hexane was
macerated with ethyl acetate (2.0 L, Merck, Mexico City, Mexico). The same procedure
mentioned above was followed, to give the ethyl acetate extract (AaAcOEt, 19.2 g). Finally,
the ethanolic (AaEtOH, 11.2 g) was obtained following the same protocol. All extracts were
lyophilized (Heto Drywinner DW3) and tested by the biological model used for this study.

4.4. Isolation and Identification of Compounds (1–8)

Ethanolic extract (AaEtOH, 11.2 g) was adsorbed with silica gel (60 g, gel 60, Merck)
and fractionated in a glass column (600× 50 mm) packed with silica gel (100 g, 70–230 mesh,
Merck) as stationary phase. Dichloromethane was used as the mobile phase with gradual
increase of polarity using 10% v/v methanol, collecting 32 fractions of 200 mL. All samples
were concentrated under reduce pressure using a rotary evaporator (Heidolph Laborota
4000) and lyophilized. Chromatographic analysis by CCF allowed the assemblies in five
fractions: AaR1 (0.05 g), AaR2 (1.5 g), AaR3 (2.2), AaR4 (4.2 g), and AaR5 (1.8 g). Fraction
AaR4 (4 g, column 2) was adsorbed on silica gel (7 g, Rp-18, Merck) as a stationary phase
and water with a decrease in polarity with acetonitrile at 5% v/v was used as a mobile phase,
collecting 50 fractions of 30 mL each. A dark yellow precipitate was obtained in fractions
3–5, which was identified as corilagin (1). In fractions 8–10, 13–20, and 23–27, chlorogenic
acid (2), rutin (3), quercetin-3-O-glucoside (4) and caffeic acid (5) were identified using
HPLC by comparison with commercial standards. In fraction 32–37, a mixture of a polyol
called treitol (6), a dihydrochalcone known as (S,E)-1,3-diphenylprop-2-en-1-ol (7) and a
shikimic acid derivative (1R,2R,3R)-5-(hydroxymethyl)cyclohex-4-ene-1,2,3-triol (8) were
identified (see Scheme 1).
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Scheme 1. Protocol used for the isolation of active compounds from Acalypha arvensis.

4.5. Antibacterial Activity
4.5.1. Strains Used

The 13 ATCC bacterial strains used were: Gram-positive; Staphylococcus aureus 29213(Sa),
methicillin-resistant Staphylococcus aureus 43300(SaRM1) and 3359(SaRM2), Staphylococcus
epidermis 1042(Se), Staphylococcus haemolyticus 1165(Sh), and Enterococcus faecalis 29212(Ef),
Gram-negative; Klebsiella pneumoniae 13883(Kp1) and 700605(Kp2), Pseudomonas aerugi-
nosa 27853(Pa), Escherichia coli 25922(Ec1), 1047(Ec2), and 4036(Ec3) and Salmonella dublin
9676(Sd). The strains were maintained on Trypticase Soy Agar (Merck) at 37 ◦C, 24 h.
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4.5.2. In Vitro Evaluation of the Organic Extracts Using a Plate Dilution Method

The antibacterial activity was measured by determining the minimal inhibitory con-
centration (MIC) and it was carried out using the standard agar dilution method [51].
Briefly, the AaHex, AaAcOEt, and AaEtOH extracts and AaR2, AaR3, AaR4, and AaR5
fractions were dissolved in dimethyl sulfoxide (DMSO; 2% v/v) and sterile water (8% v/v);
to obtain a concentration of 2, 1, 0.5, 0.25, 0.125 mg/mL. The inoculum for each organism
was prepared from cultures containing 108 colony-forming units (CFU)/mL (MacFarland
scale standard 0.5). The diluted (1:20) inoculum was applied as a drop, by means of a
calibrated pipet that delivered 2 µL, resulting in a drop inoculum covering a circle of 5 mm
diameter and containing 104 CFU. The plates were incubated for 24 h at 37 ◦C. Gentam-
icin (250 µg/mL; Sigma) was used as positive control (Control (+)). Observations were
performed by duplicate, and results are expressed as the lowest concentration of extract
or fraction able to produce a complete suppression of colony growth on agar (minimum
inhibitory concentration).

5. Conclusions

The present study allowed us to conclude that the ethanolic extract from the plant
species Acalypha arvensis presents antibacterial activity against a couple of strains of
methicillin-sensitive and methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae,
and Pseudomonas aeruginosa, which supports the known medicinal applications attributed
to this plant. The presence of the ellagitannin called corilagin (1) was isolated and identified
in this species for the first time. It is one of the main constituents present in both the
extract and in the active fractions (AaR4 and AaR5). Therefore, it makes sense to state that
corilagin (1) is one of the main natural products responsible for the observed biological
activity. However, we cannot discard the other phenolic-type compounds (chlorogenic acid,
quercetin glycoside, caffeic acid and rutin) isolated. Therefore, it can be concluded that the
aerial parts of this plant could be a good alternative in the treatment of infections caused
by methicillin-resistant bacteria.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11030300/s1, Figure S1: Chemical structure, HPLC chro-
matogram and UV light spectrum of corilagin (1). Figure S2: 1H-NMR (CD3OD, 600 MHz) of
corilagin (1). Figure S3: 13C-NMR (CD3OD, 150 MHz) of corilagin (1). Figure S4: 13C-DEPT-NMR
(CD3OD, 150 MHz) of corilagin (1). Figure S5: 1H-1H(COSY)-NMR (CD3OD, 600 MHz) of corilagin
(1). Figure S6: 1H-13C(HSQC)-NMR (CD3OD, 600 MHz for 1H and 150 MHz for 13C) of corilagin
(1). Figure S7: 1H-13C(HMBC)-NMR (CD3OD, 600 MHz for 1H and 150 MHz for 13C) of corilagin
(1). Figure S8: 1H-NMR (CD3OD, 600 MHz) of the mixture of compounds (6–8). Figure S9: 13C-
NMR (CD3OD, 150 MHz) of the mixture of compounds (6–8). Figure S10: 13C-DEPT-NMR (CD3OD,
150 MHz) of the mixture of compounds (6–8). Figure S11: 1H-1H(COSY)-NMR (CD3OD, 600 MHz)
of the mixture of compounds (6–8). Figure S12: 1H-13C(HSQC)-NMR (CD3OD, 600 MHz) of the
mixture of compounds (6–8). Figure S13: 1H-13C(HMBC)-NMR (CD3OD, 600 MHz) of the mixture of
compounds (6–8).
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