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Search for common targets of lithium and valproic acid
identifies novel epigenetic effects of lithium on the rat leptin
receptor gene
RS Lee1, M Pirooznia1, J Guintivano1,2, M Ly1, ER Ewald1, KL Tamashiro1, TD Gould3, TH Moran1 and JB Potash4

Epigenetics may have an important role in mood stabilizer action. Valproic acid (VPA) is a histone deacetylase inhibitor, and lithium
(Li) may have downstream epigenetic actions. To identify genes commonly affected by both mood stabilizers and to assess
potential epigenetic mechanisms that may be involved in their mechanism of action, we administered Li (N= 12), VPA (N= 12), and
normal chow (N= 12) to Brown Norway rats for 30 days. Genomic DNA and mRNA were extracted from the hippocampus. We used
the mRNA to perform gene expression analysis on Affymetrix microarray chips, and for genes commonly regulated by both Li and
VPA, we validated expression levels using quantitative real-time PCR. To identify potential mechanisms underlying expression
changes, genomic DNA was bisulfite treated for pyrosequencing of key CpG island ‘shores’ and promoter regions, and chromatin
was prepared from both hippocampal tissue and a hippocampal-derived cell line to assess modifications of histones. For most
genes, we found little evidence of DNA methylation changes in response to the medications. However, we detected histone H3
methylation and acetylation in the leptin receptor gene, Lepr, following treatment with both drugs. VPA-mediated effects on
histones are well established, whereas the Li effects constitute a novel mechanism of transcriptional derepression for this drug.
These data support several shared transcriptional targets of Li and VPA, and provide evidence suggesting leptin signaling as an
epigenetic target of two mood stabilizers. Additional work could help clarify whether leptin signaling in the brain has a role in the
therapeutic action of Li and VPA in bipolar disorder.
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INTRODUCTION
Bipolar disorder (BPD) is a debilitating mental illness that affects
3% of the adult population and constitutes a major global
burden.1 It is a disease of extremes, characterized by mood states
ranging from the highs of mania to the lows of depression.
Despite intensive research, our grasp of BPD pathophysiology
remains rudimentary. Pharmacological treatments are available,
and while often effective, they fail to work in a substantial subset
of patients. Their mechanism of action remains to be fully
elucidated. Two of the most commonly prescribed BPD drugs are
the mood stabilizers lithium (Li) and valproic acid (VPA; also
formulated as divalproex sodium).
Studies that have sought to identify signal transduction

pathways and genomic targets of these medications have begun
to uncover epigenetic modifications that potentially underlie their
mechanism of action. Previous studies have shown the role of Li in
reducing inositol signaling and in subsequent regulation of
neurotransmitter systems. Li has also been implicated in
phosphorylation of AKT2 and inhibition of GSK-3 (glycogen
synthase kinase 3),3,4 both of which lead to the activation of the
WNT pathway.

More recently, the role of Li in inositol and GSK-3β signaling has
been shown to involve downregulation of DNA methyltransferase
Dnmt3a2 followed by reduction of DNA methylation (DNAm) at
specific loci.5 Further, there is evidence that Li downregulates class
I histone deacetylases (whose subtype includes HDAC1)6 and also
causes locus-specific phosphorylation and acetylation of histone
H3,7 suggesting a broader transcriptomic and epigenetic role for
this drug. VPA, much similar to Li, can lead to phosphorylation of
AKT and GSK-3β,3,8 potentially affecting downstream signaling
pathways, including the WNT pathway. In addition, VPA is a potent
inhibitor of HDACs,9 which can influence DNAm.10

The effect of Li and VPA on AKT and WNT signaling pathways
demonstrates the overlap in the targets of these dissimilar
chemicals and provides our current rationale for seeking to
identify and examine additional common targets. Given the
differences in molecular structure—Li is a monovalent cation and
VPA is a branched chain fatty acid—we hypothesized that
molecular targets that are shared between the two drugs are
more likely clinically relevant than are unique targets.11,12 In these
experiments, we sought to compare the mode of action of these
mood stabilizers by studying their potential role in altering
epigenetic patterns.
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MATERIALS AND METHODS
Animals
Seven-week-old male Brown Norway rats (Charles River Laboratories,
Frederick, MD, USA) were group-housed (three per cage) in a temperature-
and humidity-controlled room under a 12 :12-h light:dark cycle. All animals
received ad libitum access to water and standard laboratory chow (Harlan
Teklad 2018, Frederick, MD, USA) for 1 week upon arrival, and experiments
were initiated at 8 weeks of age. During the 4-week treatment period,
animals were given a Li diet (N= 12, 0.1% Li carbonate mixed into 2018
chow), a VPA diet (N=12, 0.2% sodium valproate mixed into 2018 chow) or
the 2018 standard diet (N=12). Control animals were pair-fed to maintain
non-distinguishable body weight differences for all animals. All animals
were provided with 0.9% saline solution to prevent hyponatremia that may
occur with Li treatment. Procedures were approved by the Institutional
Animal Care and Use Committee at Johns Hopkins and performed in
accordance with established guidelines.13

Blood collection
Blood samples were collected weekly following onset of the light cycle
(0900 hours) to measure plasma Li and VPA levels. Animals remained in a
quiet room and ~250 μl of tail blood were collected from each.

Tissue collection
Animals were euthanized by decapitation. Hippocampal tissues were
dissected, frozen immediately on powdered dry ice and stored at − 80 oC.

Expression microarray hybridization
Total RNA was obtained using the RNeasy Lipid Tissue Mini Kit (Qiagen,
Germantown, MD, USA), and an aliquot of the total RNA samples extracted
from the hippocampus were hybridized on the Affymetrix Rat Exon 1.0 ST
microarrays (Santa Clara, CA, USA). Hybridization was performed for 16 h at
45 °C with constant rotation.

Analysis of microarray data
Signal estimates and normalization for gene-level analysis were generated
by a three-step analysis: background adjustment, quantile normalization
and summarization.14 To reduce noise, probe sets and transcript clusters
that fell into the lowest quartile of the expression signal distribution across
all samples were excluded. Signal values were analyzed using the
Bioconductor R package Robust Multichip Average algorithm.14,15 Gene
expression values were compared between the treatment groups using
the moderated t-statistic of the Bioconductor package Limma.16,17 To
correct for multiple testing at the gene level, the Benjamini–Hochberg
(FDR or false discovery rate) test was applied to identify differentially
expressed genes (FDR-adjusted P-values o0.05). Significant up- and
downregulated genes were subjected to functional enrichment analysis
using DAVID.18 KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis
of genes associated with the list of probes from LI- or VPA-treated animals
was performed to identify pathways that may be commonly affected by
treatment. Q-values were determined by correcting the P-values obtained
from the KEGG analysis by the total number of KEGG pathways.

Quantitative PCR
QuantiTect Reverse Transcription Kit (Qiagen) was used on the remaining
aliquot to generate complementary DNA for validation of microarray
results by real-time quantitative PCR (qPCR). Negative reverse-transcribed
samples were generated and all reactions were carried out in triplicate.
Real-time reactions were performed on an Applied Biosystems 7900HT Fast
Real-Time PCR System (Life Technologies, Grand Island, NY, USA). Each set
of triplicates was checked to ensure that threshold cycle (Ct) values were
within 0.25 Ct of each other. To determine relative expression values,
the −ΔΔCt method was used, where triplicate Ct values for each sample
were averaged and subtracted from those derived from housekeeping
genes β-actin (Actb) and Gapdh. Similar results were obtained for
normalization against both housekeeping genes.

DNA extraction and bisulfite treatment
Genomic DNA from the hippocampus was isolated with the Masterpure
DNA Purification Kit (Epicentre, Madison, WI, USA). An amount of 500 ng of

the DNA was used for bisulfite conversion (EZ DNA Methylation-Gold Kit,
Zymo Research, Irvine, CA, USA).

Bisulfite PCR and pyrosequencing
We measured DNAm of specific regions within target genes by
pyrosequencing of the PCR products.19 An amount of 25 ng of bisulfite-
treated DNA was used for the initial PCR, and an additional nested PCR was
performed with 2 μl of the previous PCR. Reactions were performed using
the PyroMark MD System with Pyro Q-CpGt 1.0.9 software (Qiagen) for
methylation quantification. Percentage of methylation at each CpG was
compared between Li- and VPA- treated rats vs control diet-fed rats.

Cell line
Rat hippocampal cell line H19-7/IGF-IR was obtained from ATCC (Manassas,
VA, USA) and cultured in high-glucose DMEM media (Life Technologies)
supplemented with 10% fetal bovine serum and 1x penicillin–streptomycin
solution.

Chromatin immunoprecipitation
Cultured cells were disaggregated by pipetting, and frozen rat brain tissues
were finely chopped using a sharp scalpel. Cells and tissues were fixed
using a 1% formaldehyde solution for 10min on a rocking platform. The
crosslinking procedure was quenched with 0.125M glycine, and cells and
tissues were washed three times with ice-cold PBS. Cultured cells and
chopped tissues were resuspended in lysis buffer containing 1% Triton
X-100 and further homogenized using a Dounce homogenizer to isolate
the nuclei. Nuclei were subjected to centrifugation in a 30% sucrose
gradient and ruptured with 1% SDS lysis buffer to release the chromatin.
The chromatin solution was sonicated to yield ~ 250 bp DNA using the
Diogenode Biodisuptor, and debris was cleared by centrifugation. An
amount of 25 μg of chromatin was incubated with 10 μg of rabbit
polyclonal antibodies against specific modifications on lysine residues of
histone H3 and incubated for 2 h. Pre-immunization rabbit immunoglob-
ulin G was used in generating the negative control chromatin samples, and
an extra 25 μg of chromatin was used as input. Rabbit antibody-specific
DynaBeads were used to precipitate and wash the chromatin complex.
After five washes, proteins were digested by proteinase K, and eluates
subjected to phenol–chloroform extraction followed by EtOH precipitation
of DNA. Concentration of resuspended DNA was determined using a
NanoDrop 1000 Spectrophotometer (Thermo Scientific, Wilmington,
DE, USA).

Chromatin immunoprecipitation quantitation
qPCR of specific regions within Lepr associated with various histone
modifications was performed on the Applied Biosystems 7900HT Fast
Real-Time PCR System as described above, except that SYBR green reagent
was used for detection of PCR amplicons. Relative enrichment
was calculated by comparing Ct values from 25 ng of chromatin
immunoprecipitated DNA.

RESULTS
Genome-wide expression and pathway analysis on changes in the
hippocampus of rats treated with Li or VPA
Three groups of Brown Norway rats received Li, VPA, or control
(CTL) chow for 30 days. Levels of Li and VPA were 1.1 ± 0.05 mM

and 53.8 ± 6.3 μgml− 1 at week 2 (mean± s.e.m.), and
1.0 ± 0.07 mM and 37.9 ± 5.5 μgml− 1 at week 4, respectively. These
levels are within the human therapeutic range of Li or VPA,20,21

and the treatment duration has been shown to attenuate
stimulant-induced hyperlocomotion for Li22 and hyperactivity for
VPA.23 Hippocampal mRNA was processed for hybridization on the
Affymetrix microarray. We generated a normal quantile–quantile
plot to compare the observed distribution of probe intensities
against those of a normal distribution for Li and VPA (Figures 1a
and b, left panels). The quantile–quantile plots show a greater
deviation from the normal distribution for the VPA vs CTL
comparison than for Li vs CTL, with probes upregulated by VPA
being overrepresented. Further, MA plots that compare expression
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quantity M (log2 (fold change, FC)) vs mean average (A) of probe
intensities for Li and VPA (Figures 1a and b, center panels)
confirmed the high number of probes upregulated by VPA. Finally,
a volcano plot depicting statistical significance (− log2[P-value]) vs
M for Li and VPA (Figures 1a and b, right panels) compared with
control diet-fed rats revealed dozens of probes up- or down-
regulated by both medications when the threshold was set at
Po0.05 and |M|⩾1 (or absolute |FC|42.0). Once again, we
observed a disproportionately large number of probes upregu-
lated with VPA, consistent with previous studies documenting
VPA’s role as a histone deacetylase inhibitor.9 In contrast, there
were relatively few genes downregulated by VPA and relatively
few genes whose expression was affected by Li. Top six most
significant probe IDs and the associated genes affected by Li or
VPA are included in Table 1, and the entire list is included in
Supplementary Table 1.
We performed a KEGG analysis24,25 to identify biologically

interesting and potentially relevant pathways regulated by Li and
VPA (Supplementary Table 2). We found 13 pathways that were
associated with genes upregulated by VPA, including those
involved in cell adhesion molecules and autoimmune thyroid
disease, and one pathway, that is, carbohydrate digestion and
absorption, associated with genes downregulated by Li. There
were no pathways statistically significant by Q-value that were

common between Li- and VPA-regulated genes. Further, no Q-
value significant pathways were identified for genes down-
regulated by VPA or upregulated by Li. We also combined and
analyzed the up- and downregulated genes for each group
and observed no disease-relevant pathways in addition to the
ones already observed for the previous analysis (Supplementary
Table 2).

Validation of common targets of Li and VPA by real-time qPCR
We then sought to identify array probes of genes commonly up-
or downregulated by both medications. Of those with P⩽ 0.05
(treated vs controls), we identified 49 commonly upregulated
array probes mapping to 36 genes and four downregulated
probes mapping to four genes (Supplementary Table 3). Among
these, we attempted to validate several commonly regulated
genes with significant FC (⩾1.6 or ⩽ 0.8) difference between
treated and control animals. We performed qPCR on Akt1, Bace2,
Dnah11, Glra1, Gulp1, Kcnj13, Lepr, Mmp2, Ogn and Slc6a20 using
hippocampal mRNA. We validated a significant fold increase for
most of these in response to both medications, exceptions being
Bace2, Glra1 and Slc6a20, where an increase for Li-treated samples
was nonsignificant by t-test, and a predicted increase of Slc6a20 in
VPA-treated samples was not observed. Akt1, encoding protein
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Figure 1. Lithium (Li) and valproic acid (VPA) exhibit distinct probe intensities for quantile–quantile (QQ), MA, and volcano plots. Observed
intensities of probes for VPA vs control (CTL) show greater deviation from normal distribution than in Li vs CTL comparison (a, b left panels).
MA plots depict expression quantity M (log2 [FC]) vs mean average (A) of probe intensities for Li and VPA, where the larger dots are those that
satisfy absolute FC42 (or M41) and P-value o0.05 (a, b center panels). The volcano plots show expression quantity M (log2 [FC]) vs statistical
significance (log2 [P-value]), where the larger dots are those that satisfy absolute FC42 (or M41) and P-value o0.05 (a, b right panels). For
both the MA and volcano plots, VPA vs CTL comparison shows significantly more upregulated probes than downregulated probes. FC, fold
change.
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kinase B, was the only gene downregulated by both treatments in
the array data, and we observed a 20% decrease in this gene (0.8
FC) for both Li- and VPA-treated animals by qPCR. These results
are shown in Table 2, and results for Akt1 are consistent with
previous literature, with most studies observing an increase in
phosphorylation of the AKT protein, but either no change or a
slight decrease in protein or mRNA expression levels with acute
exposure to Li and VPA.2,26 No studies have previously examined

the effect of chronic exposure (~4 weeks) to mood stabilizers on
AKT1 expression.

Lack of DNAm changes in Li- and VPA-treated hippocampal tissues
Emerging evidence suggests that DNAm may have a role in the
mechanism of action of Li and VPA. Of the genes commonly
regulated by both medications, we focused on the leptin receptor
gene (Lepr), as leptin signaling has been implicated in several
studies of mood disorders and in the role of neurogenesis in these
disorders.27–31 We asked whether upregulation of Lepr by chronic
treatment with Li and VPA involved DNAm changes in the
promoter and potential regulatory regions. We used bisulfite
pyrosequencing to interrogate 72 CpGs in five regions. These
regions included one conserved CpG island in the rat Lepr
promoter, three GC-rich regions in the first intron and a conserved
CpG island in the orthologous mouse promoter (Figure 2a). In all
of these CpGs, we found little evidence of DNAm changes of
substantial magnitude (that is, 410%; Figures 2b–f). In addition,
we also assayed the CpG islands and the surrounding ‘shore’
regions of several of the commonly up- or downregulated genes
in Table 2 and found little evidence of DNAm changes induced by
these mood stabilizers. See Supplementary Table 4 for details.

Histone modification of the leptin receptor gene in a cell line by Li
and VPA
We then used a cell system to dissect the mechanism involved,
asking whether chronic exposure to Li and VPA could induce
histone modifications in the Lepr promoter and potential
regulatory regions (Figure 2a). As Li and VPA have been associated
with histone deacetylase inhibition, we expected to observe an
increase in association of the promoter with acetylated histones.
We treated a rat hippocampal cell line with 1 mM Li or 300 μM VPA
(~50 μgml− 1) for 5 days and collected genomic DNA, mRNA, and
chromatin. Although 1-day treatment is sufficient to cause
transcriptional changes,2,26 we treated the cells for 5 days to
effect epigenetic changes, which may take longer to establish. To
ensure that transcription of Lepr in the cell line was similar to Li-
and VPA-treated hippocampal tissues (Figure 3a), we first assessed
for Lepr expression. We observed a 32.6% increase in Lepr for Li-
treated cells (P= 0.013) and a 127.4% increase for VPA-treated cells
(P= 0.008; Figure 3b). We next performed chromatin immunopre-
cipitation (ChIP) assays using antibodies against acetylated lysines-
9,14 (Ac-K9,14-H3), trimethylated lysine-4 residue (3Me-K4-H3) and
trimethylated lysine-27 residue (3Me-K27-H3) of histone H3. Both
Ac-H3 and 3Me-K4-H3 are modifications associated with euchro-
matin, where the ‘open’ histone conformation promotes gene
transcription by increasing accessibility of its DNA to transcription
factors. On the other hand, 3Me-K27-H3 is a modification
associated with heterochromatin, or ‘closed’ histone conforma-
tion, and promotes gene repression or silencing. Genes that lose
trimethylation of K27-H3 can become transcriptionally active by
‘derepression.’32 We used the following antibodies: Ac-H3 for
assessing VPA and Li action on histones; 3Me-K4-H3 for promoter
activation; and 3Me-K27-H3 for measuring derepression of genes,
such as those of the WNT pathway.33

qPCR against the Lepr promoter in ChIP samples revealed
robust enrichment of the promoter with Ac-H3 and 3Me-K4-H3 in
VPA-treated cells (Figure 3c). Association of the promoter with
acetylated histone H3 supports previous work demonstrating VPA
inhibition of histone deacetylase activity.9 In addition, these 3Me-
K4-H3 ChIP results are consistent with association of lysine-4
methylation to gene promoters and with a previous study linking
lysine-4 methylation with VPA.34 Although we observed no
significant differences in enrichment of the promoter with the
above two histone modifications in Li-treated samples, we did
observe a marked reduction in representation of the region with

Table 1. Genes affected by VPA or Li

Gene Probe set Fold change P-value Q-value

Upregulated by VPA
Slc16a10 6260374 2.1 7.9 × 10− 12 7.5 × 10− 6

Hmgcs2 6171598 2.6 1.7 × 10− 11 7.5 × 10− 6

Peci 6498071 1.7 2.4 × 10− 10 3.0 × 10− 5

Cox6b2 5892608 2.1 3.2 × 10− 10 3.0 × 10− 5

Ptgr1 5974336 2.5 6.5 × 10− 9 2.1 × 10− 4

Lrrc9 6042599 2.0 1.1 × 10− 8 2.9 × 10− 4

Upregulated by Li
Hba-a2 6227287 1.8 1.2 × 10− 6 0.05
H2-Ea 5929473 1.7 6.2 × 10− 5 0.30
RGD1563741 6192899 2.5 6.3 × 10− 5 0.30
Plg 5919218 1.8 6.7 × 10− 5 0.31
LOC100134871 5729215 1.8 8.1 × 10− 5 0.34
Cd93 5784046 1.7 8.2 × 10− 5 0.34

Downregulated by VPA
Plec1 6654647 0.61 2.2 × 10− 5 0.02
LOC296111 5971506 0.56 1.8 × 10− 4 0.07
Htra4 6634189 0.48 2.6 × 10− 4 0.09
Vom2r72 6005833 0.59 4.7 × 10− 4 0.12
RGD1560217 6234656 0.56 5.2 × 10− 4 0.13
Mcemp1 6674114 0.54 5.3 × 10− 4 0.13

Downregulated by Li
Ebf2 5711926 0.58 1.3 × 10− 4 0.39
RGD1562811 5887714 0.59 2.6 × 10− 4 0.49
Klhl14 6518251 0.47 5.2 × 10− 4 0.57
RGD1566226 6210060 0.59 7.5 × 10− 4 0.62
Nsun2 6531875 0.57 7.9 × 10− 4 0.63
Agmat 5728878 0.57 0.001 0.67

Abbreviations: Li, lithium; VPA, valproic acid.

Table 2. Expression microarray prediction and qPCR validation

Genes Array
fold

change

Array P-value qPCR fold
change

qPCR P-value

Li VPA Li VPA Li VPA Li VPA

Akt1 0.6 0.6 0.002 0.004 0.8 0.8 0.02 0.03
Bace2 1.8 1.7 0.001 0.002 1.1 1.5 0.6 0.02
Dnah11 1.8 1.7 0.03 0.002 2.6 3.0 0.03 0.002
Glra1 1.7 1.6 0.007 0.03 1.3 1.7 0.3 0.02
Gulp1 1.7 2.4 0.005 4.4 × 10− 5 1.3 2.1 0.05 0.002
Kcnj13 1.9 2.8 0.05 0.01 2.3 105 0.03 0.002
Lepr 1.7 2.0 0.01 6.0 × 10− 5 4.2 5.1 0.05 0.01
Mmp2 1.6 2.3 0.004 3.5 × 10− 4 1.4 3.1 0.01 0.02
Ogn 1.7 2.4 0.002 0.007 4.2 6.4 0.003 0.04
Slc6a20 1.6 1.7 0.001 0.005 1.8 1.0 0.2 0.8

Abbreviations: Li, lithium; qPCR, quantitative PCR; VPA, valproic acid.
P-values r 0.05 are in bold.
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3Me-K27-H3 antibodies (Figure 3d). VPA treatment showed a
similar, although lesser, reduction.
We also performed qPCR against a non-promoter, intronic

region as a comparison. We observed a remarkably similar
enrichment pattern, compared with the Lepr promoter, with Ac-
H3 antibodies in VPA-treated samples (Figure 3e) and 3Me-K27-H3
antibodies in Li-treated samples (Figure 3f). Interestingly, we failed
to observe an enrichment of the intronic region with 3Me-K4-H3
antibodies, supporting the role of this mark as promoter
specific.35–37 Finally, we performed qPCR against the CpG island
that corresponds to the orthologous mouse promoter region, as
its high conservation (91.4%) to the mouse sequence may allow
this region to act as a regulator of transcription in the rat.
Nevertheless, it showed no significant differences in enrichment
with the three histone modifications when Li- and VPA-treated
samples were compared with the CTL group (Figure 3g).
Differences in histone patterns at the rat promoter and the
orthologous mouse promoter region are noteworthy, given the
similar DNAm patterns observed (Figure 2).

Validation of histone modifications in rat hippocampal tissues
Given the robust histone modifications in the cell line, we sought
to replicate this finding in rat hippocampal tissues. To this end, we
treated another cohort of rats with Li carbonate, VPA and control
chow for 30 days, after which the rats were euthanized for tissue
collection. Determination of drugs in the plasma resulted in similar
values as in the first cohort (Li: 1.1 ± 0.12 mM and VPA: 35.1 ± 4.1 -
μgml− 1 at week 4). We isolated chromatin from the hippocampal
tissues and performed the ChIP assay using the same antibodies
as in the cell line. We found remarkably similar histone
methylation patterns in the hippocampal tissues, with the
exception that enrichment of the Lepr promoter with 3-Me-K4-
H3 by VPA treatment was significantly lower in the hippocampus
(Figure 4a), and that no significant reduction of both promoter
and non-promoter regions was observed with 3-Me-K27-H3
antibodies in the VPA-treated samples (Figures 4b and d). In
addition, ChIP–qPCR (Supplementary Table 5) of the orthologous
mouse promoter region in the hippocampal tissues showed a
similar pattern to that observed in the cell line (Figure 4e).
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Finally, we examined the promoter regions of additional genes
and found similar histone modifications in the commonly
upregulated gene Ogn (Figure 4f), which has been implicated in
neurite outgrowth,38 and no changes in the commonly down-
regulated gene Akt1 (Figure 4g). Our results in the Akt1 locus are
consistent with its downregulation in Li- and VPA-treated animals
being a secondary effect of AKT1 protein phosphorylation by Li
and VPA rather than a direct drug response to Li or VPA.

DISCUSSION
Many genomic and pathway targets of Li and VPA have been
identified over the course of the time they have been used as
mood-stabilizing medications.12,39 In addition to AKT1 and GSK-3,
other notable targets include Bcl-2,40 Gst,41 FEZ142 and VEGFA,43

which have been identified in diverse tissue types using different
complementary DNA expression platforms. In particular, notable
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Figure 3. Treatment of the rat hippocampal cell line with lithium (Li) or valproic acid (VPA) led to changes in Lepr expression and histone
modifications. Quantitative PCR using mRNA extracted from the rat hippocampal tissues (N= 12 per group) was performed to validate the
array results (a). Increase in expression of Lepr was also observed in the rat hippocampal cell line (N= 3 per group) with 1 mM Li, 300 μM VPA
or vehicle solution (b). Chromatin immunoprecipitation was performed to test three regions that corresponded to the rat promoter (c, d),
intronic region (e, f) and the orthologous mouse promoter (g). Antibodies recognized trimethylated lysine-4 (3Me-K4), acetylated lysine-9,14
(Ac-K9,14) or trimethylated lysine-27 (3Me-K27) of histone H3. All data are presented as mean± s.e.m. *Po0.05 and **Po0.01. CTL, control.
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microarray studies using Li or VPA have identified a number of
potential targets related to the stress response, the phosphatidyl-
inositol cycle and synaptic transmission.44–47 However, there has
been very little overlap of target genes among these studies,
presumably owing to differences in animal species, developmen-
tal period, brain region and treatment duration, among other
reasons. Further, it is challenging to determine whether these

targets are associated with therapeutic response or represent
molecular effects that offer little benefit and cause unintended
metabolic consequences.11 Although some of these studies have
used microarrays to identify transcriptional actions of Li or
VPA,45,46 none, to our knowledge, have pursued a common
transcriptomic approach combined with validation by qPCR and
assessment of epigenetic regulation in vivo. To identify potential
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therapeutic targets, we hypothesized that there are common
transcriptomic targets of Li and VPA in the rat hippocampus, with
the presumption that those commonly regulated are more likely
to be relevant for therapeutic response. Further, we focused on
the hippocampus, as imaging,48–52 postmortem53–55 and
pharmacological52,56–58 evidence support its relevance for mood
stabilizer studies.
We used the Affymetrix exon microarray platform and identified

40 genes commonly regulated by both drugs. Although many of
the genes did not have known associations with BPD, Li or VPA,
we selected and were able to validate by qPCR expression two
genes that were previously shown to be involved in Li and VPA
response (Akt1 and Mmp2).3,8,10 We further validated genes with
other known relationships to neuropsychiatric processes including
processing of amyloid-β precursor proteins (Bace2 and Gulp1),59–61

haloperidol exposure (Glra1),62 metabolism (Lepr) and epilepsy
(Kcnj13).63 Of these genes, we were particularly interested in Lepr
owing to its potential additional role in regulation of mood and
anxiety. Besides having a role as a satiety hormone, leptin
signaling has been implicated in depression and antidepressant
response in humans,29,30 and neurogenesis in an animal model of
stress.27 In particular, Lepr deletion caused depression-like and
anxiogenic behaviors and resistance to antidepressant-induced
behaviors in animals.28,31,64 It remains to be seen to what extent
leptin signaling in the brain may have a role in BPD. Only a few
studies have been done on leptin signaling in BPD, and these have
examined serum leptin levels primarily in the context of Li- or
antipsychotic-induced weight gain.65–70 Results have been mixed,
with many reporting an increase in weight gain and plasma leptin
levels with Li,65 VPA71 and antipsychotics,66,68 and others
reporting no significant change between BPD subjects and
controls.67,69,70 To our knowledge, no human studies have
examined how Li and VPA may affect leptin signaling in the brain.
To identify the underlying mechanism of gene regulation by

chronic exposure to Li and VPA, we interrogated DNAm levels of
several potential regulatory regions, such as the Lepr promoter,
CpG island ‘shores’ and three conserved GC-rich sequences.
Although little change was observed in DNAm, there were
significant changes in specific modifications of histone H3. VPA-
mediated inhibition of HDACs and its effect on histone H3
acetylation is a well-established finding. On the other hand,
reduction of the heterochromatic mark lysine-27 (K27) trimethyla-
tion of histone H3 constitutes a novel mechanism of transcrip-
tional derepression for Li. It is unclear at this time whether both
mood stabilizers can cause the observed loss of K27 trimethylation
by inhibition of EZH2, the primary histone methyltransferase for
H3K27 methylation. Intriguingly, EZH2 is phosphorylated and its
activity is suppressed by AKT1.32 It is possible that the effect of Li
on H3K27 methylation is mediated via AKT1 phosphorylation.2 In
fact, a similar reduction, albeit to a lesser degree, of K27
trimethylation was observed with VPA treatment, which has also
been shown to cause phosphorylation of AKT1. In addition, it is
unknown whether Lepr or any of the other identified genes is a
target of the WNT pathway. Further, we do not know how much of
the observed epigenetic effects from Li and VPA are from binding
of specific transcription factors to the cis-promoter elements.
Although bioinformatic analyses have identified putative TCF3/
LEF1 binding sites scattered across the Lepr locus, no in vitro or
in vivo experiments have been performed. Additional work is
necessary to clearly establish EZH2 as a potential target of these
mood stabilizers and to implicate the WNT pathway in regulation
of the common target genes.
The current study has several limitations. First, we chronically

treated inbred, unperturbed rats with Li and VPA. Common targets
were identified in the context of normal physiological conditions,
which might have precluded those that compensate for a genetic
lesion or restore molecular and behavioral deficits caused by
adverse conditions, for example, stress exposure. As such, our data

implicate an interesting gene in drug response, but do not directly
demonstrate a role for leptin signaling in mood stabilization. In
fact, similar epigenetic changes were observed with the gene that
encodes osteoglycin (Ogn), a proteoglycan studied in the context
of ectopic bone formation that has recently been implicated in
neurite outgrowth.38 Although leptin signaling is particularly
interesting in light of its association with anxiety and mood, it is
also quite possible that a relatively less studied gene such as Ogn
may be important for mood stabilization. Second, the Lepr
expression increase observed in the drug-exposed animals could
be due to metabolic consequences of the medications. However,
hippocampal Lepr levels are not believed to be associated with
metabolism, and the animals were pair-fed to minimize potential
confounding factors associated with differential caloric intake.
Further, our findings were replicated in the rat hippocampal cell
line, an in vitro model completely devoid of the physiological
context inherent in in vivomodels. Third, while we did not observe
DNAm changes in Lepr, these may exist elsewhere in the gene, as
potential methylation-sensitive regulatory elements may be
located outside of the candidate regions we examined. More
comprehensive genome-wide studies are necessary to adequately
address this.
Despite these limitations, our study demonstrates that Li and

VPA regulate leptin receptor expression through epigenetic
mechanisms. For Li, a pronounced reduction in H3K27 methyla-
tion was observed. The role of EZH2 in this process is unclear, as
its levels were not measured in this study. Additional studies are
needed to more carefully characterize this effect of Li and to
determine whether leptin signaling in brain may have a role in
BPD pathophysiology.
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