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Abstract

The clinical features of psoriasis, characterized by sharply demarcated scaly erythematous plaques, are typically so
distinctive that a diagnosis can easily be made on these grounds alone. However, there is great variability in treatment
response between individual patients, and this may reflect heterogeneity of inflammatory networks driving the disease. In
this study, whole-genome transcriptional profiling was used to characterize inflammatory and cytokine networks in 62
lesional skin samples obtained from patients with stable chronic plaque psoriasis. We were able to stratify lesions according
to their inflammatory gene expression signatures, identifying those associated with strong (37% of patients), moderate
(39%) and weak inflammatory infiltrates (24%). Additionally, we identified differences in cytokine signatures with
heightened cytokine-response patterns in one sub-group of lesions (IL-13-strong; 50%) and attenuation of these patterns in
a second sub-group (IL-13-weak; 50%). These sub-groups correlated with the composition of the inflammatory infiltrate, but
were only weakly associated with increased risk allele frequency at some psoriasis susceptibility loci (e.g., REL, TRAF3IP2 and
NOS2). Our findings highlight variable points in the inflammatory and cytokine networks known to drive chronic plaque
psoriasis. Such heterogeneous aspects may shape clinical course and treatment responses, and can provide avenues for
development of personalized treatments.
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Introduction

Psoriasis is a chronic inflammatory skin disease characterized by

marked proliferation of keratinocytes leading to pronounced

epidermal hyperplasia, elongation of rete ridges and hyperkera-

tosis. The most common form of psoriasis, chronic plaque psoriasis

(Psoriasis vulgaris), involves relatively stable occurrence and

progression of sharply demarcated lesions, usually on the trunk

and extremities, which share a combination of trademark

histological features, including tortuous and dilated dermal

capillaries, loss of the epidermal granular layer, and accumulation

of neutrophils beneath parakeratotic scale [1,2]. Severity and

progression of psoriasis, as well as its response to treatment, is

variable among patients [3–5]. This may reflect heterogeneity in

patient-specific inflammatory networks, although at present,

factors that account for variability in disease presentation,

progression and treatment response are not well understood [6,7].

The transcriptome of psoriasis lesions has been evaluated using

high-throughput methods, and in principle, such information

could provide an objective basis for identifying molecular sub-

types of psoriasis, while providing insight into factors that account

for variability among patients [8–15]. The most widely held model

of psoriasis pathogenesis proposes that keratinocyte hyper-

proliferation is triggered by cutaneous lymphocyte infiltration,

activation and differentiation of inflammatory cells, including T-

cells, macrophages, and dendritic cells, and that these events

generate a localized cytokine environment that both sustains and

reinforces the pathogenic cascade [16]. Key factors that underlie

this process, i.e., the presence of inflammatory cells and cytokines,

can be characterized and modeled by algorithms applied to

genome-wide expression patterns [13,17,18]. Objective and

biologically meaningful differentiation among individual patients

may therefore be achieved on the basis of functional genomic data

and development of computational approaches. Previous analyses

of the psoriasis transcriptome have identified genes differentially

expressed between lesional and non-lesional skin, leading to the

identification of numerous genes for which expression is robustly

associated with psoriatic lesions [8–15]. This analytical approach,

however, is implicitly oriented towards those features of genome-

wide expression profiles that exhibit least variability among

lesional skin samples from patients, filtering out heterogeneous

expression patterns and their inter-patient variability.

In this study, we have analyzed genome-wide expression

patterns in psoriasis from a new perspective, with the distinct

aim of characterizing heterogeneity among lesional skin samples in

terms of biologically meaningful patterns embedded within

transcriptome data. For this purpose, we utilized an algorithm

developed for the calculation of ‘‘inflammation profiles’’ from

microarray data, which aims to explain expression differences
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between lesional and non-lesional skin in terms of shifts in the

composition of cellular infiltrate [18]. In addition, sets of cytokine-

responsive transcripts, identified from experiments performed with

cultured keratinocytes, are used to analyze differences in cytokine

activity among psoriasis lesions [19]. Based on these patterns, we

characterize the spectrum of molecular phenotypes associated with

the clinical presentation of chronic plaque psoriasis. These

analytical methods can be readily applied on a larger scale, and

we anticipate that this will facilitate development of personalized

treatment regimes [6,20,21].

Results

Psoriasis lesions from 62 patients can be classified into
three sub-groups (weak, moderate and strong
inflammatory infiltrate signatures)

We evaluated genome-wide expression patterns in lesional (PP)

and non-lesional (PN) skin biopsies obtained from 62 patients with

chronic plaque psoriasis. For each of 54,675 probe sets (Affymetrix

Human Genome 133 Plus 2.0 array), we calculated the difference

in gene expression between paired PP and PN skin from individual

patients. We then calculated an ‘‘inflammation profile’’ for each

patient, based upon PP versus PN expression level differences for

‘‘signature transcripts’’ that are highly expressed within specific

cell types in skin or the immune system (Figures 1 and S1) [18].

Among the 62 patients, the most consistent feature was elevated

expression of keratinocyte-associated transcripts in PP skin

compared with PN skin (significant in 91.9% of subjects; see

Figures 1 and S1). Additionally, in PP skin from most subjects, we

noted elevated expression of transcripts associated with CD34+
cells (64.5%), CD4+ T-cells (58.1%), cd T-cells (56.5%) and CD3+
T-cells (56.5%) (Figures 1 and S1). These consistent features of

inflammation profiles correspond well with known histological

properties of psoriasis lesions [1], and we have used immunohis-

tochemistry to confirm the presence of these and other cell types in

PP samples (Figure S2). We did not detect statistically significant

outliers among the 62 subjects (Grubb’s test, P$0.45; Figure S3).

However, we noted substantial heterogeneity with respect to some

cell types (e.g., monocytes, macrophages and dendritic cells), with

significant patterns detected in only a fraction (,50%) of the

patient cohort (Figures 1 and S1).

The inflammatory signatures from each patient were further

analyzed by hierarchical cluster analysis. The clustering solution

suggested at least three sub-groups, including 23 patients with

strong inflammatory infiltrate signatures (blue labels; Figures 1, S1

and S4), 24 subjects with moderate signatures (red labels; Figures 1,

S1 and S4), and 15 subjects with weak signatures (green labels;

Figures 1, S1 and S4). The exact number of sub-groups detected

by this approach depends upon the ‘‘height’’ or inter-signature

distance at which the dendrogram tree is ‘‘cut’’ (Figures 1 and S1).

As a guide for choosing this height, we analyzed an independent

dataset from the study of Yao et al. [11], which consisted of PP and

PN expression profiles from 28 patients (Figure S5) [11]. These

data also suggested the presence of three patient sub-groupings

with characteristics resembling those of the strong, moderate and

weak inflammatory groups identified in our dataset of 62 patients.

This indicated that a three-group partitioning of inflammatory

patterns can be replicated in an external patient cohort, and along

these lines, we chose a dendrogram ‘‘cut’’ that yielded three sub-

groups (Figure S5).

The 23 patients with strong inflammatory signatures were

characterized by robust trends among cell types consistently

significant in all inflammation profiles (e.g., keratinocytes, cd T-

cells, CD4+ T-cells, CD3+ T-cells and CD34+ cells), but in

addition, exhibited strong trends with respect to NK-cells,

monocytes, macrophages, dendritic cells and bone-marrow

progenitor cells (Figures 1, S1 and S4). The 24 patients with

moderate inflammatory signatures, in contrast, exhibited weaker

trends with respect to this latter group of cell types (Figures 1, S1

and S4). There was a strong distinction between the 15 weak

inflammatory signatures and those from the other two groups

(Figures 1, S1 and S4). Among patients with weak signatures, even

the most consistent features among subjects were notably

attenuated (e.g., CD4+ T-cells, cd T-cells, NK-cells, CD34+ cells

and progenitor cells), and there was quantitatively depressed

elevation of transcripts associated with cell types from the

monocyte-macrophage and monocyte-DC lineages (Figures 1, S1

and S4).

Infiltrating immune cells drive keratinocyte responses in

psoriasis [1,22,23], but there was no strong tendency for weaker

inflammatory signatures to associate with attenuated keratinocyte

responses. However, the proportion of keratinocyte signature

transcripts elevated in PP samples relative to PN samples varied

from 64.3% (95% confidence interval: 61.3%–67.3%) to 94.0%

(92.5%–95.5%) (Figure S6A). Among CD4+ T-cell and DC-

associated transcripts, the proportion of PP-elevated transcripts

varied from 55% to 90%, with weak and moderately strong

inflammatory signatures mainly present in the lower tail of the

distribution (Figures S6B and S6C).

Psoriasis lesions from 62 patients can be classified into
two sub-groups (IL-13-strong and IL-13-weak) based
upon expression patterns of cytokine-responsive
transcripts

Dermal infiltration by inflammatory cells facilitates develop-

ment of a cytokine environment that reinforces inflammatory

cascades and contributes to keratinocyte hyper-proliferation [16].

This cytokine environment is one factor accounting for in vivo

transcriptome differences between lesional (PP) and non-lesional

(PN) skin samples obtained from a given patient [13,24].We

expected that the in vivo abundance and activity of cytokines would

be linked to characteristic gene expression responses, which could

be used as a transcriptional readout to infer upstream signaling

activity associated with individual cytokines (e.g., see algorithm

presented by Shimoni et al. [19]). We therefore analyzed PP versus

PN differences in terms of cytokine activity signatures, which were

calculated using cytokine-responsive transcripts identified from

cultured keratinocytes exposed to cytokines (Figures 2 and S7).

A total of 32 signatures were considered, where each signature

was based upon PP versus PN expression differences for the 1000

transcripts most strongly induced or repressed by a given cytokine

(Figures 2 and S7). For 14 of the 32 signatures, signature scores

among patients were significantly correlated with fold-change

estimates that reflect the PP vs. PN difference in steady state

mRNA level of the associated cytokine (Table S1). However,

trends associated with cytokine-encoding mRNA levels did not

always correspond with those discerned from cytokine-responsive

transcripts. IL-13-induced transcripts, for instance, were largely

decreased in PP skin of subjects for which expression of IL-13

mRNA was elevated (rs = 20.66); conversely, IL-13-repressed

transcripts were largely increased in PP skin from those subjects

with elevated IL-13 mRNA (rs = 0.67) (Table S1).

Transcripts induced or repressed by cytokines in vitro exhibited

clear directional trends with respect to expression level differences

between PP and PN samples (Figures 2 and S7). We identified

seven cytokines for which gene expression signatures were most

consistently associated with PP versus PN expression differences,
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including IL-1b, IL-17A, IL-19, IL-20, IL-22, IL-24 and IFN-c. In

each of these cases, for more than 85% of subjects, either cytokine-

induced transcripts were disproportionately elevated in PP relative

to paired PN samples, and/or cytokine-repressed transcripts were

disproportionately decreased in PP samples (Figures 2 and S7).

The IL-19-induced cytokine signature, for instance, was the most

Figure 1. Sub-division of psoriasis lesions into strong, moderate and weak inflammatory groups based on genome-wide
expression profiles. The heatmap displays intensity of inflammatory gene expression patterns in psoriatic plaques obtained from 62 subjects
(rows) with respect to 24 different cell types (columns; immunocytes and dermal cells). Strong inflammatory signatures are denoted by blue subject
labels (23/62 subjects), moderate signatures by red labels (24/62) and weak signatures by green labels (15/62). Lesional (PP) and non-lesional (PN) skin
from each subject was analyzed by microarray to identify PP-increased and PP-decreased transcripts. Chart colors denote the behavior of 1000
‘‘signature transcripts’’ associated with each cell population (see scale and Methods). Percentage values (bottom) denote the total fraction of subjects
with a significant bias towards PP-increased expression among signature transcripts (black dots). Subject labels include a patient identifier with sex
(M or F) and age. Asterisk symbols denote subjects with IL-13-weak gene expression signatures (see text and Figure 2). An expanded version of this
figure is provided as supplemental material (Figure S1).
doi:10.1371/journal.pone.0034594.g001
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consistent among subjects (Figures 2 and S7). Among the 1000

transcripts induced by IL-19 treatment in vitro, 75.8% were, on

average, elevated in lesional skin as compared to non-lesional skin,

and this percentage was significantly large in all but one patient

from the cohort (i.e., 98.4% of patients). These robust trends

related to IL-1b, IL-17A, IL-19, IL-20, IL-22, IL-24 and IFN-c
were replicated with respect to an independent dataset with 28

patients (Figure S8) [11].

Figure 2. Sub-division of psoriasis lesions into IL-13-strong and IL-13-weak groups based on genome-wide expression profiles. We
identified 32 sets of 1000 cytokine-responsive transcripts based upon in vitro exposure of keratinocytes to cytokines. For each set (columns) and
subject (rows), chart colors denote the ratio of PP-increased to PP-decreased transcripts (see scale and Methods). Up-triangles indicate significant bias
towards PP-increased expression (FDR-adjusted P,0.05 and ratio value .1.50). Down-triangles indicate significant bias towards PP-decreased
expression (FDR-adjusted P,0.05 and ratio value ,0.667). Percentage values (bottom) denote the total fraction of subjects with significant patterns
in either direction. Asterisk symbols identify subjects associated with the IL-13-weak group (bottom of dendrogram; 31/62 subjects). All other
subjects are associated with IL-13-strong patterns (top of dendrogram; 31/62 subjects). Subject label colors are consistent with those in Figure 1
(strong, moderate and weak inflammatory groups). An expanded version of this figure is provided as supplemental material (Figure S7).
doi:10.1371/journal.pone.0034594.g002
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Only a fraction of cytokine activity signatures followed

consistent trends among subjects. We clustered cytokine signatures

using hierarchical methods and identified two patient sub-groups

(Figures 2, S7 and S9). One sub-group included 31 subjects and

exhibited an IL-13-strong pattern, with consistent expression level

differences (PP versus PN) among transcripts responsive to

keratinocyte treatment with IL-13 (also IFN-a, TNF, IL1-a, IL-

17A, and IFN-c; see Figures 2 and S7, upper branch of

dendrogram, no asterisk; Figure S9). The other sub-group

included 31 subjects with an IL-13-weak pattern (along with

weaker IL1-a, IL-17A, and IFN-c responses) and attenuation of

transcriptional response patterns associated with these cytokines

(Figures 2, S7 and S9). Three of the 62 subjects were identified as

outliers (i.e., 4284, 4697 and 4163; Grubb’s test, P = 1.95610212)

(Figure S10), but each of these tended to follow an IL-13-strong

pattern (Figures 2, S7 and S9). Analysis of an independent dataset

identified similar trends with respect to IL-13, with 21 subjects

approximating the IL-13-weak pattern and 7 approximating the

IL-13-strong pattern (Figure S8). However, the IL-13-related

patterns were not as consistently linked with corresponding trends

for other cytokines (e.g., IFN-a, TNF, IL1-a, IL-17A, and IFN-c),

and the clustering pattern did not identify two patient sub-groups

as shown in Figures 2 and S7.

Local accumulation of key cytokines is both a driver and

consequence of inflammatory events, and this connection between

cytokine and inflammatory networks was discernible from our

analysis (Figures 3 and 4). The behavior of IL-13-repressed

transcripts, for instance, was the most variable among the 62

patients (Figure 3A). In one extreme case, only 17.6% (15.2%–

20.0%) of IL-13-repressed transcripts were elevated in lesional skin

(subject 4284; Figure 3A), and yet at the opposite extreme, 86.8%

(84.7%–88.9%) of IL-13-repressed transcripts were elevated in

lesional skin from another patient (subject 4177; Figure 3A). This

latter type of pattern was closely associated with weak inflamma-

tory signatures (Figure 3A). A comparable trend also emerged

among cytokine-induced transcripts (e.g., IFN-a-, TNF-a-, IL1-a-,

IL17A- and IFN-c-induced), with subjects assigned to weak/

moderate inflammatory sub-groups exhibiting the weakest eleva-

tion of cytokine-induced transcripts in lesional skin samples

(Figures 3B, 3C, 4A–4C). To further assess inflammatory-cytokine

relationships, we scanned all 1312 two-way combinations between

gene expression signatures associated with the 41 cell types and

signatures associated with the 32 sets of cytokine-responsive

transcripts. This identified 949 cases in which there was significant

correlation between an inflammatory and cytokine signature

(Spearman rank correlation, n = 62 subjects; P,0.05; Figure S11).

For example, subjects with elevated expression of TNF-induced

transcripts in PP skin also tended to have elevated expression of

dendritic cell-associated transcripts in PP skin (rs = 0.75,

P = 1.92610212; Figure S12A). Likewise, subjects with decreased

expression of TNF-repressed transcripts in PP skin tended to have

increased expression of monocyte-associated transcripts in PP skin

(rs = 20.57, P = 1.2461026; Figure S12B).

Heightened inflammatory and cytokine signatures are
only weakly associated with increased psoriasis
susceptibility loci risk allele frequency (REL, TRAF3IP2,
NOS2 and FBXL19; n = 62 patients)

Our results show that psoriasis lesions can be assigned to sub-

groups based upon the inflammatory infiltrate or cytokine activity

signatures embedded within genome-wide expression profiles (see

Table S2 summary). We evaluated whether abundance of psoriasis

risk alleles differed between patients assigned to these sub-groups

(Figures S13 and S14). Risk alleles for two single nucleotide

polymorphism (SNP) markers (rs13017599/REL and rs842636/

REL) were more frequent among the 23 subjects belonging to the

strong inflammatory signature group, as compared to the 15

subjects belonging to either the moderate or weak inflammatory

group (Cliff’s delta = 0.37; P,0.039; FDR-adjusted P = 0.46;

Figure S13). However, one SNP marker followed the opposite

trend (rs610604/TNFAIP3), with elevated risk allele burden

among subjects assigned to the weak inflammatory sub-group

(delta = 20.382; P = 0.017; FDR-adjusted P = 0.46; Figure S13). A

cumulative risk score was calculated by fitting a logistic regression

model to risk allele burden scores across 44 psoriasis susceptibility

loci (see values in right margin of Figure S13). On average, this

cumulative genetic risk score was lower among subjects assigned to

the strong inflammatory group, but this difference was of threshold

significance (54.562.4 versus 62.463.4; P = 0.063, Wilcoxon

rank-sum test; P = 0.067, two-tailed t-test).

These analyses were repeated with respect to the IL-13-weak

(n = 31) and IL-13-strong (n = 31) sub-groups (Figure S14). We

identified three loci for which risk alleles were more frequent in IL-

13-strong subjects, including rs13210247/TRAF3IP2 (Cliff’s del-

ta = 20.226; P = 0.012; FDR-adjusted P = 0.363), rs4795067/

NOS2 (Cliff’s delta = 20.302, P = 0.025, FDR-adjusted P = 0.363)

and rs12924903/FBXL19 (Cliff’s delta = 20.289; P = 0.029;

FDR-adjusted P = 0.363) (Figure S14). However, with respect to

two other psoriasis susceptibility loci (rs1008953/SDC4 and

rs2082412/IL12B), risk alleles were enriched in subjects with IL-

13-weak patterns (Cliff’s delta $0.25; P#0.045; FDR-adjusted

P#0.40) (Figure S14). On average, subjects associated with IL-13-

strong and IL-13-weak patterns had similar cumulative genetic risk

scores (59.162.7 versus 58.762.3; P = 0.91; two-tailed t-test).

Discussion

Treatment protocols for chronic plaque psoriasis do not, at

present, draw upon patient-specific genomic data, and there is

limited basis for predicting patient responses to systemic therapies.

Based upon transcriptome data from 62 patients, we have shown

that 24% of lesional skin samples are associated with a weakened

inflammatory infiltrate signature, suggestive of decreased infiltra-

tion primarily by macrophages and dendritic cells along with

monocytes, T-cells and NK cells. Furthermore, half of lesional

samples exhibit an ‘‘IL-13-weak’’ signature that is broadly

consistent with localized attenuation of the cytokine network.

20% of lesions, moreover, were associated with both groups, with

combined diminution of inflammatory and cytokine signatures

(e.g., see subjects 4177, 4165, 4089, 3690 and 4162 in Figures 1

and 2). Psoriasis lesions, therefore, may look very similar clinically,

with their hallmark features, and likewise, standard immunohis-

tochemistry may not uncover distinctions between lesional skin

samples. We have shown, however, that high dimensional

transcriptome data can be exploited to effectively uncover a level

of ‘‘hidden heterogeneity’’, which has not been previously

described for chronic plaque psoriasis. This provides a new

method for stratifying lesional samples according to inflammatory

and cytokine activity, which can be developed further to provide a

bona fide clinical application for patient-specific transcriptome data,

with the aim of predicting patient responses to treatment.

Psoriasis plaque formation is very complex and incompletely

understood. It involves an interaction between inflammatory and

resident tissue cells with both positive and negative feedback

cycles, primarily mediated by various growth factors and cytokines

[1,23]. Interactions between T-cells, dendritic cells, macrophages

and keratinocytes appear to play a key role, particularly through

Heterogeneity in Chronic Plaque Psoriasis
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the production of TNF-a, IFN-c and IL-17 [1,22,24,25]. This

model has guided development of often effective therapies that

block interactions between T-cells and antigen presenting cells,

along with anti-cytokine treatments, such as anti-TNF and anti-

p40 (ustekinumab) [23]. However, short-term (10–12 weeks)

response rates to these therapies vary from 50–80% [26],

Figure 3. Distribution of IL-13, IFN-a and TNF gene expression signatures among lesional skin samples from 62 patients. We
identified sets of 1000 transcripts that were (A) repressed by IL-13 treatment of cultured keratinocytes, (B) induced by IFN-a treatment of
keratinocytes and (C) induced by TNF treatment of keratinocytes. For each set and patient, we calculated the percentage of transcripts elevated in
lesional (PP) samples as compared to paired non-lesional (PN) samples. In (A)–(C), subjects are ordered according to the estimated proportion of
cytokine-responsive transcripts elevated in PP skin relative to PN skin. Yellow boxes outline a 95% confidence interval for this proportion. Label colors
are consistent with those in Figure 1 (strong, moderate or weak inflammatory groups). Asterisk symbols identify subjects with IL-13-weak patterns
(Figure 2).
doi:10.1371/journal.pone.0034594.g003
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prompting the question of whether a ‘‘one-size-fits-all’’ pathogenic

model will be sufficient for understanding the complete spectrum

of chronic plaque psoriasis. In our cohort of 62 subjects, a

significant TNF cytokine signature was detected in only 18

patients (29%) (Figures 2 and S7). Moreover, among 1000

transcripts induced by TNF in cultured keratinocytes, the

proportion of such transcripts elevated in lesional skin varied

from 43.4% (subject 4165; 95% CI: 40.3–45%) to 75.3% (subject

4284; 95% CI: 72.6%–78.0%) (Figure 3C). Subjects exhibiting the

weakest TNF signatures were associated with the IL-13-weak

Figure 4. Distribution of IL1-a, IL-17A and IFN-c gene expression signatures among lesional skin samples from 62 patients. We
identified three sets of 1000 transcripts that were (A) induced by IL1-a treatment of cultured keratinocytes, (B) induced by IL-17A treatment of
keratinocytes and (C) induced by IFN-c treatment of keratinocytes. For each set and patient, we calculated the percentage of transcripts elevated in
lesional (PP) samples as compared to paired non-lesional (PN) samples. In (A)–(C), subjects are ordered according to the estimated proportion of
cytokine-responsive transcripts elevated in PP skin relative to PN skin (as described in the Figure 3 legend).
doi:10.1371/journal.pone.0034594.g004

Heterogeneity in Chronic Plaque Psoriasis
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cytokine group, consistent with a broader attenuation of the

cytokine network within this group that is not necessarily limited to

the TNF cytokine alone (Figure 3C). This suggests that in many

patients, absence of a strong TNF signature may not reflect

reduced abundance of TNF per se, but rather an overall

attenuation of amplifying effects that other cytokines have on the

sensitivity of resident cells to TNF signals [24]. More work is

needed to determine whether such subjects are particularly non-

responsive or apt to develop worsened disease status upon

treatment with anti-TNF treatments [3,4].

We noted strong variability with respect to the behavior of IL-

13-responsive transcripts in lesional skin samples (Figure 3A), and

overall, IL-13-responsive transcripts best differentiated the two

main groups of cytokine signatures in our cohort (Figure 2). IL-13

is a Th2-type cytokine produced by activated T-cells, which can

have anti-inflammatory effects in certain cell types [27], but which

also stimulates IL-6 production in cultured keratinocytes [28]. The

role of IL-13 in the initiation or maintenance of psoriasis lesions is

not yet clear. Initial studies showed that IL-13 mRNA levels do not

differ significantly between lesional and non-lesional skin samples

from psoriasis patients [29,30]. Subsequent studies confirmed this

result, but also showed that mRNA encoding the a1 chain of the

IL-13 receptor is over-expressed in lesional skin relative to normal

skin from healthy controls [31], and further demonstrated that IL-

13 is elevated in synovial fluid of patients with psoriatic arthritis

[32]. Moreover, a large genome-wide association study, including

3523 cutaneous-only psoriasis cases, 1755 psoriatic arthritis cases,

and 5942 unaffected controls, reported that both cutaneous-only

psoriasis and psoriatic arthritis were associated with an exonic IL-

13 locus on chromosome 5q31 (rs20541) [33]; however, recent

analyses suggest that this association is stronger with respect to

psoriatic arthritis, or even specific to psoriatic arthritis with no

significant association to cutaneous-only psoriasis [34,35].

We have identified a range of inflammatory and cytokine

activity phenotypes associated with the clinical presentation of

chronic plaque psoriasis. Factors that account for this heteroge-

neity, however, are not completely understood [6,7]. Potentially,

some heterogeneity we identified may reflect distinct developmen-

tal stages of psoriasis lesions, with some lesions biopsied during an

early initiation stage and others biopsied at a late resolving stage

[1,23]. One report, for instance, has commented that intensity of

immunohistochemical IL-13Ra1 staining tends to be stronger in

psoriasis lesions that are larger in size [31], which potentially, may

reflect differential activation of IL-13-sensitive pathways across

stages of plaque development. In addition, the range of molecular

phenotypes we observed may be associated with the anatomic

region from which lesional biopsies were obtained (e.g., abdomen

versus arms), thickness of individual plaques, or the specific region

of a plaque that is biopsied (e.g., edge versus center). More

extensive studies will thus be necessary to determine whether

variability between patients, as documented by our analysis, is in

excess of the intra-individual variation attributable to these

sources, and more generally to assess how well a single biopsy

can represent the individual patient. There is, however, ample

evidence to support the genetic basis of psoriasis, along with

marked clinical disparities among patients in terms of severity,

clinical course and treatment responses [3–7]. Despite the need for

further data, therefore, we expect that patient-specific factors at

least partially contribute to the range of molecular phenotypes

observed in psoriasis lesions. These factors may relate to the

unique genetic characteristics of individual patients, but may also

stem from other (non-genetic) sources of variation influencing

systemic or local intensity of inflammatory and cytokine responses,

such as body mass index or smoking history [36,37].

We thus anticipate that methods developed in this study can, in

further work, be applied to larger datasets to provide a more fine-

scale characterization of heterogeneity within patient cohorts, with

the aim of better pinpointing the specific inflammatory and

cytokine factors that drive and maintain disease states in specific

patient cohorts. Additionally, it will be of interest to determine

whether, in larger patient samples, heterogeneity of inflammatory

and cytokine gene expression patterns is significantly correlated

with response patterns of patients to conservative or biologic

therapies, since this would facilitate proactive disease management

in clinical settings and better targeting of therapies to the unique

characteristics of individual patients. Future work in this direction

can provide insights into how patient-specific genetic and

environmental factors combine to shape disease mechanisms that

underlie this inflammatory skin disorder.

Materials and Methods

Ethics statement
All procedures were conducted according to the Declaration of

Helsinki principles. Informed written consent was obtained from

human subjects under protocols approved by the University of

Michigan institutional review board (HUM00037994).

Patient cohort and sample collection
Sample collection and processing methods followed in this study

have been summarized in a previous report [12]. A total of 62

patients were included in the main cohort (30 males and 32

females), where each patient had one or more psoriasis plaques not

limited to the scalp area. For cases in which only one plaque was

present, a patient was admitted when that plaque occupied more

than 1% of the body surface area. 6 mm punch biopsies of lesional

(PP) and non-lesional (PN) regions were obtained from each

patient under local anesthesia, with all non-lesional biopsies

obtained from the buttocks and at least 10 cm away from the

nearest active psoriasis plaque. For lesional samples, biopsies were

preferentially taken near the central region of active plaques,

except in cases where the center was poorly defined due to an

irregular boundary. Regions near the edge of individual plaques

were avoided to ensure that uninvolved skin was not included

within the lesional sample. We utilized non-lesional PN samples

from psoriasis patients as controls for identifying transcripts with

increased or decreased expression in lesional skin. This approach

provides a matched non-lesional sample for each psoriasis patient,

which we have used to control for variation with respect to patient-

specific factors (e.g., age, sex, gender, etc.). We note, however, that

gene expression patterns associated with uninvolved skin from

psoriasis patients are expected to differ from those of normal skin

from healthy individuals without psoriasis [12].

Among all 62 patients, the average total body surface area

covered with psoriasis lesions was 14.2%61.7% (minimum: 1%;

maximum 62%; including palms, head, limbs and trunk). Average

surface area did not differ significantly among those with weak,

moderate and strong inflammatory patterns (P = 0.96, ANOVA),

and likewise, the average surface area did not differ among those

with IL-13-weak and IL-13-strong cytokine signatures (P = 0.56,

ANOVA). All subjects were between 21 and 69 years of age

(average: 49.261.5 years), and age did not differ significantly

between inflammatory or cytokine groups (P$0.36, ANOVA).

Patients were advised not to use systemic medications for at least 2

weeks prior to sample biopsies, and not to apply topical treatments

for at least 1 week prior to biopsies. Our cohort included patients

that had previously been treated with the systemic medications

Methotrexate (n = 8), Enbrel (n = 6), Cyclosporine (n = 2), Humira
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(n = 2), Soriatane (n = 2), Raptiva (n = 1), Remicade (n = 1), and/or

Stelara (n = 1). The expected half-life of each medication is less

than 2 weeks [38–45], and we noted few cases in which prior

treatment history was significantly associated with inflammatory or

cytokine signature scores (Figure S15).

Microarray analysis of gene expression
RNA was extracted from lesional (PP) and non-lesional (PN)

skin biopsies and processed according to standard Affymetrix

protocols [46]. Genome-wide expression in all samples was

evaluated using the Human Genome U133 2.0 oligonucleotide

array platform (54613 probe sets per array). Annotation for this

array platform was obtained from the NetAffx database (Release

31) [47]. The MIAME compliant raw data has been deposited in

the Gene Expression Omnibus database and is available under

accession GSE13355. We have also analyzed an independent

dataset available under accession GSE14905 (Figures S5 and S8)

[11], which included PP and PN hybridizations involving the same

Affymetrix Human Genome U133 2.0 array platform. The RMA

algorithm was used to calculate normalized expression scores for

each dataset and for data used to generate inflammation profiles

and cytokine activity signatures (see below) [48]. Normalized

expression scores for PP and PN samples available from

GSE13355 were adjusted for sex and batch effects prior to further

analyses. All analyses were conducted using the R statistical

software package (with extension packages: ClassDiscovery, fpc,

limma, mvoutlier, orddom, outliers, proxy, RColorBrewer,

RSQLite, sciplot) [49].

Calculation of inflammation profiles
Inflammation profiles (Figures 1, S1 and S5) were calculated

following the methodology described by Swindell et al. [18]. In

brief, we identified ‘‘signature transcripts’’ for each of 354 human

cell populations, based upon array samples obtained from the

Gene Expression Omnibus database (Human Genome U133 2.0

platform). A selected fraction of these cell populations was used to

generate the columns in Figures 1, S1 and S5 (e.g., blood-derived

CD4+ T-cells, B-cells, keratinocytes; selection criteria are

described below). Because most cell types shown in Figures 1, S1

and S5 represent infiltrating immune cells, we have referred to

these patterns as ‘‘inflammatory infiltrate signatures’’ and

‘‘inflammation profiles’’, consistent with terminology used previ-

ously [18]. We note, however, that some populations we

considered are in fact resident cell types (e.g., fibroblasts,

keratinocytes and epidermis) or sources of immune cells that

harbor or give rise to infiltrating cell types but do not directly

infiltrate lesional psoriatic skin (e.g., bone marrow).

Signature transcripts for each cell population were identified

based upon a two-sample comparison between replicate array

hybridizations involving a given cell population (n = 4.43 replicates

per cell population on average) and a reference set of 21 array

samples hybridized with cDNA generated from human skin tissue

(see GEO accession ids GSE7307, GSE6281, GSE16161,

GSE17539 for description of reference samples). To identify

signature transcripts highly expressed within each cell population

(relative to human skin), we first used empirical Bayes methods to

calculate p-values for all transcripts [50]. Transcripts were then

filtered to include only those with higher expression (on average) in

the cell population relative to normal skin, and from among this

filtered set of transcripts, the top 2000 probe sets with the most

significant p-values were isolated. These 2000 transcripts were

then ranked according to the fold-change estimate (i.e., average

expression in the cell population of interest/average expression in

reference skin samples), and the top 1000 of these transcripts (with

highest fold-change) were identified and designated as signature

transcripts for that cell population. Supplemental data include two

example lists of signature transcripts that were generated using this

methodology (associated with keratinocytes and blood-derived

CD4+ T-cells) (Tables S3 and S4).

Inflammation profiles were next calculated for individual

patients based upon the 1000 signature transcripts identified for

each of the 354 cell populations. For each patient and cell

population, we calculated the fraction of signature transcripts

elevated in lesional skin as compared to non-lesional skin (i.e., no.

PP-elevated signature transcripts/no. PP-decreased signature

transcripts). Significance of this ratio was evaluated according to

two criteria [18]. First, we tested whether each ratio was

significantly large based upon Fisher’s exact test (with p-values

adjusted among all 354 cell populations using the conservative

Holm method). Secondly, we tested whether a significantly large

ratio was obtained (Fisher’s exact test) based upon a subset of the

original 1000 probe sets, which had been filtered to exclude any

signature transcripts of more highly-ranked cell populations (with

larger overall PP-elevated/PP-decreased ratios). A ratio was

considered significant only if both criteria were met (i.e., black

dots in Figures 1, S1 and S5) [18].

Columns in Figures 1, S1 and S5 display results for only a subset

of the 354 cell populations we considered (due to space limitation).

For instance, with respect to the category ‘‘T-cells (Blood, CD3+)’’

(first column of Figures 1, S1 and S5), a total of six different cell

populations were evaluated. In this case, and similarly in other

cases, we calculated the average signature transcript ratio across all

patients for each of the six populations (R1, R2, R3, R4, R5 and R6)

as well as the grand average of these six ratio values (R*). If R* was

larger than 1, this indicated an overall trend towards large ratios

for this cell population category, and thus as a representative to

display we chose the cell population with the largest average

signature transcript ratio across patients (i.e., max(R1, R2… R6)). If

R* was less than 1, this indicated an overall trend towards smaller

ratios for this cell population category, and thus as a representative

to display we chose the cell population with the smallest average

signature transcript ratio across patients (i.e., min(R1, R2, …, R6)).

Cytokine activity signatures
Cytokine activity signatures (Figures 2, S7 and S8) were

generated based upon 32 sets of cytokine-responsive transcripts

identified from in vitro experiments in which keratinocytes had

been exposed to cytokines. In each experiment, genome-wide

expression in exposed and non-exposed keratinocytes was

evaluated using the Affymetrix Human Genome U133 2.0

platform. Signatures for TNF, IL-17A, IL-13, IL4, IFN-a and

IFN-c were generated based upon data from our laboratory.

These data will be submitted to Gene Expression Omnibus

following MIAME standards prior to publication of this

manuscript. All additional data was obtained from Gene

Expression Omnibus accessions GSE7216, GSE12109 and

GSE9120. For each signature, 1000 cytokine-induced or cyto-

kine-repressed transcripts were identified based upon the two-step

ranking procedure described above, where the top 2000

transcripts with lowest p-values were first identified (p-values were

generated based upon two-sample comparisons and empirical

Bayes methods), and then the top 1000 of these transcripts with the

highest (or lowest) fold-change ratio were selected and used to

generate cytokine-response signatures. With this procedure, ratios

(PP-increased/PP-decreased) represented by the color of each

square in Figures 2, S7 and S8 are based upon the same number of

transcripts (1000).
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Cluster analyses and outlier diagnostics
The inflammatory and cytokine profiles shown in Figures 1, S1,

S5, 2, S7 and S8 were clustered using the complete linkage

hierarchical approach and the Euclidean distance metric. Distance

between profiles was calculated from log2-transformed ratios (i.e.,

no. PP-increased transcripts/no. of PP-decreased transcripts),

which had been standardized for each inflammatory cell

population or cytokine signature to have a mean of zero and

standard deviation of one. In Figures S13 and S14, psoriasis

susceptibility loci were clustered according to the number of risk

alleles at each loci among the 62 patients. For these analyses,

clustering was performed using the complete linkage hierarchical

approach and the Manhattan distance metric. To determine

whether any subjects should be considered outliers with respect to

either inflammatory or cytokine profiles, we first summarized

patterns across cell types (or cytokines) by considering the first two

principle component axes (Figures S3 and S10). We then tested for

the presence of an outlier with respect to each axis individually

using Grubb’s test [51]. If this test provided evidence for at least

one outlier with respect to either axis, subjects were classified as

either outliers or non-outliers in the two dimensional space using a

multivariate outlier detection algorithm [52]. This approach

identified outliers in the bivariate space using the robust

Mahalanobis distance between each subject and the bivariate

centroid, such that subjects were classified as outliers if this

distance exceeded a critical value [52].

Supporting Information

Figure S1 Sub-division of psoriasis lesions into strong,
moderate and weak inflammatory groups based on
genome-wide expression profiles. This figure is an expand-

ed version of the heatmap shown in Figure 1. Columns from

Figure 1 are a subset of those displayed in Figure S1. In both

Figures 1 and S1, the clustering pattern among subjects is

identical, and has been generated with respect to the complete

range of cell types as shown in Figure S1.

(TIF)

Figure S2 Immunohistochemical detection of T-cell
subsets, antigen presenting cells and mononuclear cells
in lesional (PP) skin samples from three patients.
Lesional skin samples from three psoriasis patients were stained

using CD3 (T-cell), CD4 (helper T-cells/monocytes), CD56 (NK

cell/activated T-cells), CD68 (monocytes/macrophages), CD11c

(dendritic cells) and elastase (neutrophil) antibodies. The three

patients evaluated are also included as separate rows in the

dendrograms from Figures 1 and 2 (i.e., subjects 6690, 7450 and

8470). Top row, with H&E, shown in 106whereas rest of images

are shown in 206magnification.

(TIF)

Figure S3 No significant outliers with respect to two
principle components derived from inflammatory sig-
nature scores. Two principle components were extracted from

the full set of inflammatory signature scores calculated for each of

the 62 patients (see Figure S1). The first principle component

accounted for 51.2% of the total variance, while the second

accounted for 18.0% of the total variance. No significant outlier

was identified with respect to either the first or second principle

component (Grubb’s test: P = 0.45 and P = 0.86, respectively).

Additionally, no significant bivariate outlier was detected based

upon the robust Mahalanobis distance between each point and the

bivariate centroid [52].

(TIF)

Figure S4 Average gene expression profiles of psoriasis
lesions assigned to the strong, moderate and weak
inflammatory groups. 62 psoriasis lesions were assigned to

either strong (23/62), moderate (24/62) or weak (15/62)

inflammatory groups based upon signature transcripts of immune

cell populations and their altered expression in lesional (PP) versus

non-lesional (PN) skin (see Figures 1 and S1). For each immune

cell population and each subject, we calculated the number of

signature transcripts with higher expression in PP skin relative to

PN skin, divided by the number of signature transcripts with lower

expression in PP skin relative to PN skin. The average of this ratio

was calculated for each group of patients and is shown in the figure

for each cell population (vertical axis). Error bars correspond to

the standard error of the ratio value among all subjects assigned to

a given group. The average silhouette width was calculated for

each cell population with respect to the three groups of subjects

(i.e., strong, moderate and weak groups) (top margin). This is a

summary measure of intraclass cohesion and class separation, with

values ranging from 21 to 1 [53]. The measure approaches zero

or will be negative if subjects are not well grouped with respect to a

given cell population signature (i.e., there is large variation within

groups with little separation between groups). Conversely, positive

values suggest that subjects have been placed in an appropriate

group with respect to a given cell population signature (i.e., there is

little variation within groups and large separation between groups).

(TIF)

Figure S5 Analysis of an independent dataset supports
sub-division of psoriasis lesions into strong, moderate
and weak inflammatory patterns. Inflammation profiles

were calculated for 28 patients based on PP and PN samples from

a previously published dataset (GSE14905) [11]. Each patient was

assigned to one of three sub-groups, including strong (blue labels;

6/28 subjects), moderate (red labels; 16/28 subjects) and weak

inflammatory patterns (green labels; 6/28 subjects). Inflammation

profile calculations used to generate this figure are consistent with

those used to generate Figures 1 and S1, and are further described

in the Methods section.

(TIF)

Figure S6 Distribution of keratinocyte, CD4+ T-cell and
dendritic cell gene expression signatures among lesional
skin samples from 62 patients with chronic plaque
psoriasis. We identified sets of 1000 signature transcripts highly

expressed in (A) keratinocytes, (B) CD4+ T-cells and (C) dendritic

cells, respectively. For each set of 1000 transcripts and each of 62

patients, we calculated the percentage of signature transcripts

elevated in lesional (PP) samples as compared to paired non-

lesional (PN) samples. In (A)–(C), subjects have been ordered

according to the estimated percentage of signature transcripts

elevated in PP versus PN samples. Subject label colors are

consistent with those in Figures 1 and S1, and denote assignment

to strong (blue), moderate (red) or weak (green) inflammatory

groups. An asterisk symbol is used to denote subjects with IL-13-

weak gene expression signatures (see Figures 2 and S7). The yellow

box shown for each subject outlines the 95% confidence interval

for the estimated proportion of signature transcripts elevated in the

PP sample relative to the PN sample.

(TIF)

Figure S7 Sub-division of psoriasis lesions into IL-13-
strong and IL-13-weak groups based on genome-wide
expression profiles. This figure is an expanded version of the

heatmap shown in Figure 2. Columns from Figure 2 are a subset of

those displayed in Figure S7. In both Figures 2 and S7, the

clustering pattern among subjects is identical, and has been
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generated with respect to the complete range of cytokine

signatures as shown in Figure S7.

(TIF)

Figure S8 Analysis of an independent dataset identifies
IL-13-strong and IL-13-weak psoriasis lesions. Gene

expression signatures associated with the in vitro responses of

keratinocytes to cytokine exposure were analyzed for 28 patients

based on lesional (PP) and non-lesional (PN) samples from a

previously published dataset (GSE14905) [11]. Cytokine signatures

were calculated and patients were clustered using average linkage

and the Euclidean distance metric (see Figures 2 and S7). An

asterisk symbol is used to denote 21 subjects for which the IL-13

signature approximated the ‘‘IL-13-weak’’ pattern identified in

Figures 2 and S7. All other subjects approximated the ‘‘IL-13-

strong’’ pattern identified in Figures 2 and S7. Colors within the

chart correspond to the number of cytokine-responsive transcripts

with higher expression in PP versus PN skin, divided by the

number of cytokine-responsive transcripts with lower expression in

PP versus PN skin (see legend). For IL-13-weak lesions (asterisk

symbol), this ratio is lower among IL-13-induced transcripts, but

higher among IL-13-repressed transcripts. For IL-13-strong lesions

(no asterisk), this ratio is higher among IL-13-induced transcripts,

but lower among IL-13-repressed transcripts.

(TIF)

Figure S9 Average gene expression profiles of psoriasis
lesions assigned to IL-13-weak and IL-13-strong cytokine
groups. 62 psoriasis lesions were assigned to either IL-13-weak

(31/62) or IL-13-strong (31/62) groups based upon cytokine-

responsive transcripts and their altered expression in lesional (PP)

versus non-lesional (PN) skin (see Figures 2 and S7). For each

patient, we calculated the number of cytokine-responsive tran-

scripts with higher expression in PP skin relative to PN skin,

divided by the number of signature transcripts with lower

expression in PP skin relative to PN skin. The average of this

ratio was calculated for each group of patients and is shown in the

figure (vertical axis). Error bars correspond to the standard error of

the ratio value among all subjects within a given group. The

average silhouette width was calculated for each cell population

with respect to the two groups of subjects (i.e., IL-13-weak and IL-

13-strong groups) (top margin). This is a summary measure of

intraclass cohesion and class separation, with values ranging from

21 to 1 for each cytokine signature (see Figure S4 legend) [53].

(TIF)

Figure S10 Three significant outliers with respect to
two principle components derived from cytokine signa-
ture scores (Subjects 4284, 4697 and 4163). Two principle

components were extracted from full set of cytokine signature

scores calculated for each of the 62 patients (see Figure S7). The

first principle component accounted for 60.5% of the total

variance, while the second accounted for 14.9% of the total

variance. At least one significant outlier was present with respect to

the first principle component (Grubb’s test: P = 1.95610212), but

no outliers were detected with respect to the second principle

component (Grubb’s test: P = 0.07). Three significant bivariate

outliers were detected based upon the robust Mahalanobis

distance between each point and the bivariate centroid (i.e.,

subjects 4284, 4697 and 4163) [52].

(TIF)

Figure S11 Spearman correlation coefficients between
inflammatory and cytokine signature scores (n = 62
patients). We calculated inflammatory signature scores with

respect to 41 cell types (Figures 1 and S1) and cytokine signature

scores with respect to 32 sets of cytokine-responsive transcripts

(Figures 2 and S7). To assess the relationship between inflamma-

tion- and cytokine-associated patterns, we estimated the Spearman

rank correlation for all 1312 two-way combinations of inflamma-

tory and cytokine signature scores. For each pairing, red colors

denote cases in which subjects with increased expression of

cytokine-responsive transcripts (left margin) in PP skin also tend to

have increased expression of transcripts highly expressed in a given

inflammatory cell type (top margin). Conversely, green colors

denote cases in which subjects with increased expression of

cytokine-responsive transcripts (left margin) in PP skin also tend to

have decreased expression of transcripts highly expressed in a given

inflammatory cell type (top margin). As an example, Figure S12

shows two examples including one positive and one negative

correlation (i.e., TNF-induced signature versus infected dendritic

cell signature, rs = 0.75; TNF-repressed signature versus infected

monocyte signature, rs = 20.57). Cytokine and inflammatory

signature scores in each comparison were, if necessary, adjusted

such that each score was based upon a non-overlapping set of

transcripts (i.e., any shared transcripts were filtered out prior to

calculation of scores for each subject and estimation of the

correlation coefficient). Rows and columns of the heatmap have

been clustered using complete linkage and the Euclidean distance

metric. For each set of cytokine-responsive transcripts (i.e., each

row), the largest correlation is outlined in blue while the most

negative correlation is outlined in magenta (see legend).

(TIF)

Figure S12 Shifts in the expression of TNF-responsive
transcripts in PP skin (versus PN skin) co-occur with
shifts in the expression of transcripts that are highly
expressed in dendritic cells and monocytes (n = 62
subjects). We screened 1312 two-way combinations involving

inflammatory and cytokine signatures to determine which were

significantly associated among the 62 subjects included in our

cohort (Figure S11). With respect to TNF-induced transcripts, the

strongest positive association was identified with respect to the

signature calculated from transcripts with high expression in

infected dendritic cells (rs = 0.75, part A). With respect to TNF-

repressed transcripts, the strongest negative association was

identified with respect to the signature calculated from transcripts

with high expression in infected monocytes (rs = 20.57, part B). In

both (A) and (B), all 62 subjects included in the cohort are plotted

with respect to each cytokine and inflammatory signature. The

vertical axis indicates the proportion of TNF-responsive transcripts

elevated in PP (versus PN) skin from a given subject. The

horizontal axis denotes patterns associated with transcripts that

have high expression in (A) infected dendritic cells or (B) infected

monocytes, and corresponds to the proportion of such transcripts

elevated in PP (versus PN) skin from each subject. In both (A) and

(B), transcripts used to calculate the TNF signature for each

subject are distinct from those used to calculate the dendritic cell

(part A) or monocyte (part B) signature (i.e., any shared transcripts

were removed).

(TIF)

Figure S13 Frequency of risk alleles at 44 psoriasis
susceptibility loci in 62 patients clustered according to
inflammatory gene expression signatures. The 62 patients

included in our cohort were clustered according to inflammatory

gene expression signatures (see Figures 1 and S1; blue, red and

green labels correspond to strong, moderate and weak sub-groups,

respectively). Colors in the chart indicate whether subjects are

homozygous for psoriasis risk alleles (red), heterozygous (orange) or

non-carriers (grey), where each column corresponds to a different
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psoriasis susceptibility locus. Blank (white) regions represent cases

where data is not available. Susceptibility loci (columns) have been

clustered according to similarity across the 62 subjects (based on

the Manhattan distance metric). For each locus, we evaluated

whether risk alleles were more frequent in subjects associated with

strong inflammatory patterns (blue labels) relative to those

associated with weak inflammatory patterns (green labels).

Estimates of Cliff’s delta (D) are listed along the bottom margin

of the chart (21#D#1). Positive estimates (navy blue font)

indicate a higher risk allele frequency in subjects with strong

inflammatory patterns, and negative estimates (dark pink font)

indicate lower risk allele frequency in subjects with strong

inflammatory patterns. Significant estimates of D (P,0.05; prior

to FDR adjustment) are denoted by three asterisk symbols (***).

The right margin of the chart lists cumulative genetic risk scores

calculated for each subject. Cumulative genetic risk scores were

calculated by first fitting a logistic regression model, with risk allele

burden (0, 1 or 2) at the 44 loci as predictors. The model was fit

based upon marker data from an external training set of 2568

psoriasis cases and 2525 control subjects. This fitted logistic

regression model was then applied to genotype data from our 62

subjects to calculate the genetic-based probability that a subject is

a psoriasis case (though all 62 subjects are verified psoriasis cases).

Risk scores in the right margin can thus be interpreted as

probabilities, with larger values (.50) indicative of a genetic

profile more consistent with psoriasis cases (i.e., with respect to the

44 risk loci considered). For calculation of cumulative genetic risk

scores, missing data were imputed using the modal number of risk

alleles across all subjects for a given locus. Risk scores were not

calculated for subjects untyped at more than 15 loci.

(TIF)

Figure S14 Frequency of risk alleles at 44 psoriasis
susceptibility loci in 62 patients clustered according to
cytokine-specific gene expression signatures. The 62

patients included in our cohort were clustered according to gene

expression signatures representing the transcriptional response

patterns of cultured keratinocytes treated with cytokines (see

Figures 2 and S7; IL-13-weak subjects are denoted by an asterisk

symbol). The interpretation of heatmap colors and calculated

numerical values is consistent with Figure S13. However, in this

figure, estimates of Cliff’s delta (D) (21#D#1) (bottom margin)

were generated by testing whether risk allele frequency is elevated

in IL-13-weak subjects (asterisk symbols). Positive values of D (navy

blue) denote elevated risk allele frequency in subjects assigned to

the IL-13-weak group, while negative values denote decreased risk

allele frequency in subjects assigned to the IL-13-weak group.

Significant estimates of D (P,0.05; prior to FDR adjustment) are

indicated by three asterisk symbols (***). Cumulative genetic risk

scores calculated for each subject are listed in the right margin (see

Figure S13 legend for details).

(TIF)

Figure S15 Psoriasis treatment history and its relation-
ship with inflammatory and cytokine signatures. The 62

patients in our cohort were advised not to use systemic

medications for at least 2 weeks prior to sample biopsies, and

not to apply topical treatments for at least 1 week prior to biopsies.

Patients completed a questionnaire in which they listed all

therapies previously used to treat their condition. Ten prior

treatments were reported among the 62 patients (left margin in A

and B). For each treatment, a two-sample t-test was performed

with respect to each inflammatory (part A) or cytokine (part B)

signature in order to determine whether signature scores differed

significantly among the n subjects reporting a given treatment

history (compared with all other subjects that did not report the

same treatment history). Colors correspond to the value of the T

statistic generated from each two-sample t-test. Red colors denote

a trend towards elevated signature scores among the n subjects

reporting the treatment history listed in each row (see legend).

Green colors denote a trend towards decreased signature scores

among the n subjects reporting the treatment history listed in each

row (see legend). Filled triangles denote significant T statistics

based upon FDR-corrected p-values, while open triangles indicate

significant T statistics based upon raw p-values prior to multiple

test adjustment.

(TIF)

Table S1 Steady state mRNA levels of cytokines and
their association with cytokine signature scores calcu-
lated from sets of cytokine-responsive transcripts. We

identified 32 sets of 1000 cytokine-responsive transcripts in

cultured keratinocytes (i.e., cytokine-induced or cytokine-repressed

transcripts). For each set and each of 62 patients, we calculated a

cytokine signature score, equal to the number of transcripts (of

1000) with higher expression in PP skin relative to PN skin, divided

by the number of transcripts (of 1000) with lower expression in PP

skin relative to PN skin. Additionally, for each set and each

patient, we calculated the fold-change in steady state mRNA level

between PP and PN skin. This table lists correlations between

these fold-change estimates and cytokine signature scores across

the 62 patients.

(PDF)

Table S2 Classification of 62 psoriasis lesions based
upon genome-wide expression patterns. Psoriasis lesions

from 62 patients were assigned to strong, moderate or weak

inflammatory groups (Figures 1, S1 and S4), as well as to IL-13-

strong or IL-13-weak groups (Figures 2, S7 and S9). This table lists

the number of patients assigned to each of the inflammatory-

cytokine group combinations.

(PDF)

Table S3 Set of 1000 signature transcripts with high
expression in keratinocytes relative to normal skin.
Heatmaps shown in Figures 1, S1 and S5 are based upon the

expression patterns of cell type-specific ‘‘signature transcripts’’ in

lesional (PP) and non-lesional (PN) skin samples. This table

provides an example of the 1000 signature transcripts associated

with one cell type (keratinocytes).

(PDF)

Table S4 Set of 1000 signature transcripts with high
expression in (blood-derived) CD4+ T-cells relative to
normal skin. Heatmaps shown in Figures 1, S1 and S5 are

based upon the expression patterns of cell type-specific ‘‘signature

transcripts’’ in lesional (PP) and non-lesional (PN) skin samples.

This table provides an example of the 1000 signature transcripts

associated with one cell type (blood-derived CD4+ T-cells).

(PDF)
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