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Marine protected areas (MPAs) are recognized as highly effective tools for marine con-
servation. They may also play an important role in mitigating climate change. A variety
of climate change solutions are rooted in the ocean, centered primarily around “blue
carbon” and the capacity of marine life to sequester carbon dioxide (CO2) with some
potential to reduce emissions. However, the global potential of these solutions remains
misunderstood and untapped. Here, we analyze the potential impact on carbon removal
and emissions reduction of adopting six ocean-based solutions in MPAs: coastal wet-
lands protection, coastal wetlands restoration, macroalgae protection, macroalgae resto-
ration, seafloor protection, and seaweed farming. The carbon removal and avoided
emissions achieved by implementing these solutions globally through 2060 were esti-
mated using meta-analysis of existing studies. Applying all six ocean solutions under
global implementation scenarios yields total emissions reduction by 2060 of 16.2 ±
1.82 gigatonnes of carbon dioxide equivalent (GtCO2-eq) for the plausible scenario and
24.8 ± 2.46 GtCO2-eq for the ambitious scenario. That equates to around 2% of the
total carbon mitigation needed to meet the Paris Agreement goals of limiting global
warming to 2 °C by 2050. Around 70% of this reduction is attributable to carbon
removal and 30% to avoided emissions. Enhancing MPAs’ blue carbon potential could
be a key contributor to drawing down carbon and could provide many additional bene-
fits to the marine environment and human society, such as rebuilding biodiversity and
sustaining food production. However, more regional-scale studies are needed to inform
the best strategies for preserving and enhancing carbon removal in ocean sinks.
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Marine protected areas (MPAs) are highly effective tools for marine conservation (1).
Widely acknowledged benefits of MPAs include biodiversity conservation and protec-
tion from overfishing and habitat destruction (2, 3). The extent to which MPAs may
also address climate change is debated (4–7). Nevertheless, researchers and policy-
makers recognize that MPAs may have an important role in reducing carbon emissions
and increasing carbon sequestration (8–10).
Indisputably, the ocean is an important carbon sink that has already absorbed

around one-fourth of all human-generated CO2 emissions (11, 12). Many ocean-based
solutions to climate change center around the concept of “blue carbon,” referring to
the capacity of marine life to draw down CO2 from the atmosphere (13–15). Coastal
wetlands hold tremendous carbon stocks and have high rates of carbon sequestration
(16). While most blue carbon studies to date have focused on coastal wetland ecosys-
tems, subtidal macroalgae forests also may sequester large amounts of carbon. Wild
macroalgae take up an estimated 1.5 gigatonnes of carbon (GtC) per year in net pri-
mary production and facilitate the export and long-term sequestration of an estimated
0.17 GtC annually (17, 18). Macroalgae’s carbon sink potential magnifies when the
sequestration capacity from seaweed farming is added (17).
Marine ecosystems are experiencing degradation and decline worldwide. The estimated

annual loss of coastal wetlands globally is around 1 to 3%, resulting from ecosystem conver-
sion, modifications in terrestrial inputs, and climate change (19, 20). Macroalgae forests are
also declining globally at an average rate of 1.8% due to climate-related and anthropogenic
factors, such as harvesting, eutrophication, and pollution (21, 22). The loss of coastal wet-
lands and macroalgae forests limits their carbon sequestration potential and makes coastal
wetlands the source of greenhouse gas (GHG) emissions (23).
Additionally, recent global estimates show that the ocean is currently storing around

3,117 GtC in the top 1 m of sediment, much of it in Exclusive Economic Zones
(EEZs) that are subjected to high exploitation such as bottom-trawling fishery (10, 24).
The potential of blue carbon solutions to mitigate climate change, therefore, depends
on the fate of the sediments into which the biomass of these carbon sinks is exported
and gets stored in the form of organic carbon.

Significance

Marine conservation and the
establishment of marine
protected areas (MPAs) have
gained attention as ways to
protect and restore ecosystems
and rebuild fish populations. They
may also play an important role in
sequestering carbon and reducing
emissions from sources such as
habitat degradation.
Implementing six strategies for
enhancing blue carbon sinks,
including establishing MPAs to
protect and restore coastal
wetlands, macroalgae forests, and
seafloor sediments and expand
seaweed farming can not only
remove significant amounts of
carbon and avoid emissions but
also bring many more
environmental and human-related
benefits.
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Currently, MPAs cover 6.4% of the global ocean, with 2.7%
of the global ocean classified as fully protected (no-take) zones
(25). Calls to expand these areas are growing. Protecting 30%
of the ocean through MPAs could halt biodiversity loss and
deliver substantial carbon drawdown, food security, and other
economic benefits and could prevent the further loss of coastal
wetland ecosystems (9, 26, 27). Furthermore, there is evidence
that MPAs and management actions, such as protecting preda-
tors, minimizing kelp harvest, and reducing eutrophication due
to runoff, can improve macroalgae forests’ resistance and resil-
ience to the impacts of climate change (6, 28–30). Similar
cobenefits could play an important role in expanding regenera-
tive forms of ocean farming, namely seaweed farming. Finally,

establishing MPAs that prohibit destructive bottom trawling
can help protect seafloor habitats as well as the carbon stored in
the sediments.

Here, we analyze six ocean-based solutions to climate change,
as modeled under the Project Drawdown framework ( 31, 32)
to determine the potential climate benefit from expanding blue
carbon sinks through MPAs. The solutions are coastal wetlands
protection, coastal wetlands restoration, macroalgae protection,
macroalgae restoration, seafloor protection, and seaweed farm-
ing (Fig. 1 and Table 1). Project Drawdown’s models account
for carbon removal by sequestration of CO2 from the atmo-
sphere into plant biomass and sediment and avoided emissions
for a solution relative to a conventional practice. These practices
are assumed to require allocation of a specific type of ocean
area. The current and potential scenarios are therefore defined
in terms of Total Ocean Solution Area (TOA) or the ocean area
available for the solution (in millions of hectares; Fig. 2).
Impacts on atmospheric greenhouse gases were projected from
2018 to 2060 for three solution scenarios (low adoption, plausi-
ble, and ambitious) compared to a reference scenario (SI
Appendix, Fig. S1).

We provide evidence that enhanced ocean protection and
restoration focused on blue carbon habitats can achieve signifi-
cant carbon removal by enhancing carbon sequestration and
avoided carbon emissions. This study represents an advance-
ment from previous works because it develops and compares
alternative scenarios for a suite of ocean solutions to climate
change, including seafloor protection and macroalgae protec-
tion and restoration, which have not been included in previous
assessments (8). Some of the proposed solutions, such as resto-
ration and protection of coastal wetlands, benefit from exten-
sive past research related to their potential for carbon storage,

Fig. 1. TOA available for each solution presented with the global EEZ area.
Note that the TOA represents the maximum adoption potential for
solution, not the actual adoption. The actual adoption under plausible and
ambitious scenarios is presented in Fig. 3.

Table 1. List of ocean solutions to climate change modeled under this study with definitions and climate impact
mechanism assignments

Solution name Definition
Climate impact
mechanisms

Coastal wetlands
protection

The legal protection of carbon-rich mangroves, seagrasses, and salt marshes,
leading to reduced degradation rates and the safeguarding of carbon sinks. This
solution secures otherwise vulnerable coastal wetlands whose destruction would
be a source of greenhouse gasses.

Carbon avoided
emissions and
carbon
removal

Coastal wetlands
restoration

Any process that aims to return a coastal wetlands ecosystem to a preexisting
condition, whether or not it was pristine. This includes both natural restoration
and human-led recovery of carbon-rich mangroves, seagrasses, and salt
marshes. This solution recovers coastal wetlands ecosystems’ capacity as carbon
sinks.

Carbon removal

Macroalgae
protection

The legal protection of wild macroalgae forest ecosystems to secure and enhance
long-term sequestration of the carbon exported to the deep sea and/or stored
in the ocean shelves.

Carbon removal

Macroalgae
restoration

Processes or programs designed to return wild macroalgae forest ecosystems to a
previous state from a degraded condition in order to enhance long-term
sequestration of the carbon exported to the deep sea and/or stored in the
ocean shelves.

Carbon removal

Seafloor
protection

The legal protection of high in organic carbon seafloor sediments from disturbance
by bottom-trawling fishery, leading to reduced carbon emissions from disturbed
sediments.

Carbon avoided
emissions

Seaweed farming The culturing, cultivation, and harvesting of different macroalgae species in the
ocean area with the purpose of accounting for the long-term sequestration of
the carbon naturally exported to the deep sea and/or stored in the ocean
shelves (a significant proportion of carbon fixed by macroalgae is
photosynthetically released into the water, of which portion gets distributed
below the ocean mixing layer).

Carbon removal
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while others, such as macroalgae-related solutions, should be
treated with higher uncertainty.

Results

The avoided carbon emissions and carbon removal achieved by
enhancing the adoption of ocean protection, habitat restoration,
and seaweed farming globally over the coming decades were esti-
mated using meta-analysis of existing studies (Table 2). The col-
lected literature includes journal articles, working papers, and
professional reports. In total, 169 data points from 114 sources
were used (Table 2). Collected studies contain sufficient informa-
tion to be included in the statistical meta-analysis and are listed
in SI Appendix, section S5 with data quality assessment.
Three scenarios of MPA expansion were evaluated. The low

adoption scenario, defined by current trends for MPA establish-
ment, resulted in 10.3 million hectares (Mha) of additional
adoption of coastal wetlands protection, 40.5 Mha of macroal-
gae protection, and 62.9 Mha of seafloor protection (Fig. 3).
Under the plausible scenario, the solutions are adopted at an
ambitious but realistically vigorous rate, derived from the aver-
age of a few global projections; and under the ambitious sce-
nario, the adoption of solutions is increased to the high range
of the projections, thus representing an advancement of the
plausible scenario (SI Appendix, Table S2). The plausible sce-
nario resulted in 15.5 Mha of additional adoption of coastal
wetlands protection, 171.1 Mha of macroalgae protection, and
276.6 Mha of seafloor protection (Fig. 3). The ambitious sce-
nario resulted in 22.5 Mha of additional adoption of coastal
wetlands protection, 195.4 Mha of macroalgae protection, and
374.5 Mha of seafloor protection (Fig. 3).
The other solutions considered (the restoration solutions and

seaweed farming) have much less potential area of implementa-
tion. Under the low adoption scenario, coastal wetlands restora-
tion grew by 4.6 Mha, macroalgae restoration by 3.9 Mha, and
seaweed farming by 0.7 Mha. Under the plausible scenario,
coastal wetlands restoration grew by 6.1 Mha, macroalgae

restoration by 16.3 Mha, and seaweed farming by 13.4 Mha.
Under the ambitious scenario, coastal wetlands restoration
expanded by 7.2 Mha, macroalgae restoration by 28.9 Mha,
and seaweed farming by 25 Mha (Fig. 3).

The total area dedicated to all ocean solutions amounted to
122.9 Mha under the low adoption scenario, 502.9 Mha under
the plausible scenario, and 661.2 Mha under the ambitious
scenario. These represent 10%, 39%, and 51% of the TOA
evaluated, respectively.

Applying all six ocean solutions achieved a total carbon
reduction for 2018 to 2060 of 16.2 ± 1.82 gigatonnes of car-
bon dioxide equivalent (GtCO2-eq) for the plausible scenario,
with 67% of the emissions reduction coming from carbon
removal and 33% from avoided emissions. In the ambitious
scenario, 24.8 ± 2.46 GtCO2-eq were reduced, of which 70%
represents carbon removal and 30% represents avoided emis-
sions (Fig. 4). The low adoption scenario resulted in total car-
bon reduction of 3.9 ± 0.41 GtCO2-eq (Fig. 4). The solution
with the highest estimated total carbon removal potential is sea-
weed farming, while the solution with the lowest potential is
coastal wetlands restoration (Table 3).

The costs of the protection and restoration solutions are
assumed to be borne at the government level, and it is assumed
that seaweed farming requires private investment. The average
first costs for seaweed farming calculated within this study
amount to US$9,705 per hectare established per year (with a
range of US$3,387 to US$22,798), and the average annual
operating costs are US$11,585 per hectare per year (with a
range of US$1,847 to US$25,019). The net profit margin
amounts to US$12,892 per hectare per year (with a range of
US$1,450 to US$25,640).

Discussion

Highlighting the climate benefits obtained by protecting blue
carbon ecosystems may help strengthen the case for establishing
MPAs (32). By implementing ocean protections targeted to

Fig. 2. Schematic of ocean-based solutions to climate change. Solutions are oriented around the protection and restoration of blue carbon sinks as well as
the expansion of seaweed farming, and all could be implemented within MPAs. Solutions have been identified based on the scientific evidence for long-
term carbon removal and avoided emissions, availability of data, and adoption growth in different parts of the world.
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blue carbon sinks, we could achieve from 10.9 ± 0.13 to
17.4 ± 0.16 GtCO2-eq of carbon removal globally in around
40 y depending on the adoption scenario. In the same time-
frame, we could also avoid from 5.3 ± 1.8 to 7.4 ± 2.5
GtCO2-eq emissions depending on the adoption scenario.
Taken together, the potential climate impact stemming from
these blue carbon solutions is equivalent to the total emissions
of the country of Australia over 40 y (based on 2019 emissions
level). The estimated carbon removal potentials differ in terms
of uncertainty because carbon removal processes for coastal wet-
lands protection and restoration have been studied for many
years, while data regarding long-term carbon sequestration in
macroalgae forests are more limited. Subtracting the less certain
solutions (macroalgae protection/restoration and seaweed farming)

from the cumulative results reduces the total carbon removal
impact by 40% in around 40 y.

Taking advantage of MPAs’ potential as a climate solution
will require strategic design and restoration programs focused
on preserving and restoring coastal wetlands, macroalgae for-
ests, and seafloor disturbed by bottom-trawling habitats. The
estimated climate impact can be obtained by adopting 17 to
39% of TOA as MPAs by 2030 and reaching higher protection
targets by 2060 as well as by expanding the more regenerative
forms of seaweed farming (such as farming seaweed or seaweed
integrated with other species) from 0.19 to at least 17.5 Mha
globally by 2060 (Fig. 3). Regenerative seaweed farming does
not require any nutrient inputs in the production process so
relies on nutrients naturally occurring in the ocean and might

Table 2. Climate impact variables of all solutions obtained from meta-analysis with the number of data points and
sources used listed

Solution name

Carbon
removal

(t ha�1 yr�1)

Carbon
avoided
emissions

(t ha�1 yr�1)

Carbon storage in
protected ocean
area (tC ha�1)

Number
of data points

Number of
sources

Coastal wetlands
protection

Mangroves
1.91 ± 0.55

Mangroves
32.75 ± 27.35

Mangroves
585.77 ± 375.51

9, 19*, 9† 7, 11*, 4†

Seagrasses
1.19 ± 0.5

Seagrasses
3.81 ± 2.31

Seagrasses
234.60 ± 94.90

2, 9*, 2† 1, 6*, 1†

Salt marshes
1.92 ± 0.97

Salt marshes
14.28 ± 15.60

Salt marshes
355.07 ± 301.11

27, 8*, 4† 11, 5*, 4†

Coastal wetlands
restoration

Mangroves
6.58 ± 2.58

— — 17 12

Seagrasses
1.00 ± 1.32

— — 12 4

Salt marshes
0.93 ± 0.50

— — 9 6

Macroalgae protection 0.97 ± 0.68 — — 14 6‡

Macroalgae restoration 0.97 ± 0.68 — — 14 6‡

Seafloor protection — 13.83 ± 6.36 14,745.67 ± 6,597.6 111 55‡

Seaweed farming 3.21 ± 2.1 — — 44 16‡

The values are mean with a range defined as one SD above and below the mean of entered values. Carbon removal and carbon avoided emissions are annual estimates. For a detailed
description behind each variable, see SI Appendix, S5.
*Values represent the number of data points and references used in estimating emissions reduction for coastal wetlands protection.
†Values represent the number of data points and references used in estimating carbon storage in protected ocean area for coastal wetlands protection.
‡Climate impact variables are results of Project Drawdown’s calculations specified in SI Appendix, S1 and not raw data points taken from the published sources.

Fig. 3. The total mitigation potential (GtCO2-eq 2018 to 2060) and TOA adoption growth (Mha) for all six ocean-based solutions under the plausible and
ambitious scenarios. Maximum TOA (Mha) assigned to each solution is listed on the right-side of the graph with a red dashed vertical line. Note that results
for the low adoption scenario are not included in this figure, as they are much lower and would not be visually compelling. Low adoption results are
presented in Table 3 and in the Results.
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locally increase biodiversity by providing complex habitat (33).
The annual carbon reduction (including emissions avoided and
carbon removal) coming from the application of all six solutions
reaches 0.2 to 0.4 GtCO2-eq in 2030, 0.6 to 0.9 GtCO2-eq in
2050, and 0.7 to 1.1 GtCO2-eq in 2060 (plausible and ambi-
tious scenarios, respectively). This figure is close to the low end
of annual emissions reductions estimated by Hoegh-Guldberg
et al. for blue carbon ecosystems (which only include coastal
wetlands protection and restoration and increased seaweed
production), which were 0.32 to 0.89 GtCO2-eq in 2030 and
0.5 to 1.38 GtCO2-eq in 2050 (8). This work builds on a meta-
analysis of existing data sources, with adoption cases based on
current trends or targets, a somewhat conservative approach that
can lead to discrepancies from other studies, such as our ambi-
tious scenario falling behind the Hoegh-Guldberg et al. adoption
estimates (8). Taking a conservative approach is appropriate for
building realistic and vigorous prognostications, but it also sug-
gests that ocean protection likely offers even greater potential for
climate impact than we project.
Reaching plausible or ambitious scenario targets is necessary

to achieve significant climate benefits. Without ambitious, sus-
tainable ocean management, the reduction potential of blue
carbon habitats will weaken, decreasing their climate mitigation
as presented by the low adoption scenario (Fig. 3). The urgency
of the climate crisis requires that every effort should be taken

this decade to achieve the Paris Agreement targets and limit
global warming to 2 °C. The estimated climate benefit of the
six blue carbon solutions assessed could provide around 2% of
the total carbon mitigation needed to meet the Paris Agreement
goals of limiting global warming to 2 °C by 2050, indicating
the importance of ocean carbon sinks in solving the climate cri-
sis as urgently, safely, and equitably as possible (34). The
potential for integrating ocean-based solutions in global warm-
ing mitigation efforts of different countries is growing, as many
countries have called to include ocean components in their
Nationally Determined Contribution (35). Targeting blue car-
bon sinks might be especially beneficial for small island states
seeking to meet their net-zero targets (36). These protection,
restoration, and ocean sustainability practices should not end
when the Paris Agreement concludes in 2050 either, as they
will continue to provide additional carbon removal and avoided
emissions benefits after that, as presented in Fig. 4.

Adopting all six ocean solutions for climate change requires
protecting and restoring blue carbon habitats as well as expand-
ing seaweed farming. Combined, these solutions reach 4% and
5% of the global ocean area covered by EEZs under the plausi-
ble and ambitious scenarios, respectively (Fig. 3 and Fig. 2).
From a global perspective, the area required for adoption is not
very large; current global conservation targets call for strictly
protecting 30% of countries’ EEZs by 2030 (27, 37). Even

Fig. 4. Annual mitigation potential from carbon removal and avoided emissions achieved by applying all six ocean solutions under the plausible and ambi-
tious scenarios compared to the low adoption scenario (carbon avoided emissions and carbon removal impact combined). Total avoided carbon emissions
and carbon removal between 2018 and 2060 are presented and indicated with dashed lines.

Table 3. Solution-specific results of total carbon removal and/or avoided emissions potential achievable between
2018 and 2060 for three scenarios

Solution name

Mitigation potential low
adoption GtCO2-eq

(2018 to 2060)
Mitigation potential plausible

GtCO2-eq (2018 to 2060)
Mitigation potential ambitious

GtCO2-eq (2018 to 2060)

Carbon removal

Coastal wetlands protection 0.27 ± 0.00 0.57 ± 0.02 0.99 ± 0.02
Coastal wetlands restoration 0.71 ± 0.00 1.1 ± 0.01 1.4 ± 0.01
Macroalgae protection 0.93 ± 0.00 3.8 ± 0.12 4.7 ± 0.14
Macroalgae restoration 0.27 ± 0.00 1.1 ± 0.01 2.1 ± 0.02
Seaweed farming 0.06 ± 0.00 4.3 ± 0.04 8.1 ± 0.07

Carbon avoided emission

Coastal wetlands protection 0.67 ± 0.00 1.42 ± 0.04 2.71 ± 0.05
Seafloor protection 1.04 ± 0.40 3.9 ± 1.81 5.2 ± 2.46
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though blue carbon habitats are known for their important role
in ecosystems and carbon storage, and their area is small com-
pared with that of EEZs, their current level of protection is
low. Implementing MPAs might be challenging in some places,
such as near coasts populated by those who rely on fishing for
subsistence or lack the funding and capacity to do so (7).
Including blue carbon conservation goals within MPAs has the
potential to add value to the conservation approach, especially
if those habitats are included in national GHG accounting.
This is already occurring for coastal wetlands (38). Coastal

wetland blue carbon ecosystems are included as a climate
strategy under the United Nations Framework Convention on
Climate Change and as a biodiversity strategy under the Con-
vention on Biological Diversity and the Ramsar Convention, so
policy mechanisms for their protection and restoration are
already in place. However, more effort is needed to recognize
the full potential impact of blue carbon sinks in all relevant
conventions and agreements. It is important to recognize this
as we enter the United Nations Ocean Decade and engage dif-
ferent stakeholders in delivering sustainable ocean solutions.
Blue carbon solutions can not only mitigate climate change but
also contribute to climate adaptation by protecting coasts from
erosion and extreme weather events (39) and lessening ocean
acidification. Moreover, reaching the adoption targets discussed
above would bring many additional benefits to the marine envi-
ronment and human society in line with the Sustainable Devel-
opment Goals (40), such as rebuilding biodiversity and habitat
complexity (41) and sustaining stable food production (42).

Source-Specific Climate Benefits. It has already been noted
that the role of offshore and deep ocean benthic communities
in climate warming mitigation is underemphasized (43). The
current analysis provides evidence that expanding protection of
the seafloor from bottom trawling avoids the release of a signifi-
cant amount of carbon stored in the sediments. A recent global
analysis produced a conservation planning framework to priori-
tize highly protected MPAs in places that would result in multi-
ple benefits, including biodiversity, food provision, and carbon
storage in sediments (10). It showed that eliminating 90% of
the present risk of carbon disturbance due to bottom trawling
would require protecting 3.6% of the ocean in strategically
implemented MPAs (mostly within EEZs) (10). The current
analysis suggests that out of the 490 Mha of seafloor currently
disturbed by bottom trawling, the protection of 276.6 to 374.5
Mha is realistically achievable via no-take MPAs or bottom
trawling bans and results in significant climate impact across all
six ocean solutions.
MPAs also have a high potential to secure carbon and enhance

carbon sequestration within coastal wetland habitats and macro-
algae forests. This analysis suggests that coastal wetland protec-
tion and restoration make a moderate contribution to climate
change mitigation, together removing between 1.7 ± 0.01 and
2.4 ± 0.02 GtCO2-eq and avoiding between 1.4 ± 0.04 and
2.2 ± 0.05 GtCO2-eq in around 40 y, which is impressive given
the relatively tiny area covered by coastal wetlands (Fig. 3 and
Table 3). Wild macroalgae forests cover significantly larger areas
globally but have estimated climate benefits similar to that of
coastal wetlands, amounting to carbon removal of 4.9 ± 0.11 to
6.8 ± 0.14 GtCO2-eq in around 40 y (Fig. 3). Many anthropo-
genic stressors, such as coastal conversion to urban uses, eutro-
phication, algae harvesting, and fishing and climate-warming
stressors can be addressed by local resource managers and may
be ameliorated via protection in MPAs (29, 30, 44–46). How-
ever, even with the best efforts of local resource managers to

conserve these ecosystems, some continued decline due to cli-
mate change is likely inevitable (46, 47). The climate change
effects that have negatively affected coastal wetlands and macro-
algae include increased water temperature and heat wave events
(48, 49) as well as sea level rise (50). The loss of coastal wetlands
and macroalgae forests that may occur despite their protection
in MPAs underscores the importance of incorporating active
habitat restoration into MPA design, an essential part of manage-
ment planning that could provide an estimated removal
of between 2.3 ± 0.01 and 3.5 ± 0.02 GtCO2-eq from 2018
to 2060.

Highly protected MPAs by definition do not allow for com-
mercial activities (51). However, integrating regenerative sea-
weed farming within MPAs may bring significant climate and
socioeconomic benefits for coastal populations (52). Seaweed
farming is a considerable climate solution, with an estimated
impact of 4.3 ± 0.04 to 8.1 ± 0.07 GtCO2-eq removed in
around 40 y (Fig. 3 and Table 3). Most carbon absorbed by
seaweeds is consumed or recycled in shallow-water ecosystems,
and only that portion that is exported and sequestered into
deep-sea sediments or below the mixed layer can be considered
sequestered long term. Present studies only account for the
long-term sequestration of the carbon naturally exported to the
deep sea and/or stored in the ocean shelves (Table 2 and SI
Appendix, section S5). In 2005, global macroalgae production
was estimated at 14.7 million metric tons; by 2016, global
yields had more than doubled, reaching 31.2 million metric
tons and comprising 27% of total marine aquaculture produc-
tion (53). The potential for seaweed farming expansion is simi-
larly high, with the top-producing nations as well as new
nations focusing on ensuring the sector’s long-term sustaina-
bility (42, 54). Many coalitions and nongovernmental organiza-
tions (NGOs) are providing guidance and support to farmers
to ensure sustainable and innovative seaweed production.
Moreover, seaweed biomass is used in an increasing number of
applications, including animal feed (55), bioplastics, and bio-
fuel (56). This is unlocking the potential for market growth
and is creating opportunities to reduce GHG emissions from
other sectors, for example, by adding seaweed to livestock feed
to reduce methane emissions from cattle (57).

Financial Implications of Ocean Solutions. Implementing
MPAs requires funding and safeguarding mechanisms to ensure
the longevity of protection and restoration projects. Funds can
come from nonmarket mechanisms, such as convention funds
and national or multilateral development funds, and from mar-
ket mechanisms, such as regulated or voluntary carbon markets.
Coastal wetlands are beginning to be included in carbon credit
schemes. The potential for marketing blue carbon ecosystems is
high; the global blue carbon wealth (defined as carbon seques-
tration and storage potential) is estimated to amount to over
US$190 billion per year (58).

For the scope of the current analysis, the costs of protection
and restoration projects are assumed to be borne at a govern-
ment and NGO level (59). Governments often have the resour-
ces necessary for project implementation, while NGOs and
other trusted institutions have social influence that can increase
support from local communities (60). Costs would range
widely depending on the size of a project, methods applied,
and location; for example, the average cost of coastal wetland
restoration projects in developing countries was estimated to be
US$80,000 to US$1.6 million per hectare of restored area,
with seagrass projects being the most expensive and mangrove
projects being the least expensive (59). Similarly, a wide range
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is observed for macroalgae forest restoration projects that run
for at least a few years, with budgets spanning from US$5 mil-
lion for small, short-term projects to US$267 million for a
large project that aims to restore 54,000 ha in Korea within
15 y (60). Seaweed farming is the only solution modeled in this
study in which it is assumed that private funding is required.
Currently, data on the costs of seaweed farm installation and
operation are limited. A review of the financials of eight farm-
ing systems from developing countries concluded that the costs
of seaweed farming largely depend on scale (family size versus
industrial) and location (61); the present study confirms the
high range of seaweed farm installation and operation costs
(Results). Similarly, profit from these farms will vary, as it
largely depends on the application of harvested seaweed bio-
mass. To further advance the application of biomass, a growing
number of NGOs and coalitions are providing support and
connecting seaweed producers with suppliers to ensure that
demand is met with supply (42).
Closing ocean areas for certain activities such as bottom

trawling could have implications for the fisheries sector. Con-
sidering the importance of fisheries employment, MPAs should
be designed in a way that mitigates adverse economic impacts.
In particular, area closures and resulting job loss might dispro-
portionately affect low-income or otherwise marginalized fish-
ing communities. An Organization for Economic Cooperation
and Development bioeconomic model found that simply redi-
recting fisheries subsidies from capacity-enhancing subsidies to
other types (e.g., from fuel subsidies to direct income payments
to fishermen) could help achieve fishing effort reduction and
stock-rebuilding goals while increasing the total income of fish-
ers, especially for small-scale fisheries (62). Many bottom-
trawling fisheries rely on capacity-enhancing subsidies, without
which their operations would not be profitable (63). Therefore,
redirecting harmful fishery subsidies into fishers’ direct pay-
ments or training for alternative employment opportunities
could be more beneficial (64).

Limitations and Barriers to Achieving Adoption. Resolving
conflicting biological and socioeconomic objectives remains one
of the major challenges of ocean management (65). Scaling up
ocean protection efforts to achieve regional and global impact
requires encouragement and support from governments and
development agencies using appropriate legal, financial, and
social incentives. Such support should be considered part of
national and international commitments regarding climate
change adaptation and mitigation.
Potential shortcomings of MPAs or bottom-trawling closures

include insufficient staff, equipment, and funding, inadequate
consultation with local communities, and concerns about man-
aging displaced fishing effort (7). Therefore, MPA design and
management should include local communities and be inte-
grated with other management tools, such as territorial user
rights (66). Excluding the most damaging activities (e.g., indus-
trial fishing) within MPAs and favoring small-scale fisheries could
benefit local communities not only in the potential increase in
catch and profits from tourism but also in potential adaptation to
climate change (7). Although governments are likely to bear the
brunt of the MPA implementation economic impact, the ecologi-
cal and climate benefits might outweigh the costs if climate
change mitigation and adaptation benefits are included.
Limited scientific data might delay the creation of mecha-

nisms to incorporate ocean-based solutions into existing climate
mitigation programs. A lack of representative data and well-
established measurement methodologies restricts the scientific

understanding of global carbon fluxes from ocean ecosystems
(67). Multiple, inconsistent approaches for defining mangrove
forests and measuring carbon in coastal wetlands also present
challenges for determining carbon sinks and fluxes. Data on
long-term carbon sequestration in macroalgae forests and the
fate of carbon remineralized due to bottom trawling are even
more limited, so estimates of carbon sequestration and emis-
sions reduction potential for these solutions are less certain
than those for coastal wetlands (10, 17, 68). Moreover, the cur-
rent study uses global estimates of carbon sequestration or emis-
sion, which vary widely depending on the local environment,
for example, by hydrodynamic regimes (69, 70), climate zone,
and season (71, 72); species, for example, Posidonia versus
Zostera species (67); and plant development, for example,
density of seagrass meadows (73) and mangrove height and bio-
mass (71). Still, the carbon removal potential of macroalgae-
related solutions and emission reduction potential of seafloor
protection might be high (Fig. 3 and Table 3), and more effort
should be taken to increase research and development of these
solutions. Specific areas of research that would improve current
results include local measurements of carbon sequestration
and emissions under different environmental and ecological
settings.

The current modeling framework provides a tool for estimat-
ing the climate change mitigation potential of blue carbon habi-
tats globally and at different scales. It also highlights the potential
carbon solutions that countries and communities can explore as
part of their MPA strategy and coastal management. However,
more regional studies are needed to support the successful imple-
mentation of these solutions to preserve and enhance carbon
sequestration in ocean sinks.

Materials and Methods

We used four criteria to identify potential ocean-based solutions for evaluation:
1) there is scientific support for their ability to avoid carbon emissions and pro-
vide long-term carbon removal (deposited in the sediment from 100 to 1,000 y
and/or exported below the ocean mixing layer), 2) there is a business case for
the solution and/or adoption growth in different parts of the world, 3) data exist
to enable modeling of the solution, and 4) the solution’s benefits outweigh neg-
ative externalities. Several assumptions were made in applying the Project Draw-
down methodology (31), including 1) the infrastructure required to scale each
solution globally is already in place and is embedded in the cost to the agent
(e.g., the individual/household, community, city, or utility); 2) policies required
to enable, augment, or regulate solutions at the local, national, and international
level are already in place; and 3) many solutions may become outdated,
significantly improved, or supplanted by new technologies or practices within
the period under analysis, but that is not factored in due to the absence of
reliable data.

The basic unit of analysis is the TOA, defined as the area of ocean suitable for
adoption by solutions in Mha. TOA is specific to each solution and represents the
upper limit of possible adoption. The TOA projected for all solutions, based on a
literature review (SI Appendix, section S2 and Table S1), was 1,297 Mha or 8.3%
of the 14,209 Mha global EEZ area (74) (Fig. 2).

The percent of the TOA that is protected, restored, or designated to seaweed
farming in 2018 was chosen as current adoption based on the availability of reli-
able data. Increased adoption of TOA was projected until 2060 for each solution.
Three scenarios were developed with different levels of increased adoption and
compared with a reference scenario in which those adoptions remain fixed at
the 2018 level. The TOA and adoption cases were derived by reviewing literature
from authoritative sources, including peer-reviewed journals, public sector and
multilateral agencies, and other nongovernmental organizations (SI Appendix,
sections S2 and S3 and Tables S1 and S2). The three scenarios were defined as
follows: low adoption scenario (ocean protection, restoration, and seaweed farm-
ing are adopted at historical growth rates), plausible scenario (ocean protection,
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restoration, and seaweed farming are adopted at an ambitious but realistically
vigorous rate, derived from the average of a few global projections), and ambi-
tious scenario (adoption of ocean protection, restoration, and seaweed farming
is increased to the high range of the projections, thus representing an advance-
ment of the plausible scenario; SI Appendix, Table S2).

The climate impact achieved by increasing the adoption of ocean sinks protec-
tion, restoration, and seaweed farming was projected by calculating the carbon
sequestration (carbon removal) and/or avoided emissions of each solution sepa-
rately. Data for these variables were obtained via meta-analysis of various sour-
ces, with the total number of estimates and sources listed in Table 1 and
detailed descriptions of per solution calculations presented in SI Appendix,
section S5. The total removal of CO2 is captured in the sequestration rate of the
solution. These sequestration rates are used to estimate the amount of seques-
tration that happens annually and are assumed to be constant over time. The
sequestration is defined as

∑ymax
y¼y1Sy

CO2 ¼ ∑ymax
y¼y1

3:666 � q � ðNAOUy � TyÞ � ð1� δÞ
1, 000

,

where [y1, ymax] is the range of years of the analysis (2020 to 2050), Sy
CO2 is the

total CO2 sequestered for year y in GtCO2-eq, q is the sequestration rate for solu-
tion over conventional practice in tonnes of carbon per hectare (tC ha�1 yr�1),
NAOUy is the net annual ocean units (the solution adoption in the solution
scenario minus the solution adoption in the reference scenario in year y in Mha),
Ty is the total ocean that is harvested in year y for its produce (applicable only for

seaweed farming solution) in Mha, and δ is the disturbance rate for solution
in percent.

Total carbon avoided emissions is linear to the number of ocean units
adopted, with emissions efficiency of the solution a fixed value. It is a linear sum
of the avoided emissions from direct source (SI Appendix, section S5)

∑ymax
y¼y1Ry

CO2-eq ¼ ∑ymax
y¼y1

NAOUy � ERf g � ð1� δÞ
1, 000

,

where RyCO2-eq is the total reduction in emissions of gas in year y in GtCO2-eq,
and ER is the reduction in other direct emissions (beyond grid and fuel
emissions) when the solution is used instead of the conventional practice in
tonnes of carbon dioxide equivalent per hectare (t CO2-eq ha

�1).
To account for uncertainty in analyses, error propagation of final estimates

has been applied (SI Appendix, section S6). The total additional carbon removal
or carbon avoided emissions was estimated by comparing the three scenarios to
the reference scenario (SI Appendix, section S6).

Data Availability. All data included in the article are coming from published
sources and are cited in the main text and in the SI Appendix.
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