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Abstract
The novel coronavirus disease (COVID-19), which emerged in Wuhan, China, is continuously spreading worldwide, creating 
a huge burden on public health and economy. Ayurveda, the oldest healing schema of Traditional Indian Medicinal (TIM) sys-
tem, is considered as a promising CAM therapy to combat various diseases/ disorders. To explore the regulatory mechanisms 
of 3038 Ayurvedic herbs (AHs) against SARS-CoV-2, in this study, multi-targeting and synergistic actions of constituent 
34,472 phytochemicals (APCs) are investigated using a comprehensive approach comprising of network pharmacology and 
molecular docking. Immunomodulatory prospects of antiviral drug-alike potentially effective phytochemicals (PEPs) are 
presented as a special case study, highlighting the importance of 6 AHs in eliciting the antiviral immunity. By evaluating 
binding affinity of 292 PEPs against 24 SARS-CoV-2 proteins, we develop and analyze a high-confidence “bi-regulatory 
network” of 115 PEPs having ability to regulate protein targets in both virus and its host human system. Furthermore, 
mechanistic actions of PEPs against cardiovascular complications, diabetes mellitus and hypertension are also investigated 
to address the regulatory potential of AHs in dealing with COVID-19-associated metabolic comorbidities. The study further 
reports 12 PEPs as promising source of COVID-19 comorbidity regulators.
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Abbreviations
TIM system  Traditional Indian Medicinal System
AHs  Ayurvedic herbs
APCs  Ayurvedic phytochemicals
AVDs  Antiviral drugs
HCI  High-confidence interactions
IMPD  Indian Medicinal Plants Database
IMPPAT  Indian Medicinal Plants, Phytochemistry 

and Therapeutics
NPASS  Natural Product Activity and Species 

Source Database
PCIDB  Phytochemical Interactions DB
PEPs  Potentially effective phytochemicals

SARS-CoV-2  Severe acute respiratory syndrome corona-
virus 2

Tc  Tanimoto coefficient
TCM  Traditional Chinese Medicine

Introduction

In December 2019, a novel coronavirus caused an outbreak 
of pneumonia in Wuhan, Hubei Province of China [1], Since 
then, it has rapidly transmitted across the world [2], lead-
ing to the situation of Public Health Emergency of Inter-
national Concern (PHEIC). The pathogen for leading coro-
navirus related pneumonia disease (COVID-19) has been 
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classified as severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) by the International Committee on Tax-
onomy of Viruses. Compared to SARS-CoV responsible for 
the outbreak of SARS in 2003, the current risk of COVID-
19 pandemic is mainly due to the high-transmission rate of 
SARS-CoV-2.

The concept of drug repurposing has become an attrac-
tive proposition for the identification of potentially active 
drugs against various diseases. With the time-consuming 
process, substantial costs and high failure rates of the devel-
opment of new drugs, the reuse of existing drugs for other 
diseases offers an attractive schema for its lower develop-
mental costs and shorter developmental timeline. The notion 
of drug repurposing is based on the multi-targeting ability 
of drugs which can be used to deal with various other dis-
eases as disease pathogenesis is multi-factorial in nature [3]. 
The concept has been used for past several years to repur-
pose existing drugs against various other diseases than the 
disease they have been originally developed for [4, 5]. For 
COVID-19 also, the concept has been exploited to suggest 
potential existing drugs as there is an urgent requirement of 
drugs (single or combination based) to combat the disease. 
Recently, the antiviral drug repurposing approach  has been 
implicated to a great extent to deal with SARS-CoV-2 [6].

In response to the current demand for a suitable vaccine, 
the research community has jumped into the race to find a 
cure. To find an answer to that, China has turned its way 
toward traditional therapies by promoting TCM (Tradi-
tional Chinese Medicine) as a common prescription against 
COVID-19 [7, 8]. The underlying mechanism lies in the 
multi-targeting nature of natural herbs that in addition to 
providing strong immunity support targets various riboso-
mal proteins, thereby inhibiting the viral replication event 
[7]. Ministry of AYUSH, Government of India, has also 
issued an advisory to use the Ayurveda, Siddha, Unani and 
Homeopathy as preventive measures [9]. Ayurveda, the tra-
ditional Indian knowledgebase of TIM system (Traditional 
Indian Medicine) which translates to "knowledge of life," 
is considered as the oldest healing schema originated more 
than four thousand years ago. Historical background of these 
medicines is also supporting the use of this system of medi-
cine as preventive measures against variety of diseases and 
disorders including viral infection [10]. However, there are 
no controlled supporting data available for the use of any of 
these traditional medicines, and their efficacy for COVID-
19 is unknown. Hence, the research scope of Ayurvedic 
medicines with valid scientific evidence is much worthy to 
combat the pandemic of COVID-19.

In recent years, a novel paradigm that integrates the con-
cepts of network science and pharmacology, namely network 
pharmacology, has made its headway in the research of   drug 
discovery and development [11]. The approach of network 
pharmacology has proved to be a promising strategy toward 

next-generation approach of drug discovery for traditional 
medicines [12, 13]. In this study, the information of Ayurve-
dic herbs was collected for their phytochemical composition 
and studied for their efficacies against COVID-19 using the 
approach of network pharmacology. A comprehensive data-
set of phytochemicals was prepared for each herb utilizing 
the information available at public domain databases. The 
therapeutic relevance of the phytochemicals was estimated 
using several protein target prediction algorithms. The pri-
oritization of phytochemicals effective in managing COVID-
19 was performed using the multi-step strategy involving 
similarity analysis with antiviral drugs, binding affinity 
analysis against SARS-CoV-2 proteins, immune regulatory 
potential, comorbidity analyses, etc. We believe that the 
comprehensive methodology adopted in this study can serve 
as a powerful tool in deciphering the possible mechanism of 
action of Ayurvedic herbs of TIM origin for their manage-
ment toward the global pandemic caused by novel corona-
virus. Furthermore, the study may also serve as a universal 
guide toward illuminating the mechanisms of prescription 
of TIM against various other diseases and disorders. The 
complete workflow of the study is presented in Fig. 1.

Material and methods

Dataset of Ayurvedic herbs

The information of the Ayurvedic herbs was collected from 
Indian medicinal plants database (IMPD) (http:// www. medic 
inalp lants. in/), which enlists the information of 7258 unique 
herbs used in Indian medicinal system of Ayurveda as on 
March 2018. The scientific names of the herbs available at 
IMPD can be checked in Supplementary Table 1.

Phytochemical dataset of Ayurvedic herbs

A comprehensive list of the phytochemicals present in 
each Ayurvedic herb was developed using six database 
sources IMPPAT (Indian Medicinal Plants, Phytochem-
istry And Therapeutics) [14], TCM-MeSH [15], PCIDB 
(PhytoChemical Interactions DB) (https:// www. genome. 
jp/ db/ pcidb), NPASS (Natural Product Activity and Spe-
cies Source database) [16], CMAUP (Collective Molecular 
Activities of Useful Plants) [17] and Duke’s phytochemi-
cal database (https:// phyto chem. nal. usda. gov/ phyto chem/ 
search). For this, the genus and species name of each herb 
was selected and inspected for their presence in the afore-
mentioned databases. Out of 7258 herbs in IMPD, we con-
sidered only those herbs in this study for which we could 
identify at least one phytochemical in the aforementioned 
databases. Two chemical databases, namely PubChem [18] 
and ChEMBL [19], were used to map the phytochemicals for 

http://www.medicinalplants.in/
http://www.medicinalplants.in/
https://www.genome.jp/db/pcidb
https://www.genome.jp/db/pcidb
https://phytochem.nal.usda.gov/phytochem/search
https://phytochem.nal.usda.gov/phytochem/search
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their chemical information. The Ayurvedic phytochemicals 
(APCs) for which no chemical mapping could be obtained 
were not considered in this study. Following these steps, a 
dataset of 3038 herbs and their varieties was prepared and 
used in further studies.

The hierarchical chemical classification of APCs was 
performed using “Classyfire” which utilizes the chemical 
ontology-based information of 4,825 organic and inorganic 
compounds to predict the chemical class of query molecule 
[20]. For clustering of APCs, cluster services available at 
ChemMine tools were chosen [21]. The ChemMine-algo-
rithm was used to calculate atom pair descriptors (i.e., fea-
tures) of each subjected query compound. Using the set of 
unique and common features, a similarity matrix was con-
structed, and the matrix was presented in the Newick tree 
format. The obtained tree format was displayed using iTOL 
(Interactive Tree Of Life), an interactive tree viewer and 
annotator. iTOL offers an online service which supports 

multiple phylogenetic tree formats for their display, anno-
tation and manipulation [22]. The chemical information 
obtained from Classyfire server was also added to the tree 
format to display complete information associated with each 
APC molecule. The chemical classification was restricted 
to the APCs screened-in at the stage of “Anti-viral drug 
similarity calculations” (described in detail in the Material 
and Methods Section “Anti-viral drug dataset and similarity 
index calculation”).

Protein target identification of phytochemicals

The information of human proteins targeted by APCs was 
compiled from STICH5.0, SwissTargetPrediction and 
BindingDB. STITCH utilizes the information of manually 
curated and experimental data for cataloguing chemical 
target pairs [23]. For accessing high-confidence interaction 
pairs, the STITCH data were compiled at the confidence 
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Fig. 1  Detailed workflow of the present study
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score of  ≥ 0.4. SwissTargetPrediction is accessible through 
a web-based tool available at http:// www. swiss targe tpred 
iction. ch/ and offers predictions based on similarity prin-
ciple through reverse screening approach [24]. For each 
APC, only top-15 predictions from SwissTargetPrediction 
were incorporated for the analysis. BindingDB is a web-
accessible public platform containing the binding informa-
tion of about 7493 proteins and 820,433 chemical entities 
[25]. BindingDB RESTful API services specific to “get-
TargetByCompound” were used to derive the information 
of protein targets. The service allows the user to screen the 
compound of interest for other compounds in BindingDB of 
similar structure within the user-defined similarity cutoff. 
For each similar compounds returned, the information of 
their binding targets was also included. For the study, the 
targets were screened corresponding to molecules having 
chemical similarity ≥ 0.85.

Anti‑viral drug dataset and similarity index 
calculation

DrugBank database (https:// www. drugb ank. ca/) was used 
to collect the information of currently used antiviral drugs 
(AVDs). Only AVDs corresponding to the class of small 
molecules were used in this study. For assessing the simi-
larity between AVDs and APCs, a similarity measure based 
on Tanimoto coefficient (Tc) was calculated for each pair 
of 34,472 APCs and 125 AVDs. For the calculation, the 
chemical structure of input molecule was encoded in binary 
digits using molecular fingerprints. A path-based molecular 
fingerprint, namely FP2 which indexes the input molecule 
up to the length of seven atoms, was used for Tc calculation 
using OpenBabel [26]. Tc between two chemical compounds 
A and B is given by

where N(A) and N(B) represent the number of molecular fin-
gerprints associated with chemical compounds A and B, 
respectively. The number of molecular fingerprints com-
mon to both the chemical compounds is represented by N(A,B) 
[27]. The value of the T

c(A,B) ranges in between 0 and 1, with 
0 representing no similarity and 1 representing maximum 
similarity between the compounds. The Tc values between 
APCs and AVDs (obtained from DrugBank) are listed in 
Supplementary Table 2. The information of AVDs is also 
given in Supplementary Table 2.

To screen APCs capable of providing similar regula-
tory effects to existing antiviral drugs, the two-condition-
based selection criterion was adopted [28]. Of these two 
conditions, first involves the selection of APCs whose Tc 
similarity is greater than 0.85, and the second one includes 

T
c(A,B) =

N(A,B)

N(A) + N(B) − N(A,B)

the APCs whose Tc value ≠ 1 and SMILES exactly similar 
against any of the 125 AVDs. Using this criterion, 292 APCs 
referred to as “potentially effective phytochemicals” (PEPs) 
could be identified.

Disease association of the protein targets

DisGeNET, a repository containing the information of 
gene–disease associations linked to Homo sapiens, was used 
to investigate the association of protein targets into various 
disease classes [29].

In silico molecular docking and interaction analysis

Molecular docking and binding energy (B.E.) calculations 
were used to assess the favorable conformation of ligand 
onto the protein active site. The 3D structures of 24 SARS-
CoV-2 proteins were obtained from the I-TASSER platform 
available at https:// zhang lab. ccmb. med. umich. edu/ COVID- 
19/ , and their molecular interactions with PEPs were stud-
ied using Autodock v4.2 [30] and AutoDock Vina packages 
[31]. While AutoDock utility of MGLTools [30] was used 
for obtaining .pdbqt files of receptor and ligand molecules, 
the obtained .pdbqt files were subjected for B.E calcula-
tions using Autodock Vina. The AutoDock Vina utilizes the 
semi-empirical force field to predict the best conformation 
of a ligand inside the protein cavity. The B.E. values were 
calculated for each PEP molecules against the active site 
of each SARS-CoV-2 protein considered in the study. To 
screen and prioritize the list of PEPs against each protein 
of SARS-CoV-2, a screening cutoff was decided for each 
SARS-CoV-2 protein on the basis of B.E. values distribution 
obtained from interactions with 292 PEPs. In order to select 
ligands with their best conformation inside the cavity of a 
SARS-CoV-2 protein, the high scoring SARS-CoV-2 pro-
tein–PEP pairs with B.E. values < (μ−σ) were considered for 
further studies, where μ is the mean of the 292 B.E. values 
and σ is their standard deviation. In this manner, out of 292 
PEPs, 129 were screened-in against 24 SARS-CoV-2 pro-
teins and were referred to as  PEPcov2 i.e., potentially effective 
phytochemicals against SARS-CoV-2 proteins. The list of 
129  PEPcov2 and their B.E. values with SARS-CoV-2 pro-
teins is given in Supplementary Table 3.

Network construction and analysis

The complex relationship among the herb, phytochemi-
cals, protein targets, pathways and disease classes was 
explored via contruction of networks and their analysis 
using Cytoscape v3.7, an open-source software that offers a 
versatile and interactive visualization interface for explor-
ing molecular interaction networks. For the analysis of the 

http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
https://www.drugbank.ca/
https://zhanglab.ccmb.med.umich.edu/COVID-19/,
https://zhanglab.ccmb.med.umich.edu/COVID-19/,
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generated networks, NetworkAnalyzer utility of Cytoscape 
was used [32].

The detailed description of each database source used in 
the current study can be checked in “Detailed Material & 
Methods section” given in Supplementary Data.

Results and discussion

Phytochemical dataset of Ayurvedic herbs

Of 7258 botanical names of Ayurvedic herbs mentioned in 
the Indian medicinal plants database, exhaustive mining 
from five databases could result in the compilation of 34,472 
APCs (Ayurvedic phytochemicals). The Tanimoto-based 
similarity screening (as mentioned in Material and Meth-
ods Section “Anti-viral drug dataset and similarity index 
calculation”) of these APCs against antiviral drugs resulted 
in the selection of 292 APCs referred to as PEPs, and the 
further study focuses on the detailed examination of these 
PEPs. The detailed description of these PEPs with their 
phytochemical ID and chemical identifier is listed in Sup-
plementary Table 3. Our previous work enlists the complete 
herb-wise data and detailed information of 34,472 APCs, 
which can be checked for any relevant information [33].

When checked for the presence of these phytochemi-
cals in the Ayurvedic herbs, 292 PEPs were found to be 
distributed among 558 herb varieties. The detailed map-
ping of PEPs onto their respective herb can be checked in 
Supplementary Table 4. The information was used as input 
to construct the Ayurvedic herb–phytochemical network 
(AH-PEPs network) with network size of 850 nodes (558 
herbs + 292PEPs) and 1685 edges (Fig. 2). Examining the 
distribution of PEPs among 558 herbs helped us identify 
that AH_0303-v1 contributes maximally to the PEPs cat-
egory with 35 of its phytochemicals. The Ayurvedic herb 
AH_0303-v1 corresponds to Artemisia annua and earlier 
reported studies on the herb shows that the plant possess 
antiviral activity against SARS-CoV [34]. The alcoholic 
extract of the plant was one of the most potent herbal medi-
cines used against SARS-CoV in 2005. Based on its antiviral 
properties, researchers across the globe are also trying to 
explore the effectiveness of this herb against novel corona-
virus disease, COVID-19 [35].

In addition to AH_0303-v1, other Ayurvedic herbs 
enriched with PEPs are AH_3088-v1: Zingiber officinale, 
AH_0879-v1: Curcuma longa with 24 and 20 PEPs, respec-
tively. Both of these are well-known Ayurvedic herbs for 
their immune-boosting capacity and have also been studied 
for their efficacies against exposed asymptomatic cases asso-
ciated with COVID-19 [36].

The data suggest that the targeted action of these herbs 
against COVID-19 may be attributed to the constituting 

PEPs, which hold the potential to regulate SARS-CoV-2 
proteins (as may be seen in the analysis of  PEPcov2-PTcov2 
network, detailed in the later sections of this study). Detailed 
examination of herbs may also put light on their respective 
phytochemicals for their target specificity against SARS-
CoV-2 proteins. The chemical organization of 292 PEPs was 
found to be distributed among six broad chemical classes 
(Fig. 3).

Chemical mapping of the PEPs reveals that chemical 
classes of terpenoids, especially “triterpenoids” and “bicy-
clic monoterpenoids,” were highly abundant in the dataset. 
This suggests that the PEPs dataset constitutes pharmaceuti-
cally relevant molecules as the class of terpenoids is of high 
importance in terms of pharmaceutical value due to their 
broad-spectrum medical application since prehistoric times 
[37]. Thus, future attention toward the detailed investigation 
of these PEPs could be of considerable importance in drug 
discovery. The chemical class of each of the PEPs can be 
checked in Supplementary Table 5.

Phytochemical–antiviral drugs similarity network

To select potentially active phytochemicals based on com-
pound–compound similarity with existing antiviral drugs, 
the Tanimoto coefficients were calculated for each Ayurve-
dic phytochemical (APC)–antiviral drug (AVD) pair. The 
similarity is depicted in the form of a bipartite network, in 
which nodes in either set correspond to compounds from 
the lists of APCs or AVDs and edges are drawn between the 
nodes belonging to these two sets if the Tc value between 
them follows the criterion mentioned in Material and Meth-
ods Section “Anti-viral drug dataset and similarity index 
calculation” (Fig. 4). Hence, only the APCs earlier pass-
ing the Tc-based selection criterion (referred as PEPs) were 
considered at this step. Satisfying this criterion, 292 PEPs 
were screened-in against 16 of 125 AVDs. In this man-
ner, a Tc-based similarity network between 292 PEPs and 
16 AVDs, with network size of 307 nodes and 302 edges, 
was constructed (referred as PEP-AVD similarity network; 
Fig. 4). Detailed examination of the network returned that 
160 PEPs share similarity with AV_DB00632 in the PEP-
AVD network. AV_DB00632 corresponds to Docosanol, 
a class of approved drug effective against broad-spectrum 
lipid-enveloped viruses [38]. Among the list of 160 PEPs, 
C_00323 (2-Isopropyl-5-methylcyclohexanol) shares the 
maximum similarity with this AVD with Tc score of 0.92. 
C_00323 (2-Isopropyl-5-methylcyclohexanol) is a cyclohex-
anol molecule that has gained massive attention for its iso-
prenylated forms and is reported to be effective against viral 
infections as caused by HIV-1 and H1N1 [39, 40]. Accord-
ing to the phytochemical dataset prepared in this study, 
C_00323 (2-isopropyl-5-methylcyclohexanol) is found to 
be present in 39 Ayurvedic herbs (including varieties); the 



2581Molecular Diversity (2022) 26:2575–2594 

1 3

abundance of this phytochemical in various Ayurvedic herbs 
strengthens the therapeutic relevance of Ayurveda against 
viral infections.

It is interesting to note that while the majority of PEPs 
share one-to-one connection, i.e., showing similarity with 
only one AVD, few of them have one-to-many similarity-based 

Fig. 2  AH-PEP network: The AH-PEP network representing asso-
ciations of 292 PEPs (blue-colored triangles) with 558 herb varieties 
(red-colored octagons). Herb AH_0303-v1 (Artemisia annua) con-
tributes maximally to the PEPs category with 35 of its phytochemi-

cals in the AH-PEP Network, as seen with largest node size in the 
network where the size of nodes varies according to its degree cen-
trality
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connections. Out of 292 PEPS, 8 (C_01204: octylamine, 
C_04300: primene, C_01145: hexahydroaniline, C_02130: 
myristylamine, C_01197: 1-aminoheptane, C_07863: 2'-deox-
ycytidine B-D-threo, C_04774: 2-aminononadecane, and 
C_01979: 2'-deoxycytidine) were found to have similarity with 
more than one AVD, suggesting the importance of detailed 
examination of these compounds to be examined in detail for 
their molecular features thereby aiding in future pharmacoph-
ore-based antiviral drug design approaches.

Phytochemicals–SARS‑CoV‑2 protein target 
association

As per the approach mentioned in Material and Meth-
ods Section “In-silico molecular docking and interaction 

analysis,” each SARS-CoV-2 protein was associated with 
their screened-in PEPs and their association was represented 
in form of  PEPcov2-PTcov2 network (Fig. 5). As already stated, 
the cutoff criterion resulted in selecting 129 of 292 PEPs 
against 24 SARS-CoV-2 proteins; therefore,  PEPcov2-PTcov2 
network was limited to 153 nodes (129  PEPcov2 & 24 SARS-
CoV-2 proteins) having 1179 edges between them. The 
information of  PEPcov2-PTcov2 network can be checked in 
Supplementary Table-3.

For QHD43415_6, a non-structural protein nsp6 of 
SARS-CoV-2, 62  PEPcov2 were screened-in, where the 
least-binding energy was observed as −8.3  kcal/mol 
for C_04396 (Epi-Friedelanol) and C_16048 (hexadec-
ahydropicen-3-ol derivative). Studies suggest that nsp6 
is linked to the virulence of the virus as it is involved 

Fig. 3  Clustering and chemical distribution of PEPs: The 292 poten-
tially effective phytochemicals (PEPs) are clustered in a hierarchical 
manner using Tanimoto coefficient and atom pair descriptors using 
ChemMine tools. Clustering of the PEPs is represented in the form 
of a tree layout where outer circles represent the detailed chemical 

class of PEP molecule and inner circle represents the PEP identifier 
assigned to each phytochemical considered in this study. The 292 
PEPs are found to be broadly classified into 6 chemical classes and 
each class is represented by a unique color code
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Fig. 4  PEP-AVD similarity network: The PEP-AVD network rep-
resents the Tanimoto coefficient (Tc)-based similarities between the 
PEPs and antiviral drugs listed in DrugBank. 292 PEPs (blue-colored 
diamonds) are found to be associated with 16 (pink-colored arrows) 
of total 125 AVDs considered in this study via 302 PEP-AVD pairs. 
Only PEP-AVD pairs following the selection criterion detailed in 
Materials and Methods section are considered for constructing the 

network. The edge widths of 302 pairs in the network are plotted 
in proportion to their Tc values. Red-colored circular outlined sub-
networks represent the multi-similarity APCs against more than one 
AVD class, highlighting 8 APCs (C_01204, C_04300, C_01145, 
C_02130, C_01197, C_07863, C_04774 and C_01979) having multi-
level similarity. The size of the nodes varies according to its degree 
centrality value in this network
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in cellular DNA synthesis [41, 42]. Similarly, for the 
main protease protein, QHD43415_3, 44  PEPcov2 were 
screened-in of which 4 (C_32090: tohogenol, C_11130: 
octahydronaphthalene-2,6-diol derivative, C_17085: tarax-
astane-3beta,20alpha-diol, and C_22189: inophyllolide 
chromanol) show very good binding affinities, with the 
lowest one being −8.5 kcal/mol. QHD43415_3 is a coro-
navirus 3 chymotrypsin-like protease (3CLpro) which is 
often termed as “the Achilles” heel of coronaviruses and 
is a validated target for identification of novel leads against 
corona virus [43]. Thus, the relevance of above mentioned 
4 compounds in the regulation of QHD43415_3 is highly 
noticeable and requires special attention for in vitro and 

in vivo evaluation of their activity as potential anti-coro-
navirus inhibitors.

During the detailed analysis of local network structures, it 
was found that C_03212 (inophyllum B) possesses the mul-
titargeting ability against 20 of 24 SARS-CoV-2 proteins. 
The shift from single-target to multi-target drugs has made 
rapid and remarkable progress and has emerged as an evolv-
ing paradigm of drug discovery [44], and as highlighted in 
a recent study network pharmacology acts as a powerful 
tool in identifying effective combination therapies in drug 
development [45]. Hence, other protein targets may also be 
looked for their potential regulators from the  PEPcov2-PTcov2 
network and may be ranked on the basis of their binding 

Fig. 5  Phytochemicals–SARS-CoV-2 protein target association 
 (PEPcov2-PTcov2 network): The  PEPcov2-PTcov2 network represents the 
association of 129  PEPcov2 with SARS-CoV-2 proteins leading to the 
network size of 153 nodes (129  PEPcov2 and 24 SARS-CoV-2 pro-
teins) and 1,179 edges. The  PEPcov2 is represented using blue-colored 
diamond-shaped nodes and SARS-CoV-2 proteins  (PTcov2) as yellow-

colored octagons. The size of the nodes varies according to its degree 
centrality and width of the edges varies according to their binding 
energy values, where the pairs having lower value of binding energy 
(which represents the most suitable protein–ligand interaction pair) 
are given more weight and are ranked higher
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energy values, thereby giving an overall idea about the 
protein-specific regulatory role of Ayurvedic herbs against 
COVID-19 disease.

Phytochemicals–human protein target association

To detect the poly-pharmacological action of PEPs on the 
human system, the association of PEPs with their human 
PTs was represented in the form of potentially effective 
phytochemicals–human protein target (PEPs-PThs) network. 
For a phytochemical having ID C_31134, no protein target 
could be screened-in against the selection criterion adopted 
for protein target identification. Therefore, the network was 
constructed by associating 291 PEPs with their 621 protein 
targets identified using three target prediction algorithms as 
mentioned in Material and Methods Section “Protein Target 
identification of phytochemicals.” This resulted in the con-
struction of PEPs-PThs network with network size of 912 
nodes (291 PEPs + 621  PThs) and 6299 edges (Supplemen-
tary Fig. 1). Each of the 6299 PEP-PThs interaction pairs was 
prioritized based on their prediction supported from three 
target prediction algorithms. This led to the identification of 
1265 high-confidence pairs, as predicted by at least two of 
the three target prediction algorithms (HCI pairs). The 6299 
PEP-PThs pairs and the pairs corresponding to HCI data are 
detailed in Supplementary Table 6.

A sub-network of the PEP-PThs network consisting of 502 
nodes and 2690 edges, specific to 129  PEPcov2 and their 373 
PTs (referred to as  PEPcov2-PThs network), was derived to 
focus on human proteins being targeted by them (Fig. 6). In 
the  PEPcov2-PThs network, C_00289 and C_02937 hold the 
maximum targeting capacity among other  PEPcov2, as these 
can target 74 and 49 proteins, respectively. Their high degree 
centrality value represents the importance of these phyto-
chemicals in the overall  PEPcov2-PThs network. It was inter-
esting to note that all the 129  PEPcov2 were of multi-targeting 
nature with the capability to regulate several human proteins 
simultaneously. Among the protein targets, maximum num-
ber of regulators could be identified for Q96RI1, P28845 and 
P10275 with 102, 100 and 95  PEPcov2, respectively. P10275 
is an androgen receptor encoded by AR gene, and the rel-
evance of the androgens has been associated with increased 
viral load and dissemination as observed in case of COVID 
[46]. Androgen-mediated induction of COVID-19 suggests 
that the role of these 95  PEPcov2 in regulating the AR gene 
is noticeable for the management of COVID-19.

Case‑study I:  PEPcov2 as bi‑directional regulators effective 
against COVID comorbidities

Since the focus of the study is to identify phytochemicals 
with a regulatory role in both the pathogen and its host, bi-
directional regulators were searched among the  PEPcov2 list. 

Such compounds have an added advantage as they work in 
dual scale mode, where at one end they can target pathogen 
proteins that may be crucial for its survival while at another 
end they tend to regulate the human proteins required to 
strengthen its defense mechanism against the pathogen. 
To identify the desired  PEPcov2 with bi-directional regu-
lation ability, 129  PEPcov2 were examined against SARS-
CoV-2 and human protein targets in the  PEPcov2-PTcov2 and 
 PEPcov2-PThs networks, respectively.

In  PEPcov2-PThs network, 129  PEPcov2 were found to be 
associated with 373 human protein targets. Using all these 
data, a tripartite network consisting of 129  PEPcov2, their 373 
human targets and 24 SARS-CoV-2 protein targets referred 
to as “Bi-regulatory  PEPcov2 network” was developed. The 
obtained network of size 526 nodes and 3869 edges, along 
with the list of 373 human targets, is given in Supplementary 
Fig. 2; Supplementary Table 7.

It is well known that not all proteins of the human sys-
tem are suitable for drug interactions, only a fraction of 
the total human proteome can bind to drug molecules with 
high affinity and are potential drug targets, i.e., they have an 
association with a disease or disorder. Therefore, a “drug-
gable bi-regulatory  PEPcov2 network” was extracted from the 
“bi-regulatory  PEPcov2 network” by considering only those 
proteins that are considered to be targets of FDA-approved 
drugs. While “Bi-regulatory  PEPcov2 network” gives an 
overall idea of the dual regulatory mode of  PEPcov2, the 
sub-network may provide valuable help in protein-specific 
drug designing of  PEPcov2 with multi-targeting action. Confi-
dence was also added at this level by considering only those 
 PEPcov2-PThs pairs that belong to the HCI data. In this man-
ner, there is a high-confidence druggable subnetwork of size 
179 nodes and 1588 edges, consisting of 24 SARS-CoV-2 
proteins, 115  PEPcov2 and 40 human protein-approved targets 
(Fig. 7; Supplementary Table 7). 

Recent studies on the treatment procedure given to 
COVID-19 patients address the need of special attention 
toward the problem of cardiovascular system [47]. Since 
most of the current antiviral drugs cause cardiac complica-
tions, alternative therapeutic strategies effective to combat 
the cardiac toxicity should be given consideration. There-
fore, we searched for  PEPcov2 that can target COVID-19 
proteins without imposing a load on the cardiac system. 
To achieve the desired list of  PEPcov2, their protein targets 
in the human system were checked for the participation in 
cardiovascular diseases. To extract high-confidence disease 
association data, Gene–disease association (GDA) score (S) 
of 0.05 was chosen as the threshold [48] so as to have a 
nonzero contribution from either of the C (curated data), 
M (animal model data) or I (inferred data), or a support of 
at least 5 publications. Thirty-six proteins among the 373 
human targets of 129  PEPcov2 were found to be involved in 
cardiovascular diseases within the desired cutoff score. The 
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interactors specific to these 36 proteins were extracted from 
the bi-regulatory PEPcov2 network, where they were found to 
have an association with 123  PEPcov2 and all the 24 SARS-
CoV-2 proteins and presented as a sub-network specific to 
cardiovascular diseases with network size of 183 nodes and 

1471 edges (Supplementary Fig. 3). In the network, the most 
multitargeting  PEPcov2, C_03212 (Inophyllum B) shows its 
targeting action against 20 SARS-CoV-2 proteins and also 
supports the cardiac system by regulating 3 cardiovascular 
diseases-associated proteins, i.e., O00206 (TLR4), Q13093 

Fig. 6  PEPcov2-PThs network:  PEPcov2-PThs network represents a sub-
network of PEPs-PThs network, specific to the association of 129 
 PEPcov2 and their 373 human protein targets. The network consists of 

502 nodes and 2690 edges, with the size of nodes varying as per their 
degree values in the PEPs-PThs network
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(PLA2G7) & P42336 (PIK3CA). C_03212 (Inophyllum B) 
corresponds to the most active component of Calophyllum 
inophyllum, an important component of Ayurvedic drug 
therapy. Besides regulating an important therapeutic target 
TLR4 [49], PLA2G7 [50] and PIK3CA [51] against vari-
ous cardiac-related diseases, literature data are plenteous 
for the antiviral activity of C_03212 [52, 53]. These findings 
suggest that future research endeavors toward exploring the 
anti-COVID-19 activity of C_03212 must be given a proper 
consideration and examined in detail as per the in vivo and 
in vitro studies.

In the context of disease comorbidities associated with 
COVID, a study by Roth and group suggests that the severity 
of COVID infection is higher for the patients suffering from 
diabetes mellitus and hypertension [54]. Therefore, using 
a similar strategy as applied for cardiovascular diseases, 
drug targets involved in diabetes and hypertension were 
also checked and a separate network for each disease was 
constructed and investigated. This is essential to analyze the 
underlying disease comorbidity pattern and the compounds 

from Ayurvedic herbs that may regulate them while dealing 
against the COVID-19 infection. The proteins associated 
with each disease considered can be checked in Supple-
mentary Table 8. For the identification of  PEPcov2 that may 
act on multiple scales, the protein targets of  PEPcov2 were 
checked for their multi-disease association, considering the 
above 3 comorbid diseases. Detailed examination could help 
us to identify that multi-disease associations of a protein 
were observed at this point, where multiple proteins overlap 
between the 3 classes of diseases discussed here (Fig. 8A).

The 14 human proteins common to all these 3 comor-
bid diseases (Table 1) were selected, and their regulatory 
 PEPcov2 was checked. Mapping of these 14 proteins onto 
bi-regulatory PEPcov2 network could help us in deriving a 
sub-network specific to them with size of 111 nodes (73 
PEPcov2 + 14 Human proteins + 24 SARS-CoV-2 proteins) 
and 749 edges (Fig. 8B). To identify high-confidence regula-
tory  PEPcov2, only pairs corresponding to HCI-pair data were 
considered, leading to the selection of 12  PEPcov2 against 
2 proteins (P04150 and P35354). Both these proteins, i.e., 

SARS-CoV-2 proteins

FDA-approved human targets

Fig. 7  Druggable bi-regulatory  PEPcov2 network: The network rep-
resents the dual-regulatory mode of 115  PEPcov2 (middle layer, blue 
diamond shaped nodes) against 24 SARS-CoV-2 proteins (top-layer, 
yellow-colored octagon nodes) and 40 approved protein targets of 
Homo sapiens (bottom-layer, green-colored circular nodes). For the 

differentiation, the edges between  PEPcov2 and SARS-CoV-2 proteins 
are represented using violet color while edges between  PEPcov2 and 
human proteins using orange color. The size of the nodes among the 
network varies according to its degree in this network
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P04150 and P35354, also belong to the FDA-approved pro-
tein target list, thereby suggesting the key relevance of these 
proteins targets and phytochemicals against COVID-19.

Detailed association of these interactions helped 
us to highlight the multitargeting role of C_17006 

(CHEMBL141117), as it targets both these protein targets 
(Fig. 8C). When checked for its SARS-CoV-2 targeting 
capacity, C_17006 was found to have its binding affinity 
against 4 SARS-CoV-2 proteins within the binding energy 
range of −9.4 to −6.7 kcal/mol where best of −9.4 kcal/

6

6816
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6
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Cardiovascular Diseases (36)

Hypertension (40) Diabetes (100)

Human system Virus system

A
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Fig. 8  Regulatory role of phytochemicals in dealing COVID-19-as-
sociated comorbidities. A Distribution of proteins among COVID-
19 comorbid diseases: The Venn diagram shows the distribution of 
human protein targets of  PEPcov2 in 3 COVID-19-associated comor-
bid diseases, namely, cardiovascular diseases, hypertension and dia-
betes. Of total 373 human targets of 129  PEPcov2 considered in this 
study, 36 were associated with cardiovascular diseases, 40 with 
hypertension and 100 with diabetes mellitus. 14 overlapping proteins 
common to all the 3 comorbid diseases were identified and consid-
ered for detailed analysis. B Bi-regulatory  PEPcov network specific to 
14 common proteins: The network is a subnetwork of bi-regulatory 
 PEPcov2 network specific to the  PEPcov2 effective in dealing COVID-
19-associated comorbidity diseases; cardiovascular diseases hyper-
tension and diabetes mellitus. The network contains 14 human pro-
teins (green-colored circular nodes) being regulated by 73  PEPcov2. 
The information of SARS-CoV-2 proteins targeted by these 73 
 PEPcov2 is also added to the network. For the differentiation, the edges 

between  PEPcov2 and SARS-CoV-2 proteins are represented using 
violet color while edges between  PEPcov2 and human proteins using 
orange color. The size of the nodes among the network varies accord-
ing to their degree value, representing the high number of regulators 
for P04150 and P35354 (as depicted by their large size among all 
the nodes). C Multi-targeting role of a bi-regulatory phytochemical 
C_17006: A phytochemical having ID C_17006 shows a dual action 
mode in both the human and SARS-CoV-2 systems. The multi-tar-
geting nature of this compound against two human FDA-approved 
protein targets P04150 and P35354 is shown in the left side of the 
panel. In the virus system, the compound can target 4 viral proteins 
within the binding energy range of −9.4 to −6.7 kcal/mol where best 
of −9.4 kcal/mol was obtained for nsp2 protein QHD43415_2 (shown 
in the right side of the panel). The binding energy values of the com-
pound with each viral protein are represented along the edges of the 
network
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mol was noted for QHD43415_2, a non-structural protein 2 
(nsp2), shown in Fig. 8C. This suggests the role of C_17006 
is highly noteworthy in dealing with the co-morbidities 
associated with COVID-19. In this manner, other regula-
tory molecules can also be checked for their multi-targeting 
capacity and can be prioritized based on their binding affin-
ity with SARS-CoV-2 proteins.

Case study II: Immunoregulatory potential of  PEPcov2

To explore the underlying mechanisms of Ayurvedic herbs 
being studied toward promoting the human immune sys-
tem, a sub-network of immune pathways being regulated by 
 PEPcov2 was constructed. It has been studied that in the early 
stages of infection or during incubation period, host needs a 
specific adaptive immune response to exterminate virus from 
the system [55]. This is necessary to inhibit the progression 
of the disease to its chronic form or more severe stages. At 
this stage, immune system of the host body plays an impor-
tant role to promote a state of good health. A strong immune 
system in addition to the genetic background (e.g., HLA) is 
essential to elicit a strong antiviral immunity at initial stages 
[55]. Therefore, immunomodulatory potential of  PEPcov2 
was investigated by characterizing potential  PEPcov2-PThs 
interactions potentially responsible for immune system 
pathways. For this, 21 pathways specific to immune-system 
as described by KEGG database (i.e., hsa04062, hsa04610, 
hsa04611, hsa04612, hsa04620, hsa04621, hsa04622, 
hsa04623, hsa04624, hsa04625, hsa04640, hsa04650, 
hsa04657, hsa04658, hsa04659, hsa04660, hsa04662, 
hsa04664, hsa04666, hsa04670 & hsa04672) and their pro-
tein targets in human were selected for further analysis [56]. 
Among 373 human protein targets of 129  PEPcov2, 63 were 
involved in the above-mentioned 19 of 21 immune pathways 
via 163 interactions (as presented in the immunoregulatory 
network; Fig. 9A; Supplementary Table 9). For two immune 
pathways hsa04624 and hsa04625, no protein target shows 
their involvement, and therefore, network is restricted to 19 
immune pathways. The network suggests that the immu-
nomodulatory potential of  PEPcov2 is largely via regulating 
chemokine and NOD-like receptor signaling pathways. The 
high regulatory potential of 21  PEPcov2 against chemokine 

signaling pathways may also give an added advantage in 
managing cardiovascular diseases like atherosclerosis, as 
such patients are at high risk in developing COVID-19 infec-
tion [47, 57]. The chemokine regulation is mainly via these 
21  PEPcov2 which target 18 proteins involved in this pathway. 
The location of these 18 proteins onto the pathway is shown 
in red rectangles in Fig. 9B.

The immune regulatory network suggests that immu-
noregulatory effect may be conferred by carefully designed 
combination of phytochemicals. The combined effect of 
these PEPs may be associated with the molecular-scale 
rationale behind the immune-boosting capacity of Ayur-
vedic herbs and formulations. Among 67  PEPcov2 involved 
in immunoregulation (via targeting 63 human proteins 
of immunoregulatory network), C_34364 (guanosine-
5'-triphosphate) and C_02937 (crotonoside) are the top 
immunoregulators with 13 and 9 protein targets, respectively 
(Table 2).

Additional details of these phytochemicals may be 
checked by studying the phytochemical and their pro-
tein–ligand complexes for their structural and analytical 
properties. To derive the information of herbs these 67 
 PEPcov2 (involved in immunoregulation) belongs to, the 
AH-PEPs network was checked which led to the identifi-
cation of association of 198 AHs with these 67  PEPcov2. 
The information was added to Bi-regulatory PEPcov2 net-
work to construct a 4-component network consisting of 
198AHs, 67  PEPcov2 and their regulators from both human 
and SARS-CoV-2 proteins. This led to the construction of a 
herb-specific immune regulatory network (HSIR network), 
with network-size of 352 nodes and 1128 edges containing 
association of 198 AHs, 67  PEPcov2, 24 SARS-CoV-2 pro-
teins and 63 proteins from humans (Fig. 9C). Each immune 
regulatory herb from the 198 AHs was prioritized based 
on their both human and virus targeting capability. When 
checked for the AHs having at least 5 virus targets, 149 
AHs got selected, and among those the AHs who contribute 
maximally to the protein targets are Zea mays (AH_3081-
v1) with 32 proteins being targeted by its 9 PCs, Cucurbita 
maxima (AH_0865-v1) with 29 proteins being targeted by 
its 10 PCs, Pisum sativum (AH_2237-v1) with 29 proteins 
being targeted by its 9 PCs, Thlaspi arvense (AH_2874-v1) 

Table 1  Distribution of the proteins among different classes of comorbid diseases

Serial no. Class No. of 
proteins

Proteins

1 Cardiovascular and Hypertension 4 P09917, P37023, P07949, P19320
2 Cardiovascular and Diabetes 12 P03372, O00206, P05362, P01130, P02647, P02768, O95477, Q07869, P04114, 

Q8NBP7, P27169, P11473
3 Hypertension and Diabetes 6 P24530, P10145, P25101, P80365, P42345, P03956
4 Associated with all three (Cardiovas-

cular, Hypertension, and Diabetes)
14 P35354, P02649, P00797, P37231, P04035, P08253, P16581, P30556, P04150, 

P35228, P42336, P12821, P06858, P29474
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with 28 protein being targeted by its 8 PCs, Calophyllum 
inophyllum (AH_0504-v1) with 28 protein being targeted by 
its 5 PCs and AH_3091-v1/v3 (Ziziphus jujube) with 27 pro-
teins being targeted by its 2 PCs (for AH_3091-v3) and with 
26 proteins being targeted by its 8 PCs (for AH_3091-v1).

Among these, Ziziphus jujube was found to target maxi-
mum number of viral proteins. It is interesting to note that 
the decoction of Ziziphus jujube has also been suggested 
in the advisory issued by Ministry of AYUSH (Ayurveda, 

Yoga, Unani, Siddha and Homeopathy), Government of 
India, toward the management of COVID at its preventive 
and prophylactic stage [9]. The observation strengthens the 
credibility of the network toward suggesting potential herbs 
and their phytochemicals for dealing COVID-19 pandemic. 
The network also sheds light on the phytochemical-specific 
targeted action of herbs; for example, the targeted action of 
Ziziphus jujube is shown in Fig. 9D, where the mechanism 
of its management against COVID-19 can be attributed to 

Ayurvedic herb

Phytochemicals

Virus-
proteins

Human
proteins

A B

C
D

Fig. 9  Immune regulatory potential of Ayurvedic herbs. A Immu-
nomodulatory network: the immunoregulatory network represents 
the participation of protein targets of 129  PEPcov2 in regulating the 
immune system of Homo sapiens. The outer layer representing the 
circular nodes depicts 19 of 21 immune system-related pathways in 
humans as described by KEGG database. Among 373 human protein 
targets of 129  PEPcov2, 63 were found to be involved in 19 immune 
pathways, arranged inside the circular layout as shown by green color 
circular nodes. No protein target was associated with hsa04624 and 
hsa04625, thereby restricting the number to 19. B Chemokine sign-
aling pathway (path:hsa04062) obtained from KEGG database: The 
location of the mapped genes corresponding to protein targets of 

 PEPcov2 is highlighted in red-colored boxes in the pathway. C Herb-
specific immune regulatory network (HSIR-Network): HSIR network 
is the 4-component network of size 352 nodes and 1,128 edges con-
taining association of 198 AHs, 67  PEPcov2, 24 SARS-CoV-2 proteins 
and 63 human proteins. The network is limited to the protein targets 
involved in immune system-related pathways in humans as described 
by KEGG database. D Subnetwork of HSIR network specific to 
AH_3091-v1 (Ziziphus jujube): The dual regulatory role of Ziziphus 
jujube in targeting SARS-CoV-2 and human immune system-related 
proteins through 8 of its phytochemicals (C_23991, C_28934, 
C_22690, C_05205, C_16341, C_28442, 51,025,490, C_2044 and 
C_24442) represented by blue-colored diamonds
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its 8 phytochemicals (C_23991: colubrinic acid, C_28934: 
CHEMBL1782597, C_22690: zizyberanalic acid, C_05205: 
ceanothic acid, C_16341: di-carboxylic acid derivative, 
C_28442: carboxylic acid derivative, C_2044: alphitolic 
acid, and C_24442: epiceanothic Acid) that have targeting 
potential against 23 SARS-CoV-2 proteins. The plant also 
aids in regulation the host immune system through these 8 
phytochemicals by targeting three human proteins P20292, 
P13726 and P35354; among these P13726 and P35354 
belong to the class of FDA-approved targets. The complete 
interaction data used for constructing HSIR-network are 
given in Supplementary Table 10. The data may be checked 
for other herbs to decipher their phytochemical specific tar-
geted action in the management of COVID-19. Although 
the network is limited to the immune regulatory potential 
of those phytochemicals having the ability to target SARS-
CoV-2 proteins, the approach holds the potential to give a 
mechanistic understanding of therapeutic relevance of tra-
ditional herbs.

The information of the data used in the present study and 
the results generated is summarized in Table 3. 

Summary

The exceptional state of health crisis emerged due to the 
novel SARS-CoV-2 virus has forced the researchers across 
the globe to constantly work toward searching the pre-
ventive measures as well as developing its possible cure. 
Ayurveda, considered as the oldest healing schema on 
Earth, describes thousands of herbs and their formulations 
for the well-being of mankind. It has always remained a 
great source of drugs and other lead-like molecules. To 
explore the therapeutic relevance of Ayurveda for com-
bating the current situation, the network pharmacologi-
cal evaluation of Ayurvedic herbs was carried out in this 
study. An extensive collection of the phytochemicals pre-
sent in Ayurvedic herbs and the study of their regulatory 

prospects form the basis of present work. To decipher the 
phytochemical-specific targeted action of herbs, a col-
lection of 34,472 Ayurvedic phytochemicals (APCs) was 
developed from 7258 botanical names. 292 (referred to 
as PEPs) of these phytochemicals were found to be simi-
lar (based on Tc value) with 16 of 125 currently available 
antiviral drugs considered in the study. Herb-wise distri-
bution of PEPs was found to be maximally concentrated 
to Artemisia annua with 35 of its phytochemicals in PEPs 
category. When checked for the association of these 292 
PEPs with SARS-CoV-2 proteins based on their binding 
energy value distribution, 129 (referred to as  PEPcov2) were 
screened-in against 24 SARS-CoV-2 proteins, thereby 
restricting the further analysis to  PEPcov2. The therapeu-
tic relevance of PEPs was assessed using the information 
of their 621 human protein targets and 24 SARS-CoV-2 
protein targets, where targeting capabilities of 62  PEPcov2 
were identified against non-structural protein nsp6 of 
SARS-CoV-2. Among the list of 292  PEPcov2, 115 were 
identified with dual regulatory mode having targeting 
capability in both virus and its host system, thereby indi-
cating their future implications in pharmacophore-based 
drug design approaches. For example, a phytochemical 
C_03212 (Inophyllum B from Calophyllum inophyllum) 
was found to support the cardiovascular system by target-
ing genes involved in cardiovascular diseases, like TLR4, 
PLA2G7 & PIK3CA. The ability of this compound to tar-
get 20 SARS-CoV-2 proteins further strengthens its role 
in managing COVID-19. The multi-regulatory role of 73 
phytochemicals was highlighted for their ability to manage 
the complication of COVID-19-associated comorbidity; 
among them the effect of C_17006 (CHEMBL141117) is 
highly noticeable for its multi-targeting strategy. In addi-
tion to this, the high binding affinity of the compound 
for nsp2 protein of SARS-CoV-2 attracts attention for its 
ability to act as a potential lead moiety. Immunoregula-
tory ability of the Ayurvedic herbs was also explored and 

Table 2  Information of the top-5 immunomodulators

S. No. Phytochemical information No. of protein targets Herbal-association

Phytochemical ID Phytochemical name Human immune 
system-associated 
proteins

SARS-
Cov-2 
proteins

No. of herbs Herb details

1 C_34364 Guanosine 5'-triphosphoric acid 13 5 1 AH_0264
2 C_02937 Crotonoside 9 1 1 AH_0858
3 C_09617 5-Methoxypodophyllotoxin 7 5 3 AH_2275, 

AH_2276, 
AH_17301

4 C_00378 Arteannuin 6 1 1 AH_0303
5 C_12746 Benzofuran-1-one derivative 6 1 2 AH_2274, AH_0318
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presented as a special case study. The analysis helps to 
decipher the role of 63  PEPcov2 for their regulatory role on 
the immune system of host body where the effect is mainly 
via regulating chemokine and NOD-like receptor signaling 
pathways. C_34364 (Guanosine 5'-triphosphoric acid) and 
C_02937 (Crotonoside) were found as top immunoregu-
lators with ability to regulate 13 and 9 proteins of the 
immune system, respectively. In our study, Ziziphus jujube 
appeared as a potential candidate with dual regulatory 
effects in SARS-CoV-2 targeting and immune-supportive 
role; the detailed phytochemical special protein targeting 
ability of the plant has been deciphered and presented as 
an example where the effect is found to be mainly through 
its 8 phytochemicals. Other potential herbs may also be 
explored for their systems-level effects, and the role of 
multi-targeting phytochemicals can be identified via ana-
lyzing the interaction networks generated in the study. 
The developed protocol provides novel insights about the 
complex regulatory role of traditional medicines and their 
target specificity in a much deeper and simpler context for 
managing the current global situation. This study can be 
considered a major attempt toward integrating the wealth 

of traditional practices with modern scientific approaches 
to meet the therapeutic demands in the current scenario.
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3 Ayurvedic Phytochemicals (APCs) 34,472 Supplementary Table-1
4 Anti-Viral Drugs (AVDs) 125 Supplementary Table-2
5 Potentially Effective Phytochemicals (PEPs) 292 Supplementary Table-2
6 SARS-CoV-2 proteins from I-TASSER 24 Supplementary Table-3
7 Potentially effective phytochemicals against SARS-CoV-2 proteins 

 (PEPcov2)
129 Supplementary Table-3

8 PEPcov2-PTcov2 network 153 (nodes)
1179 (edges)

Supplementary Table-3

9 Herbs containing 292 PEPs 558 Supplementary Table-4
10 Chemical class of PEPs 6 (Broad classes) Supplementary Table-5
11 PEP-PThs pairs 6299 Supplementary Table-6
12 HCI pairs 1265 Supplementary Table-6
13 Bi-regulatory  PEPcov2 network 526 (nodes)

3869 (edges)
Supplementary Table-7

14 Human protein targets of 129  PEPcov2 373 Supplementary Table-7
15 Approved drug targets in Druggable bi-regulatory  PEPcov2 network 40 Supplementary Table-7
16 Human protein targets of  PEPcov2 involved in comorbid diseases 36 (cardiovascular diseases)

40 (hypertension)
100 (diabetes mellitus)

Supplementary Table-8

17 Immunomodulatory network 63 protein targets associated 
with 19 immune pathways

Supplementary Table-9

18 HSIR network 352 (nodes)
1,128 (edges)

Supplementary Table-10
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