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Abstract

Objective

We investigated the impact of human immunodeficiency virus (HIV) infection and anti-retro-

viral therapy (ART) on the gut microbiota of children.

Design

This cross-sectional study investigated the gut microbiota of children with and without HIV.

Methods

We collected fecal samples from 59 children with HIV (29 treated with ART [ART(+)] and 30

without ART [HIV(+)]) and 20 children without HIV [HIV(–)] in Vietnam. We performed quan-

titative RT-PCR to detect 14 representative intestinal bacteria targeting 16S/23S rRNA mol-

ecules. We also collected the blood samples for immunological analyses.

Results

In spearman’s correlation analyses, no significant correlation between the number of domi-

nant bacteria and age was found among children in the HIV(−) group. However, the number

of sub-dominant bacteria, including Streptococcus, Enterococcus, and Enterobacteriaceae,

positively correlated with age in the HIV(−) group, but not in the HIV(+) group. In the HIV(+)

group, Clostridium coccoides group positively associated with the CD4+ cell count and its

subsets. In the ART(+) group, Staphylococcus and C. perfringens positively correlated with

CD4+ cells and their subsets and negatively with activated CD8+ cells. C. coccoides group

and Bacteroides fragilis group were associated with regulatory T-cell counts. In multiple lin-

ear regression analyses, ART duration was independently associated with the number of C.

perfringens, and Th17 cell count with the number of Staphylococcus in the ART(+) group.
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Conclusions

HIV infection and ART may influence sub-dominant gut bacteria, directly or indirectly, in

association with immune status in children with HIV.

Introduction

The gut microbiota comprises approximately 100 trillion microbes from more than 1000 bac-

terial species [1, 2]. The gut microbiota plays a major role in nutrient absorption, food metabo-

lism, intestinal barrier protection from pathogens, and the modulation of gut immune

function [3–5]. Although the composition of the gut microbiota may be influenced by age,

diet, genetics, and geography, four phyla (i.e., Firmicutes, Bacteroidetes, Actinobacteria, and

Proteobacteria) are dominant and stable in healthy individuals [4, 6, 7]. CD4+ T cells and their

subsets, such as type 1 helper T cells (Th1), Th2, Th17, and regulatory T (Treg) cells, have been

associated with the gut microbiota, and their interactions are associated with various diseases,

such as inflammatory bowel disease, rheumatoid arthritis, and cancer [8, 9].

Gut-associated lymphoid tissue (GALT) is the largest replication site, and it serves as a res-

ervoir of human immunodeficiency virus type 1 (HIV) [10–12]. Progressive HIV infections

are characterized by a depletion of CD4+ T cells in the GALT, followed by microbial transloca-

tion, gut microbiota dysbiosis, and chronic immune activation [11, 13–17]. Despite the sus-

tained viral suppression and immune recovery provided by anti-retroviral therapy (ART), the

imbalance in gut microbiota is, at best, only partially restored for a long time after initiating

ART in adults [15, 16, 18].

In the gut microbiota of healthy children, the dominant phyla are Bacteroidetes and Actino-

bacteria, particularly the Bifidobacterium genus of Actinobacteria. These bacteria have a func-

tional composition similar to that of healthy adults [7, 19–22]. A few studies from Africa and

India have shown reduced bacterial diversity in the gut microbiota of children with HIV and

children treated with ART compared to the microbiota of children without HIV [23–25].

However, no consensus exists on whether ART in children with HIV may restore the gut

microbiota to the state observed in children without HIV [23–25]. The impacts of HIV and

ART on the gut microbiota in children remain poorly understood.

In Vietnam, no study has focused on understanding the gut microbiota in children with

HIV. Therefore, the current study aimed to investigate the impact of HIV infection and ART

on the gut microbiota among children in Vietnam.

Methods

Study population

This non-randomized, cross-sectional study was conducted at the Vietnam National Chil-

dren’s Hospital (VNCH) in Hanoi, Vietnam, in 2012 [26, 27]. Children with HIV who did not

start ART [HIV(+) group], children with HIV who received ART [ART(+) group], and chil-

dren without HIV infection [HIV(−) group, control] were recruited.

The inclusion criteria for children with HIV were followed at the VNCH and�2 years old.

Exclusion criteria were progression of HIV to acquired immunodeficiency syndrome (AIDS),

treatment with anything that may influence the immune system, any antibiotics except cotri-

moxazole, hospitalization in the prior 8 weeks, or symptoms of gastrointestinal infection, such

as diarrhea, nausea, and vomiting, with fever, at the time of recruitment. The children in the
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ART(+) group resided at an orphanage near Hanoi. The children in the HIV(+) group resided

at their own homes. The children in the HIV(−) group resided at a different orphanage in

Hanoi [26, 27].

Collection and preparation of fecal samples

Immediately after defecation, fecal samples were collected in a plastic container (Sarstedt AG

& Co., Nümbrecht, Germany), kept at 4˚C, and transferred to the laboratory using containers

maintained at 4˚C. At the laboratory, the fecal samples were weighed, suspended in RNA-sta-

bilizing solution (RNAlater; Ambion, Inc., Austin, TX, USA), and homogenized (20 mg of

feces/mL). The fecal homogenate (200 μL) was added to 1 mL of Dulbecco’s Phospahte Buff-

ered Saline (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan). After centrifuging the mixture at

12,000 × g for 5 min, the pellet was stored at −80˚C until used for RNA extraction. The whole

process was completed within 24 hours after defecation [28].

Quantification of bacteria in human feces by RT-qPCR

Total RNA extraction and subsequent reverse-transcription and quantitative polymerase chain

reaction (RT-qPCR) assays were performed using the methods described by Matsuda et al.

[29, 30]. Briefly, 4 mg of feces were subjected to total RNA extraction, and each extracted RNA

sample was serially diluted 10-fold. Three serial dilutions of the extracted RNA samples (corre-

sponding to 1/400, 1/4,000, and 1/40,000 of the extracted RNA) were subjected to RT-qPCR

with specific primer sets that targeted the 16S or 23S rRNA of the 14 representative intestinal

bacteria in four main phyla, including: Firmicutes, such as Clostridium coccoides group, C. lep-
tum subgroup, C. difficile, C. perfringens, Lactobacillus spp., Streptococcus, Enterococcus, and

Staphylococcus; Actinobacteria, such as Bifidobacterium and Atopobium cluster; Bacteroidetes,

such as Bacteroides fragilis group and Prevotella; and Proteobacteria, such as Enterobacteria-
ceae and Pseudomonas [29–32]. The counts of Lactobacillus spp. obtained with RT-qPCR were

expressed as the sum of six Lactobacillus subgroups and two species. In the same experiment, a

standard curve was generated with the RT-qPCR data (by threshold cycle: CT value) and the

cell counts (by DAPI staining) of the dilution series of total RNA from the standard strain for

each bacterial target. The CT values from fecal samples were normalized to the standard curve

to obtain the bacterial count per gram wet weight of feces.

In addition, the individual bacteria in the fecal microbiota are present at different microbial

cell counts. Previous reports revealed that the average total bacterial count is approximately

1011 cells/g of feces [29, 31]. We regarded the threshold for dominance in abundance at 1.0%

of the total bacterial count, and the threshold in counts was set at 109 cells/g [6, 33–35].

Laboratory methods

White blood cell (WBC) counts, WBC differentiation, hemoglobin level (Beckman Coulter, Lh

780, USA), total cholesterol level, and fasting blood sugar (Olympus AU640, Japan) were mea-

sured at the clinical laboratory of VNCH. Plasma HIV viral loads were measured as described

previously [26].

Immunological analysis

Immunological investigations were performed with blood samples as described previously

[26]. Briefly, whole blood samples were stained with a combination of monoclonal antibodies

to detect cell surface molecules within 6 hours after collection and analyzed using a JSAN flow

cytometer (Bay Bioscience, Kobe, Japan). The obtained data were analyzed by Flowjo V.7.5.5
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(FLOWJO, OR, USA). We defined CD38+HLA-DR+CD8+ cells as activated CD8+ cells,

CXCR3+CCR6−CD25lowCD4+ cells as Th1, CXCR3−CCR6−CD25lowCD4+ cells as Th2,

CXCR3−CCR6+CD25lowCD4+ cells as Th17 cells, and CD25highCD4+ cells as Treg cells [36–

38]. The gating strategy for cell staining analysis by flow cytometry is shown as S1 Fig. The

absolute cell count was calculated as WBC count × percentage of lymphocytes × percentage of

target cells obtained by flow cytometry.

Statistical analysis

Statistical analyses were performed using SPSS version 25 (IBM SPSS Statistics, USA) and R

version 3.6.2 [39]. The chi-squared test or Fisher’s exact test was performed to assess the differ-

ences in bacterial detection rates. The gut microbiota patterns were presented as biplots with

the principal component analysis (PCA) using the prcomp function from the ggbiplot package

in R. The number of bacteria was compared between the groups using the Mann-Whitney U
test. Spearman’s rank test was used to analyze the pairwise correlations between bacteria and

possibly related factors, such as age, ART duration, CD4+ cells and their subsets, CD8+ cells,

the proportion of activated CD8+ cells, and the use of cotrimoxazole. The correlations were

visualized as a heatmap using the corrplot function in R. Simple linear regression was used to

assess the linear relationship of the significantly correlated pairs. The significant relationship

was confirmed in multiple linear stepwise regression analysis. CD4+ cells were not included in

the multiple linear regression analysis due to the multicollinearity with their subsets. P< 0.05

was considered significant.

Study approval

This study was carried out according to the World Medical Association’s Declaration of Hel-

sinki, the Japanese Ethics Guidelines for Human Genome/Gene Analysis Research, and the

Vietnamese Ethics Guidelines. The protocol was approved by the Ethics Committee of Kana-

zawa University [2011–080 (5775)] and the Ethics Committee of the VNCH (09/2012/

BVNTWW-HD3), Hanoi, Vietnam. Each child’s parents or guardians were informed, and

written consent was obtained for all participants. This study is registered at UMIN-CTR:

UMIN000015044.

Results

Recruitment and characteristics of the study population

Approximately 500 children with HIV were followed at the VNCH in Hanoi, Vietnam, in

2012, and 40 of them did not start ART according to the Guidelines of the Ministry of Health

in Vietnam (No. 3003/QÐ-BYT dated 19/08/2009) [40]. We invited all 40 of the children who

did not receive ART, 30 of whom consented to participate in this study [13 females and 17

males; median age 5.9 years, range 2.0–8.8 years; HIV(+) group]. We tried to recruit age- and

gender-matched children with HIV who were on ART [n = 29: 12 females and 17 males;

median age 6.1 years, range 3.6–8.6 years; median duration of ART: 3.5 years, range 0.8–5.8

years; ART(+) group] and children without HIV as a control [n = 20, 8 females and 12 males;

median age 4.1, range 2.0–8.3 years; HIV(–) group], though we could only recruit a smaller

number of children without HIV who were 2 years younger than the HIV(+) and ART(+)

groups (P = 0.048 and P = 0.009, respectively). Their detailed demographic characteristics and

immune status are provided in Table 1 and elsewhere [26, 27].

The 29 children in the ART(+) group were all treated with two nucleoside reverse transcrip-

tase inhibitors (NRTIs); 25 were also treated with one non-nucleoside reverse transcriptase
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inhibitor and the remaining 4 with one protease inhibitor (PI): 8 received zidovudine/lamivu-

dine/nevirapine; 7 received stavudine/lamivudine/nevirapine; 6 received zidovudine/lamivu-

dine/efavirenz; 4 received stavudine/lamivudine/efavirenz; 2 received zidovudine/lamivudine/

lopinavir boosted with ritonavir; 1 received abacavir/lamivudine/lopinavir boosted with rito-

navir; and 1 received abacavir/didanosine/lopinavir boosted with ritonavir. Fifteen children in

the HIV(+) group and nine children in the ART(+) group received cotrimoxazole according to

the Guidelines of the Ministry of Health in Vietnam (No. 3003/QÐ-BYT dated 19/08/2009)

[40].

Gut microbiota profiles

The dominant bacteria in the gut microbiota (�109 cells/g of feces) included C. coccoides
group, C. leptum subgroup, Bifidobacterium, Atopobium cluster, B. fragilis group, and Prevo-
tella. The sub-dominant gut microbiota (<109 cells/g) included C. difficile, C. perfringens,
Streptococcus, Enterobacteriaceae, Lactobacillus spp., Enterococcus, Staphylococcus, and Pseudo-
monas (S1 Table). Due to the low detection frequencies of C. difficile and Pseudomonas (3.4%

to 20% in all groups), these two bacteria were not included in further analyses (S2 Table).

PCA revealed that the HIV(−) and HIV(+) groups had similar gut microbiota structures.

The gut microbiota structure of the ART(+) group was different from the other groups and

characterized by the abundance of Atopobium cluster, Bifidobacterium, Prevotella, and Lacto-
bacillus spp. (Fig 1).

Table 1. Characteristics and immune status of each study group [25].

Characteristic HIV(−) (n = 20) HIV(+) (n = 30) ART(+) (n = 29) P-values

HIV(+) vs. HIV(−) ART(+) vs. HIV(−) HIV(+) vs. ART(+)

Age (years) 4.1 (2.0–8.3) 5.9 (2.0–8.8) 6.1 (3.6–8.6) 0.048 0.009 0.44

Gender, F/M 8/12 13/17 12/17 0.82 0.92 0.89

Height (cm) 110 (80–130) 107.5 (77–129.5) 110 (90–130) 0.88 0.42 0.41

Body weight (kg) 16 (9–35) 17.3 (10–27) 19.8 (12.0–32.8) 0.47 0.14 0.14

Hemoglobin (g/L) 130.5 (114–141) 121.5 (83–139) 129 (104–157) 0.001 0.74 0.001

Total cholesterol (mmol/L) 3.9 (3.2–5.0) 2.8 (1.8–4.3) 3.8 (2.8–5.3) <0.001 0.57 <0.001

Fasting blood sugar (mmol/L) 4.9 (4.2–5.3) 3.8 (2.6–8.3) 5.1 (3.5–6.0) < 0.001 0.03 <0.001

WHO clinical stage, 2/1 1/29 5/24 0.10

ART duration (years) 3.5 (0.8–5.8)

Age of ART initiation (years) 2.7 (0.4–6.9)

Viral load (log10 copies/μL) 5.0 (3.2–6.5) 3.6 (2.4–4.4)� <0.001

CD4+ cell count (cells/μL) 1050 (693–2688) 691 (97–1784) 894 (244–1711) 0.003 0.018 0.43

Th1 count (cells/μL) 136 (74–220) 78 (25–227) 147 (49–211) 0.004 0.61 0.003

Th2 count (cells/μL) 822 (413–2196) 532 (63–1375) 553 (119–1369) 0.017 0.009 0.98

Th17 count (cells/μL) 109 (51–192) 45 (6–116) 58 (23–144) <0.001 <0.001 0.02

Treg count (cells/μL) 48 (16–94) 14 (0–133) 30 (9–71) <0.001 0.004 <0.001

CD8+ cell count (cells/μL) 1101 (634–2874) 1417 (470–3127) 1212 (769–2064) 0.24 0.29 0.64

Activated CD8+ cells (%) 12.9 (5.8–38.6) 28.3 (12.2–53.3) 10.2 (5.0–27.7) <0.001 0.33 <0.001

CD4+/CD8+ ratio 1.03 (0.45–2.34) 0.49 (0.06–1.18) 0.66 (0.20–1.42) <0.001 0.001 0.19

Values are given as the median (range) or the number of patients. F: female: M: male; HIV(+): children with HIV and not treated with ART; ART(+): children with HIV

and treated with ART; HIV(−): children not infected with HIV. P-values are based on the Mann-Whitney U test, except for the gender and WHO clinical stage

comparison, which is based on the chi-squared test or Fisher’s exact test.

�Viral load was undetectable in 22 children in the ART(+) group.

https://doi.org/10.1371/journal.pone.0258226.t001
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The number of bacteria in each group is shown in Fig 2. In the HIV(+) group, the numbers

of C. perfringens and Atopobium cluster were significantly lower (P = 0.02 and P = 0.048,

respectively) and the number of Lactobacillus spp. significantly higher (P = 0.02) than in the

HIV(–) group. In the ART(+) group, the numbers of Enterococcus, B. fragilis group, and

Fig 1. Principal component analysis based on the overall structure of the gut microbiota in three groups of

children. Each data point represents an individual sample. Ellipses represent the 95% confidence level. Treatment

groups are color-coded: green, HIV(−); blue, HIV(+); and red, ART(+). Arrows indicate characteristic vectors of the

12 bacterial factors.

https://doi.org/10.1371/journal.pone.0258226.g001

Fig 2. Box plots showing the abundance of bacteria in the gut microbiota of the three study groups. Phylum

Firmicutes: Clostridium coccoides group, C. leptum subgroup, C. perfringens, Lactobacillus spp., Streptococcus,
Enterococcus, and Staphylococcus; phylum Actinobacteria: Bifidobacterium and Atopobium cluster; phylum

Bacteroidetes: Bacteroides fragilis group and Prevotella; and phylum Proteobacteria: Enterobacteriaceae. The lines and

error bars correspond to the medians ± 95% confidence intervals. White box, HIV(−) group; oblique line box, HIV(+)

group; gray box, ART(+) group. �P< 0.05, Mann-Whitney U test. C. difficile and Pseudomonas were not included due

to the low detection frequencies (3.4% to 20% in all three groups; C. difficile, median = 1.15 log10 cells/g feces, and

Pseudomonas, median = 1.45 log10 cells/g feces, S2 Table).

https://doi.org/10.1371/journal.pone.0258226.g002
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Enterobacteriaceae were significantly lower (P< 0.001, P = 0.04, P = 0.002, respectively) and

the numbers of Bifidobacterium and Atopobium cluster significantly higher (both P< 0.001)

than in the HIV(+) group (Fig 2 and S1 Table).

Association between age and gut microbiota

In the HIV(−) group, but not in the HIV(+) group, the numbers of Streptococcus, Enterococcus,
and Enterobacteriaceae positively correlated with age (Rho = 0.59, P = 0.006; Rho = 0.61,

P = 0.005; and Rho = 0.57, P = 0.008, respectively; Fig 3 and S3 Table). The number of Staphy-
lococcus inversely correlated with age in the HIV(+) group (Rho = −0.47, P = 0.009).

Fig 3. Heatmap representing the correlation of gut microbiota with age, anti-retroviral therapy (ART) duration,

immune status, and use of cotrimoxazole. Blue shading indicates a positive association and red shading a negative

association. The scale indicates the strengths of associations. C. difficile and Pseudomonas were not included due to the

low detection frequencies (3.4% to 20% in all three groups: C. difficile, median = log10 1.15 cells/g feces, and

Pseudomonas, median = log10 1.45 cells/g feces, S2 Table). The color intensity and size of the circles are proportional to

the correlation coefficients. �P< 0.05, ��P< 0.01, ���P< 0.001, based on Spearman’s rank-test.

https://doi.org/10.1371/journal.pone.0258226.g003
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Association between gut microbiota and immune status

In the HIV(−) group, the number of Atopobium cluster inversely correlated with CD4+ cell

and Th17 counts (Rho = −0.46, P = 0.04 and Rho = −0.51, P = 0.02, respectively). In the HIV

(+) group, the number of C. coccoides group significantly correlated with the CD4+ cell count

and its subsets (CD4+ cells: Rho = 0.51, P = 0.004; Th1: Rho = 0.54, P = 0.002; Th2: Rho = 0.50,

P = 0.005; Th17: Rho = 0.54, P = 0.002; and Treg: Rho = 0.49, P = 0.006).

In the ART(+) group, the number of Staphylococcus significantly correlated with the CD4+

cell count and its subsets (CD4+ cells: Rho = 0.46, P = 0.01; Th1: Rho = 0.44, P = 0.02; Th2:

Rho = 0.37, P = 0.047; Th17: Rho = 0.58, P = 0.001; Treg: Rho = 0.45, P = 0.02), the percentage

of activated CD8+ cells (Rho = −0.39, P = 0.04), and the ART duration (Rho = 0.42, P = 0.02).

The number of C. perfringens significantly correlated with age (Rho = 0.39, P = 0.03), CD4+

cell count (Rho = 0.39, P = 0.04), Th2 count (Rho = 0.40, P = 0.03), Th17 count (Rho = 0.42,

P = 0.03), and percentage of activated CD8+ cells (Rho = −0.49, P = 0.01), and most strongly

with the ART duration (Rho = 0.75, P< 0.001). The C. coccoides group and B. fragilis group

were associated with Treg cell count (Rho = 0.45, P = 0.01 and Rho = 0.40, P = 0.03, respec-

tively). Prevotella was negatively associated with the CD8+ cell count (Rho = −0.41, P = 0.03;

Fig 3 and S3 Table).

Impact of cotrimoxazole on the gut microbiota of children with HIV

Fifteen (50.0%) of the 30 children in the HIV(+) group and 9 (31%) of the 29 children in the

ART(+) group received cotrimoxazole. Cotrimoxazole treatment did not significantly affect

the gut microbiota profile in the HIV(+) group. However, in the ART(+) group, the number of

C. perfringens was significantly lower among children treated with cotrimoxazole than those

not treated with cotrimoxazole [with cotrimoxazole: 3.4 (2.2−5.4) vs. without cotrimoxazole:

6.2 (4.8−7.5), P = 0.01; S4 Table].

Independent predictors of the gut microbiota in children with HIV

The multiple linear regression analyses including age, ART duration, immune status, and use

of cotrimoxazole showed that the ART duration was independently associated with the num-

ber of C. perfringens (Beta coefficient = 0.726, P< 0.001), and Th17 count with the number of

Staphylococcus (Beta coefficient = 0.428, P = 0.02) in the ART(+) group (Tables 2 and 3). The

linear regression analysis for C. coccoides group in the HIV(+) group showed no significant

association (S5 Table).

Table 2. Linear regression analysis of Clostridium perfringens with age, ART duration, immune status, and use of cotrimoxazole in the ART(+) group.

Unadjusted linear regression Adjusted linear regression

Variable Beta SE P-value Beta SE P-value

Age (years) 0.323 0.261 0.09

ART duration (years) 0.726 0.166 <0.001 0.726 0.166 <0.001

Th2 count 0.418 0.001 0.024

Th17 count 0.371 0.015 0.048

Activated CD8+ cells (%) -0.484 0.068 0.008

Cotrimoxazole use (yes vs. no) -0.446 0.809 0.015

ART: anti-retroviral therapy; Beta: regression coefficient; SE: standard error.

The factors with P< 0.05 in the simple linear regression analysis were included in the stepwise multiple linear regression analysis. P-values in bold are significant.

https://doi.org/10.1371/journal.pone.0258226.t002
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Discussion

In the present study, we investigated the impact of HIV infection and ART on the gut micro-

biota of Vietnamese children using RT-qPCR. We found that several sub-dominant gut bacte-

ria were positively associated with age in children without HIV, but this was not observed in

the children with HIV. In addition, Staphylococcus negatively correlated with age, i.e. the dura-

tion of HIV infection, in the children vertically infected with HIV, and ART duration had an

independent positive association with C. perfringens and Th17 count with Staphylococcus in

the HIV-infected children on ART. These findings indicate an impact of HIV infection and

ART on the sub-dominant gut microbiota, such as C. perfringens and Staphylococcus, in chil-

dren. Our findings highlight the importance of investigating the role of the sub-dominant gut

microbiota in the pathogenesis of HIV infection.

To the best of our knowledge, this study is the first to apply RT-qPCR techniques to evalu-

ate the gut microbiota, particularly sub-dominant bacteria, in children with and without HIV.

The sum of the six dominant bacterial groups in fecal samples detected by RT-qPCR was previ-

ously reported to cover 71.3% of the total intestinal bacterial count estimated by hybridization

with a universal probe [29, 41]. This finding ensures the validity of using RT-qPCR methods to

identify the main gut microbiota profile in this study, though our results may not be compara-

ble directly to the results of the other studies using NGS, since the RT-qPCR method is not

appropriate to calculate the diversity indices and the relative abundance of the selected bacte-

ria. In addition, the RT-qPCR approach can detect and enumerate the gut bacteria at the popu-

lation level between 102 and 1011 cells/g of feces, whereas the lower detection limit of next

generation sequencing (NGS) methods is 107 to 108 cells/g [33]. The counts of the sub-domi-

nant bacteria, including Lactobacilli and potential pathogens, such as C. perfringens, were near

the detection limit of NGS or lower [33]; thus, we took advantage of RT-qPCR to estimate the

counts of these less abundant, but clinically significant, targets.

In this study, the numbers of dominant gut bacteria, including C. coccoides group, C. leptum
subgroup, Bifidobacterium, and Atopobium cluster, did not correlate with age in the HIV(−)

group, i.e., children aged 2 to 8 years. This finding is consistent with previous findings that the

gut microbiota of healthy children stabilizes and becomes similar to that of adults at around 2

or 3 years of age [7, 21, 22, 33]. In contrast, several sub-dominant gut bacteria, including Strep-
tococcus, Enterococcus, and Enterobacteriaceae, positively correlated with age in the HIV(−)

group. This finding is also consistent with previous findings in Japanese children evaluated

using the same RT-qPCR methods [33]. These results suggest that the dominant gut

Table 3. Linear regression analysis of Staphylococcus with ART duration and immune status in the ART(+) group.

Unadjusted linear regression Adjusted linear regression

Variable Beta SE P-value Beta SE P-value

ART duration (years) 0.370 0.109 0.048

Th1 count 0.309 0.005 0.103

Th2 count 0.279 0.001 0.142

Th17 count 0.428 0.007 0.020 0.428 0.007 0.020

Treg count 0.244 0.012 0.202

Activated CD8+ cells (%) -0.305 0.036 0.108

ART: anti-retroviral therapy; Treg: regulatory T cells; Beta: regression coefficient; SE: standard error. The factors with P< 0.05 in the simple linear regression analysis

were included in the stepwise multiple linear regression analysis. P-values in bold are significant.

https://doi.org/10.1371/journal.pone.0258226.t003
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microbiota may reach stable levels by 2 or 3 years of age, whereas the sub-dominant bacteria

may still be in transition in children aged 2 to 8 years.

We found that C. coccoides group positively correlated with the CD4+ cell count and its sub-

sets in the HIV(+) group, as well as the Treg cell count in the ART(+) group. The C. coccoides
spp. are known to promote the expansion and differentiation of Treg cells, which play a central

role in regulating gut inflammation through the production of butyrate, a short-chain fatty

acid (SCFA), in mice [42, 43]. In the ART(+) group, the B. fragilis group positively correlated

with the Treg cell count. This finding is consistent with a previous study that found that B. fra-
gilis promotes Treg cell function by producing polysaccharide A [44]. Thus, HIV infection and

ART may also influence the immune status by changing the levels of gut bacterial metabolites,

such as SCFAs [45, 46]. Further studies on bacterial metabolites and their networks in the gut

microbiota of children with HIV treated with and without ART may elucidate the underlying

mechanisms of immune modulation in HIV infection and ART interventions.

Multiple regression analysis showed a positive association between gut Staphylococcus and

Th17 count in the ART(+) group, which was shown for the first time. Th17 cells produce inter-

leukin-17, which is important for promoting neutrophil recruitment to clear bacteria and has

a specific role in the host defense against Staphylococcus aureus skin infection [47]. Thus, it

would be interesting to investigate the interaction between Th17 and gut Staphylococcus in

order to understand the pathophysiology of HIV infection in children who are on ART.

The use of cotrimoxazole reportedly influences some gut bacteria and reduces gut inflam-

mation in children with HIV [48–50]. In the current study, the use of cotrimoxazole was asso-

ciated only with C. perfringens in the ART(+) group. However, in multiple regression analysis,

we found that ART duration, but not the use of cotrimoxazole, was independently associated

with C. perfringens, which is a potentially harmful bacterium [51]. These findings suggest that

a novel therapeutic approach, such as ingesting probiotics and/or prebiotics, may be necessary

to restore gut microbiota homeostasis in children with HIV who are on ART [52].

In this study, all of the children in the ART(+) group were treated with NRTIs as backbone

drugs and only four also received a PI. Therefore, the positive correlation between the number

of C. perfringens and ART duration may be due to the use of NRTIs, but not PIs, even though

PIs are known to lower the diversity of the gut microbiota [53, 54]. Our study is consistent

with the previous study that ART, especially NRTI-including regimen, had more suppressive

impacts on the composition and the variability of the gut microbiota [55]. Further study is

needed to investigate whether NRTIs influence the gut microbiota, directly or indirectly,

through the restoration of immune status in children with HIV who are on ART.

This study has some limitations. First, the children in the HIV(−) group were 2 years youn-

ger than the other groups. The diets were not controlled among the groups, though the chil-

dren in the HIV(−) and ART(+) groups who resided at orphanages were provided the same

diets. The children in the HIV(+) group who resided in their own homes appeared to have

poorer nutritional status than the children in other groups, which could be due to the uncon-

trolled diet and/or HIV infection [26]. Considering the influence of age and diet factors on the

gut microbiota [7, 21, 22, 33, 56–58], we did not focus on comparing the gut microbiota

between the groups, but highlighted the factors associated with the gut microbiota in each

group. Second, the number of patients recruited in the present study was relatively small,

which may limit the significance of our findings. Third, we have not mentioned the HIV-expo-

sure history of the children in the HIV(−) group because we could not confirm the history via

documents, though they were reportedly born to mothers with HIV. Machiavelli et al. reported

that the gut microbiota of HIV-exposed but uninfected children is similar to that of HIV-unex-

posed and uninfected children at the age of 18 months except in several taxa [59]. Therefore,

the impact of HIV-exposure history on the gut microbiota in the children without HIV over 2
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years of age would be limited. These findings require confirmation in longitudinal studies that

compare the gut microbiome between age-matched children with and without HIV, with and

without HIV-exposure history, and/or before and after initiating ART to assess the effect of

ART on the composition of the gut microbiota in children with HIV.

This study provided new insights into the alterations in the gut microbiota, particularly the

sub-dominant groups of bacteria, among children with HIV. Our results suggest that HIV

infection and ART influence the sub-dominant gut microbiota, directly or indirectly, in associ-

ation with the immune status of children with HIV.

Supporting information

S1 Fig. The gating strategy for cell staining analysis in flow cytometry. CD8+ cell

activations was defined as the CD38+HLA-DR+ population. Regulatory T (Treg) cells were

defined as CD25highCD4+ cells, Th1 as CXCR3+CCR6−CD25lowCD4+ cells, Th2 as

CXCR3−CCR6−CD25lowCD4+ cells, and Th17 as CXCR3−CCR6+CD25lowCD4+ cells.
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59. Machiavelli A, Duarte RTD, Pires MMS, Zárate-Bladés CR, Pinto AR. The impact of in utero HIV expo-

sure on gut microbiota, inflammation, and microbial translocation. Gut Microbes. 2019; 10(5):599–614.

https://doi.org/10.1080/19490976.2018.1560768 PMID: 30657007

PLOS ONE Gut microbiota in children with HIV

PLOS ONE | https://doi.org/10.1371/journal.pone.0258226 October 11, 2021 15 / 15

https://doi.org/10.1038/mi.2014.107
http://www.ncbi.nlm.nih.gov/pubmed/25407519
https://doi.org/10.1038/nri3010
http://www.ncbi.nlm.nih.gov/pubmed/21720387
https://doi.org/10.1126/scitranslmed.aav0537
http://www.ncbi.nlm.nih.gov/pubmed/30944164
https://doi.org/10.1080/19490976.2020.1717299
http://www.ncbi.nlm.nih.gov/pubmed/32024435
https://doi.org/10.1093/infdis/jiz494
http://www.ncbi.nlm.nih.gov/pubmed/31714954
https://doi.org/10.1038/s41426-018-0144-8
http://www.ncbi.nlm.nih.gov/pubmed/30082713
https://doi.org/10.3390/nu11020448
http://www.ncbi.nlm.nih.gov/pubmed/30795551
https://doi.org/10.1097/COH.0000000000000428
https://doi.org/10.1097/COH.0000000000000428
http://www.ncbi.nlm.nih.gov/pubmed/29028667
https://doi.org/10.7448/IAS.20.1.21526
http://www.ncbi.nlm.nih.gov/pubmed/28362071
https://doi.org/10.1038/s41598-020-80247-8
https://doi.org/10.1038/s41598-020-80247-8
http://www.ncbi.nlm.nih.gov/pubmed/33441754
https://doi.org/10.1186/s12967-017-1175-y
https://doi.org/10.1186/s12967-017-1175-y
http://www.ncbi.nlm.nih.gov/pubmed/28388917
https://doi.org/10.1016/j.ijfoodmicro.2013.01.024
http://www.ncbi.nlm.nih.gov/pubmed/23500611
https://doi.org/10.1371/journal.pone.0245399
https://doi.org/10.1371/journal.pone.0245399
http://www.ncbi.nlm.nih.gov/pubmed/33497390
https://doi.org/10.1080/19490976.2018.1560768
http://www.ncbi.nlm.nih.gov/pubmed/30657007
https://doi.org/10.1371/journal.pone.0258226

