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Abstract
Increasing fetal hemoglobin (HbF) levels in adult humans remains an active area in hemato-

logic research. Here we explored erythroid-specific LIN28A expression for its effect in regu-

lating gamma-globin gene expression and HbF levels in cultured adult erythroblasts. For

this purpose, lentiviral transduction vectors were produced with LIN28A expression driven

by erythroid-specific gene promoter regions of the human KLF1 or SPTA1 genes. Trans-

gene expression of LIN28A with a linked puromycin resistance marker was restricted to the

erythroid lineage as demonstrated by selective survival of erythroid colonies (greater than

95% of all colonies). Erythroblast LIN28A over-expression (LIN28A-OE) did not significantly

affect proliferation or inhibit differentiation. Greater than 70% suppression of total let-7
microRNA levels was confirmed in LIN28A-OE cells. Increases in gamma-globinmRNA

and protein expression with HbF levels reaching 30–40% were achieved. These data sug-

gest that erythroblast targeting of LIN28A expression is sufficient for increasing fetal hemo-

globin expression in adult human erythroblasts.

Introduction
Development consists of a series of orchestrated stage-specific events controlled in both space
and time by multiple factors including a network of heterochronic genes. Extensive research
performed in the nematode C. elegans identified several factors involved in early embryonic
development, including the RNA binding protein named lin-28 and its main microRNA
(miRNA) target, let-7. Mutations in C. elegans lin-28 cause precocious development during lar-
val growth, while loss of let-7 results in recapitulation of larval cell fates in adult worms [1].

The LIN28/let-7 regulatory pathway remains exquisitely well conserved throughout verte-
brate evolution. The sequences of the mature let-7miRNAs are identical in most animal species
including human. During ontogeny, loss of LIN28 expression results in a concomitant increase
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in let-7miRNAs in most tissues. In association with OCT4, SOX2 and NANOG, LIN28 repro-
grams human somatic cells to become pluripotent cells with characteristics of embryonic stem
cells [2]. In embryonic and cancer stem cells, LIN28 enhances proliferation and self-renewal
[3]. In contrast to stem cells, reduced expression of let-7miRNAs in nonmalignant muscle cells
and hepatocytes enhances differentiation of the cells [4, 5]. Genetic manipulation of Lin28/let-
7 in mice also regulates glucose metabolism [6]. Since the phenotypic effects of let-7 expression
are highly dependent upon the transcriptome of the cell in which it is expressed, LIN28 is thus
predicted to be functionally pleomorphic with tissue- and cell-type specificity.

The expression of human LIN28 genes has been associated with variations in body stature
and timing of puberty [7–10]. The two known human homolog genes of the C. elegans lin-28
are LIN28A and LIN28B. In human CD34(+) cells, expression of LIN28A or LIN28B in culture
causes increased expression of gamma-globin in conjunction with erythroid differentiation [11,
12]. However, it is unclear whether LIN28 reprograms CD34(+) stem cells, or alternatively,
LIN28 acts directly among committed erythroblasts to increase the expression of the gamma-
globin genes. To address this topic, we explored the effects of erythroid-targeted LIN28 expres-
sion in cultured hematopoietic cells from healthy adult humans.

Materials and Methods

Ethics Statement
Approval for the research protocol and consent documents pertaining to all studies using pri-
mary erythroblasts was granted by the National Institute of Diabetes and Digestive and Kidney
Diseases Institutional Review Board. Written informed consent was obtained from all research
subjects prior to participation in this study.

Cell culture
Cryopreserved healthy adult human CD34(+) cells were cultured ex vivo in a 3-week serum-
free system consisting of three phases: phase I from day 0 to 7; phase II from day 7 to 14; and
phase III from day 14 to 21 as previously described [11].

Lentiviral erythroid promoter vector construction
Lentiviral backbone pLVX-IRES-Puro (Cat. 632183) was purchased from Clontech (Mountain
View, CA) for construction of the KLF1 promoter and SPTA1 promoter LIN28A over-expres-
sion (OE) vector. The LIN28A coding region with added XhoI and NotI restriction sites for
directional cloning was synthesized by Eurofins MWGOperon Inc. (Huntsville, AL). The syn-
thetic LIN28A coding region was digested with XhoI and NotI restriction enzymes (New
England Biolabs, Ipswich, MA) following manufacturer’s protocol and cleaned up with MinE-
lute Reaction Cleanup Kit (Qiagen, Valencia, CA), followed by cloning into the pLVX-IRE-
S-Puro vector to generate a pLVX-LIN28A-IRES-Puro plasmid. To generate the KLF1-
LIN28A-IRES-Puro (KLF1-LIN28A-OE) plasmid, the CMV promoter from the pLVX-LI-
N28A-IRES-Puro was replaced with the human KLF1 promoter by directional cloning with
ClaI and XhoI restriction enzymes. The KLF1 promoter was PCR amplified from human geno-
mic DNA using the following PCR primer pairs: 5’KLF1 primer: 5’-AAATCGATGGTACC
GGCTGGTCTTGAAATCCTGGTGTCAA-3’; primer: 5’- ACTCGAGTGGCTGGCTGGTGCC
CACCCTGGGCCTC-3’ using CloneAmp HiFi PCR Premix (Clontech). SPTA1-LIN28A-IRE-
S-Puro (SPTA1-LIN28A-OE) was constructed by replacing the KLF1 promoter from KLF1-LI-
N28A-IRES-Puro plasmid with the human SPTA1 promoter by directional cloning with ClaI
and XhoI restriction enzymes. SPTA1 promoter PCR primers were modified from previous
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reports [13, 14]. The SPTA1 promoter was PCR amplified from human genomic DNA with
the following primers: 5’SPTA1 primer: 5’- GCCATCGATGGTACCAGACTTTCAAGAAGA
GAATGT-3’ and 3’SPTA1 primer: 5’-AACTCGAGGGTTTAGAACCTGGCAAGATAA-3’
using CloneAmp HiFi PCR Premix (Clontech). Empty control vectors containing the KLF1
and SPTA1 promoters were constructed by replacing the CMV promoter in pLVX-IRES-Puro
vector with the KLF1 or SPTA1 promoter using the same restriction cloning strategy. The
KLF1 and SPTA1 promoter sequences used for these constructs are shown in the S1 File.

Virus production
For lentivirus production, HEK293T cells (Thermo Scientific, Waltham, MA) were plated in
100-mm poly-l-lysine coated plates (BD Biosciences, San Jose, CA) with DMEM complete
media (containing 10% FBS, l-glutamine and penicillin-streptomycin) (Life Technologies,
Grand Island, NY). The plasmid mixture was prepared for co-transfection following the manu-
facturer’s protocol for the Calcium Phosphate Transfection Kit (Life Technologies). The co-
transfection mixture consists of the vector plasmid (empty vector control, KLF1-LIN28A-OE
or SPTA1-LIN28A-OE vector) with packaging helper virus plasmids [15] as follows: CAG
kGP1.1R, CAG4 RTR2, and CAGGS vsv-g (generously provided by Drs. Derek Persons and
Arthur Nienhuis, St. Jude Children’s Hospital, Memphis, TN) [16]. The day after transfection,
the media was changed to DMEM with l-glutamine and penicillin-streptomycin without FBS
for virus production. The lentivirus-containing supernatant was concentrated overnight fol-
lowing the Lenti-X Concentrator (Clontech) manufacturer’s protocol and resuspended in 1/
100 phase I culture medium of the original supernatant volume. Viral titer estimates were
determined using the Lenti-X GoStix (Clontech) following the manufacturer’s instructions. A
MOI of 5 was calculated for the viral transductions.

Lentiviral Transduction
Cryopreserved CD34(+) cells were thawed and seeded at a concentration of 250,000 cells/ml in
phase I culture medium. On day 3, 300,000 cells were resuspended at 2,000 cells/μl in phase I
culture medium and transduced with viral particles. After 24 hours, the cells were resuspended
in 4.0 ml phase I culture medium containing puromycin and transferred on day 7 into phase II
culture medium without puromycin at 20,000 cells/ml. For each transduction, a puromycin
selection control of mock-transduced cells was included until the end of phase II culture and
analyzed by flow cytometry to confirm puromycin selection.

Colony Formation Assay
CD34(+) cells from three donors were transduced with KLF1-LIN28A-OE or SPTA1-LI-
N28A-OE vectors overnight and then mixed in MethoCult H4034 Optimum media (Stem Cell
Technologies, Vancouver, Canada) supplemented with puromycin for colony formation assay
with duplicate wells following manufacturer’s protocol. CMV-LIN28A-OE lentiviral particles
[12] were performed for comparison. On culture day 14, colonies of erythroid progenitors
(BFU-E), granulocyte-macrophage progenitors (CFU-GM, CFU-G and CFU-M) and multi-
potential granulocyte, erythroid, macrophage, megakaryocyte progenitors (CFU-GEMM) were
enumerated from each donor.

Flow Cytometry Analyses
On culture days 14 and 21, cells were stained with CD71 antibody, clone T56/14, R-PE (phyco-
erythrin) conjugate (Invitrogen, Carlsbad, CA) and glycophorin A (GPA) antibody, clone
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CLB-ery-1 fluorescein (FITC) conjugate (Invitrogen) and cell differentiation was assessed
using the BD FACSAria I flow cytometer (BD Biosciences) as previously described [17]. A min-
imum of 5,000 live cell events was recorded and positively stained cell populations that had a
fluorescence signal above two standard deviations were defined as positive.

Quantitative PCR analysis
Q-RT-PCR assays and conditions were performed as previously described [11, 18, 19].

Let-7 family of miRNAs quantitative PCR analysis
Absolute quantification for each let-7 family member was determined by constructing a stan-
dard curve prepared on the basis of the respectively synthetic targeted mature miRNA oligonu-
cleotide of known concentration (1:10 serial dilutions, n = 6) that was run in parallel with
biological samples. Each reaction was performed in triplicate. Complementary DNA and real-
time PCR reaction using Taqman microRNA assay (Applied Biosystems, Grand Island, NY)
were performed as previously described [20] for let-7a, let-7b, let-7c, let-7d, let-7e, let-7f-2, let-
7g, let-7i andmiR-98.

HPLC analysis of fetal and adult hemoglobin
Two million cultured cells at day 21 were pelleted, resuspended in distilled water and further
lysed by two cycles of repeated freeze-thaw in a dry ice ethanol bath. Cell debris was removed
by filtration through Ultrafree-MC devices (Millipore, Billerica, MA). Hemoglobin content was
analyzed for HbF and HbA using a 20x4 mm PolyCATA column (Poly LC, Columbia, MD) fit-
ted to a Gilson HPLC system (Gilson, Middleton, WI) as previously described [21, 22]. The
adult globin peak (HbA) and fetal globin peak (HbF) were quantitated and compared using
Gilson Unipoint LC software (version 5.11). Total areas under the HbA and HbF peaks were
used for ratio comparisons.

Statistical analysis
Replicate data are expressed as mean value ± SD with significance calculated by two-tailed Stu-
dent’s t test.

Results

LIN28A transcription driven by KLF1 or SPTA1 promoter results in
erythroid-specific expression
For erythroid expression of LIN28A, a lentiviral vector backbone with erythroid-specific
expression of LIN28A was designed using the promoter region of the human erythroid genes
Kruppel-like factor 1 (KLF1) [Prof. James J. Bieker, Mount Sinai School of Medicine, New
York, NY, personal communication] or spectrin alpha chain erythrocytic 1 (SPTA1) [13, 14].
The vector backbone features an internal ribosome entry site (IRES) from the encephalomyo-
carditis virus (EMCV) positioned after the LIN28A coding region to facilitate cap-independent
translation of the puromycin resistant gene, while expression of the bicistronic transcript
remained driven by the erythroid-specific promoter KLF1 or SPTA1. To investigate erythroid
specificity, a colony formation assay was performed in adult CD34(+) cells treated with
LIN28A over-expression lentivirus with the KLF1 promoter (KLF1-LIN28A-OE) or the SPTA1
promoter (SPTA1-LIN28A-OE). As shown in Fig 1, the erythroid specific expression of these
vectors was demonstrated by erythroblast survival with less than 5% of puromycin-resistant
colonies being non-erythroid (BFU-E: KLF1-LIN28A-OE: 98.4 ± 0.7%; SPTA1-LIN28A-OE:
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95.2 ± 1.1%). By comparison, expression of LIN28A-Puro under a constitutively active CMV
promoter resulted in greater than 50% non-erythroid puromycin-resistant colony formation
(CMV-LIN28A-OE: BFU-E: 32.9 ± 3.0%; CFU-GM: 12.9 ± 1.5%; CFU-G: 19.4 ± 5.7%;
CFU-M: 30.7 ± 6.5%; GEMM: 4.0 ± 2.5%; Fig 1).

In addition to puromycin resistance, LIN28A-OE was confirmed by Q-RT-PCR analysis at
culture day 14 [Fig 2A; KLF1-Empty and SPTA1-Empty vector controls: below detection lim-
its; KLF1-LIN28A-OE: 2.1E+05 ± 7.0E+04 copies/ng; SPTA1-LIN28A-OE: 2.2E+05 ± 8.3E+04
copies/ng; p<0.05]. LIN28 proteins are known regulators of the let-7 family of miRNAs [3, 23–
25], and over-expression of LIN28 in CD34(+) cells from healthy volunteers has been shown to
strongly down-regulate several let-7 family members [11]. To determine if LIN28A-OE driven
by KLF1 or SPTA1 promoters produced a functional protein, KLF1-LIN28A-OE and SPTA1--
LIN28A-OE samples were investigated for the expression of let-7miRNAs. As shown in Fig
2B, the total levels of let-7miRNAs in the LIN28A-OE samples with KLF1 or SPTA1 promoters
was significantly down-regulated when compared to the respective control transductions
[KLF1-Empty vector control: 2.0E+07 ± 5.3E+06 copies/ng; KLF1-LIN28A-OE: 5.6E+-
06 ± 5.6E+05 copies/ng, p = 0.046; SPTA1-Empty vector control: 1.7E+07 ± 3.9E+06; SPTA1-
LIN28A-OE: 4.6E+06 ± 6.2E+05 copies/ng, p = 0.040]. Altogether, these results demonstrate
that erythroid-specific LIN28A-OE produces a functional LIN28A protein capable of erythroid
suppression of the let-7 family of miRNAs.

Erythroid LIN28A does not affect cell proliferation or terminal maturation
of cultured erythroblasts
To evaluate the effects of LIN28A-OE in cell proliferation, the cell counts on culture days 14
and 21 were compared between KLF1-LIN28A-OE, SPTA1-LIN28A-OE and each respective
empty vector control. No significant differences in cell proliferation were observed between the
treatments when compared to control samples (Fig 3A and 3B). Erythroblast differentiation
was compared between controls and LIN28A-OE cells. Flow cytometry analysis of transferrin
receptor (CD71) and glycophorin A (GPA) were performed at culture day 14 (Fig 3C–3F) and
day 21 (Fig 3G–3J) to determine the levels of erythroblast maturation. Interestingly, on culture
day 14 of differentiation, there was a predominant population of high CD71(+) and GPA(+)
cells observed in all conditions, but an accelerated maturation was observed in the KLF1-LI-
N28A-OE samples as demonstrated by decreased levels of CD71 among the GPA(+) cells
(compare Fig 3C–3F). On culture day 21, cell maturation was observed at comparable levels in
controls, KLF1-LIN28A-OE and SPTA1-LIN28A-OE cells (compare Fig 3G–3J).

Adult erythroblast LIN28A over-expression increases fetal globin mRNA
and protein levels
The effects of erythroid-specific LIN28A-OE on the mRNA expression levels of the globin
genes was investigated on culture day 14. In the alpha-globin locus, no significant changes were
observed in the expression levels of alpha-,mu-, theta- or zeta-globin (Fig 4A) when compared
to each respective empty vector control. In the beta-globin locus, beta-, delta- and epsilon-glo-
bin also demonstrated no major changes (Fig 4B). The slight increase in the levels of beta-glo-
binmRNA in KLF1-LIN28A-OE samples may be due to the observed increase in cellular
maturation. Remarkably, gamma-globinmRNA levels were significantly increased in both
KLF1-LIN28A-OE and SPTA1-LIN28A-OE cells when compared to the respective empty vec-
tor controls (Fig 4B; KLF1-Empty vector control: 1.7E+06 ± 3.9E+05 copies/ng; KLF1-LI-
N28A-OE: 1.9E+07 ± 1.7E+06 copies/ng, p = 0.002; SPTA1-Empty vector control: 9.2E
+05 ± 2.9E+05 copies/ng; SPTA1-LIN28A-OE: 1.7E+07 ± 8.9E+05 copies/ng, p = 0.001).
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In accordance with increased levels of gamma-globinmRNA, HbF levels were significantly
increased in KLF1-LIN28A-OE and SPTA1-LIN28A-OE when compared to control transduc-
tions (Fig 4C–4G; KLF1-Empty vector control: 6.2 ± 1.9%; KLF1-LIN28A-OE: 31.9 ± 2.7%,
p = 0.001; SPTA1- Empty vector control: 5.3 ± 1.1%; SPTA1-LIN28A-OE: 43.0 ± 6.2%,
p = 0.006).

Discussion
Highly conserved across evolution, the LIN28 RNA-binding proteins are expressed in the early
stages of development and are generally subjected to down-regulation during ontogeny [26].
The RNA-binding mechanism of action for LIN28 proteins is highly directed by recognition of
the conserved RNA quadruplet GGAG-motif, which binds to the pri- or pre-let-7 as well as to
several other RNAs throughout the cellular transcriptome [27, 28]. In humans, a defined pat-
tern of the let-7miRNA expression during ontogeny is clearly observed in the erythroid lineage
throughout the fetal-to-adult transition with significant increased expression of the let-7miR-
NAs in adult cells [20]. Additional data support the notion that the LIN28/let-7 axis is involved
in fetal hemoglobin regulation as part of the developmental switching phenomenon [11].

In this study, we demonstrate that erythroid targeted over-expression of LIN28A is suffi-
cient for robust increases in gamma-globinmRNA and HbF expression in adult human ery-
throid cells grown ex vivo. Lentiviral transduction vectors produced with LIN28A expression
driven by the promoter region of the human erythroid KLF1 or SPTA1 genes were utilized to
transduce human CD34(+) cells from adult healthy volunteers. The KLF1 gene is a transcrip-
tion factor that is expressed in both primitive and definitive erythroid cell populations [29].

Fig 1. Erythroid-specific over-expression of LIN28A confirmed by colony formation assays.Cells were transduced with lentivirus particles for LIN28A
over-expression driven by a CMV, KLF1, or SPTA1 promoter (See Methods). Transduced cells were cultured for 14 days in semi-solid methylcellulose
medium supplemented with puromycin. Average colony counts were obtained from duplicate wells of each condition (three separate donors). The average
percentage of each colony type is shown as separate colors (BFU-E percentage shown in red bar field; color key on the right).

doi:10.1371/journal.pone.0144977.g001
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Fig 2. LIN28A over-expressionmediated by KLF1 or SPTA1 promoter regulates the let-7 family of
miRNAs. RNA samples from erythroblasts cultured on day 14 were examined for (A) LIN28A over-
expression and (B) the total levels of let-7miRNAs using Q-RT-PCR. Mean value ± SD from three separate
donors for each condition: KLF1-Empty vector control (control, open bar), KLF1-LIN28A-OE (KLF1, red bar),
SPTA1-Empty vector control (control, open bar), and SPTA1-LIN28A-OE (SPTA1, blue bar). Asterisks
indicate p<0.05.

doi:10.1371/journal.pone.0144977.g002
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Functionally, KLF1 binds to several erythroid-specific gene regulatory regions, including the
globin gene clusters [30, 31]. The KLF1 gene promoter was chosen for this study because it is
predicted to increase LIN28 expression in erythroid cells prior to the cells exhibiting high-level
globin gene expression. The SPTA1 gene encodes the alpha subunit of the erythroid spectrin

Fig 3. LIN28A erythroid-specific over-expression does not affect cell proliferation or prevent terminal maturation of cultured erythroblasts. Cell
proliferation was assessed by cell counts performed on (A) culture day 14 and (B) culture day 21. Mean fold change ± SD from three separate donors for
each condition: KLF1-Empty vector control (C, open bar), KLF1-LIN28A-OE (KLF1, red bar), SPTA1-Empty vector control (C, open bar), and
SPTA1-LIN28A-OE (SPTA1, blue bar). Representative flow cytometry dot plots of cells stained with antibodies against transferrin receptor (CD71) and
glycophorin A (GPA) cultured on (C-F) day 14 and (G-J) day 21 with percentages shown. KLF1-Empty vector control (control, panels C and G),
KLF1-LIN28A-OE (KLF1, panels D and H), SPTA1-Empty vector control (control, panels E and I), and SPTA1-LIN28A-OE (SPTA1, panels F and J).

doi:10.1371/journal.pone.0144977.g003
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Fig 4. Erythroid-specific LIN28A over-expression effects upon globin gene and protein levels in
cultured adult erythroblasts. LIN28A over-expression driven by KLF1 or SPTA1 promoter compared to
control samples in the mRNA expression levels of (A) alpha-,mu-, theta- and zeta-globins and (B) beta-,
delta-, gamma- and epsilon-globins. Analyses were performed at culture day 14. (C) HPLC analysis of
hemoglobin from each respective control, KLF1-LIN28A-OE, and SPTA1-LIN28A-OE erythroblasts at culture
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protein, a major component of the red cell membrane skeleton, which is essential for the eryth-
rocyte’s biconcave disk shape and deformability [32–34]. SPTA1 was chosen for this study
because it is exclusively found in the erythroid portion of bone marrow cells [35]. According to
our colony formation assays, both KLF1 and SPTA1 promoters showed LIN28A expression
with puromycin resistance almost exclusively in the cultured erythroblasts.

With both vectors, the expression of LIN28 caused increased expression of the gamma-glo-
bin gene and protein. In contrast to the reported effects of LIN28 in stem cells [2, 36], we found
that expression of LIN28 in erythroblasts neither caused increased growth nor inhibited matu-
ration. The observed increase in maturation on day 14 of differentiation in the KLF1-driven
LIN28 over-expression samples remains unexplained. In contrast to its role in promoting stem
cell self-renewal, our data suggest that erythroblast regulation by the LIN28/let-7 pathway does
not require stem cell reprogramming to increase fetal hemoglobin expression [2, 36]. Studies
are now being focused upon erythroid-specific features of LIN28 expression with particular
interest upon identifying a mechanistic bridge between the LIN28/let-7 pathway and globin
gene regulation. Our results may also be applied toward topics of globin gene therapy where
erythroid-specific expression may be advantageous for safety concerns as well as therapeutic
effects.

Supporting Information
S1 File. DNA sequence of human KLF1 Promoter and SPTA1 Promoter for construction of
the KLF1-LIN28A-OE and SPTA1-LIN28A-OE lentiviral expression vector.
(DOCX)
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