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ABSTRACT: With energy savings and emission reduction
becoming national policies in recent years, the environmental
impacts of industrial production are more and more critical. Most
of the studies have concentrated on the environmental effects of
the industrial production process. Little attention has been paid to
the energy consumption and pollution emission in extracting,
processing, and transporting the feedstock and other secondary
materials. An integrated multiobjective optimization framework is
proposed for the steam cracking process on the basis of a life cycle
assessment and data-driven modeling methods. A multiobjective
economic−environmental optimization model is developed on the
basis of industrial and simulated data. A multiobjective
optimization model combined with energy cost is also developed for comparative study. The nondominated sorting genetic
algorithm-II is utilized to solve the problems, and the Pareto front is obtained. An industrial case study is carried out to indicate the
effectiveness of the proposed method. The results show that the LCA-based method can better represent the environmental impacts
in comparison with the standard energy cost model. Therefore, the proposed method can achieve a better tradeoff between
economic benefits and environmental impacts for guiding ethylene production.

1. INTRODUCTION
Olefins and aromatics are the basic raw materials for most
products in the petrochemical industry. As the primary olefin
producer, the cracking furnace is always the key concern of the
ethylene industry. Many researchers have studied the operation
optimization of a cracking furnace to get higher yields and
higher profits.1 However, recent trends in environmental
protection have led to a proliferation of studies that decrease
the energy consumption and the pollutant emission of an
ethylene plant. The managers of the ethylene plants also pay
more attention to these issues because of the national energy-
savings and emission-reduction policies.
As the heart of an ethylene plant, the cracking furnaces have

been studied widely for several decades.2 Previous studies have
indicated that the coil outlet temperature (COT) and gas
temperature profile are closely related to the ethylene yields
and the rate of coke deposition.3 Early examples of research
into the optimization of the cracking furnace have focused on
boosting the profits and enhancing the yields of key products
such as ethylene and propylene. Lim et al. formulated the
decoking scheduling problem of the cracking furnaces as an
MINLP, and three alternative solution strategies were
compared for higher yields and lower loads of computation.4

A model of thermal cracking of propane was developed by
Berreni et al. The effect of the process gas temperature profile
was studied in detail to maximize the profits.5 Nian et al.
proposed a hybrid algorithm on the basis of a differential

evolution algorithm and a group search optimization algorithm
to maximize ethylene and propylene yields by optimizing the
coil outlet temperature (COT) and steam to hydrocarbon ratio
(SHR).6 Xia et al. studied the optimal control system for an
ethylene cracking furnace. The actual control qualities were
improved significantly, and the economic benefits were
increased by a multiswarm competitive PSO algorithm based
on fuzzy C-means clustering.7 Lin et al. developed a cyclic
scheduling model for an ethylene cracking furnace system with
inventory constraints to improve the efficiency of ethylene
production.8 Tarafder et al. first applied multiobjective
optimization to an industrial ethylene reactor to increase the
profits.9 Nabavi et al. solved several multiobjective optimiza-
tion problems of an industrial LPG thermal cracker, involving
maximization of the annual ethylene/propylene production,
selectivity, and run period and minimization of severity and
total heat duty per year.10 Furthermore, cracking process
simulation software has been developed and applied to the
modeling and optimization of the cracking furnaces.11,12
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With the awareness of environmental protection in recent
years, many scholars have started to address the issues of
energy savings and emission reduction. Some researchers
mainly focused on the prediction and reduction of the
pollution. Gierow et al. employed artificial neural networks
to develop CO and NOx models to minimize the NOx
emission.13 Others turned to multiobjective optimization and
attempted to add energy consumption or pollution emission as
another objective function rather than simply maximizing the
profits or yields. The two most popular traditional methods to
solve the multiobjective optimization problems are the
weighted-sum approach and the epsilon constraint meth-
od.14,15 However, several multiobjective evolutionary algo-
rithms emphasizing nondominated solutions in an evolutionary
algorithm population have also been suggested over the
years.14 Su et al. carried out a short-term scheduling model for
cracking furnaces under raw materials and energy consumption
limitations.16 Zhang developed a scheduling model considering
nonhomogeneous last-batch ending and furnace load makeup.
The new environmental concern of background air-quality-
conscious decoking and the scheduling solution obtained will
cause fewer adverse environmental impacts on ground-level
ozone and PM.17 Yu et al. developed a new cyclic scheduling
model for a cracking furnace system considering feeds, product
prices, decoking costs, and other practical constraints to
maximize the profits and minimize fuel consumption.18 Cui et
al. proposed a constrained competing evolutionary membrane
algorithm and applied it to the ethylene cracking process. The
solutions lead the ethylene cracking process to reach the
coordinated optimum ethylene or propylene production, fuel
consumption reduction, and carbon dioxide emission reduc-
tion.19 Wang et al. improved the production efficiency while
reducing the total energy consumption of an ethylene plant
with a hybrid multiobjective optimization model integrating
the nondominated sorting genetic algorithm-II (NSGA-II) and
a genetic algorithm with an artificial neural network.20 Geng et
al. designed a multiobjective operation optimization strategy
and a comprehensive evaluation method of solutions to
efficiently solve the multiobjective operation optimization
problem of an ethylene cracking furnace, and the yield of
ethylene was improved, while the steam consumption was
reduced.21 Dai identified the energetic, economic, and
environmental aspects as being extraordinarily significant for
the sustainable development of the olefin industry. A study was
carried out on the energetic, economic, and environmental
(3E) multiobjective optimizations of the ethylene separation
process.22 Cong et al. proposed a reference-point-based
competing evolutionary membrane algorithm to solve the
multiobjective optimization problem of the ethylene cracking
process. The solutions brought energy savings and emission
reduction.23

The aforementioned works managed to reduce the environ-
mental impacts of olefins processing. However, these studies
mainly concentrated on the production process of the olefins.
Far too little attention has been paid to the energy
consumption and pollution emission in extracting, processing,
and transporting the feedstock and other secondary materials.
To achieve energy-saving and emission-reduction goals, the
selection of the feedstock and the consumption of all raw
materials should also consider the effects of the process
mentioned above on the environment. Life cycle assessment
(LCA) is a tool to assess the potential environmental impacts
and resources used throughout a product’s lifecycle.24 The

concept of LCA was created in the 1970s. A general
methodological framework has been defined with the
publication of the standardization works ISO 14040 and ISO
14044 during the past decade of the 20th century and the first
decade of the 21st century. As ISO never aimed to standardize
LCA methods in detail and there is no standard agreement on
interpreting some of the ISO requirements, diverging
approaches have been developed with regard to system
boundaries and allocation methods.25

As the life cycle assessment evaluates the environmental
impact from extracting the raw materials to the waste disposal
of the product, the entire process is often referred to as “cradle
to grave”. Ibbotson et al. conducted a screening LCA of a
linear meter I-beam made from stainless steel and a composite.
The normalization results showed that a one linear meter
composite I-beam has less of an environmental footprint in
comparison to that of a stainless steel I-beam in all impact
categories.26 Bhatt et al. performed a comparative cradle to
grave LCA of a low-impact-development (LID) parking lot test
site and discussed the superiority of the LIDs over the
detention pond.27 LCA can also adopt a “cradle-to-gate”
approach, which means that the study stops at the factory’s
gate: the manufacturing product end of life is not considered.28

Rostkowski et al. developed an LCA for the synthesis of
polyhydroxy butyrate (PHB) from methane with subsequent
biodegradation of PHB back to biogas and discussed the
energy requirement of different PHB recovery methods.29

Several studies have also applied the LCA to multiobjective
optimization since the field of multiobjective optimization has
largely been completed.28 You et al. carried out a life cycle
optimization of biomass to liquid supply chains with
distributed−centralized processing networks.30 Jing et al.
employed LCA to assess and compare the whole life energy
saving potentials and pollutant emission reductions of a
building cooling, heating, and power (BCHP) system with the
traditional energy system, and energy consumption and three
pollutant-related impacts were selected as objective functions
to optimize the gas engine capacity of the BCHP system in
different operation strategies.31 To satisfy the growing
maintenance demands of the pavement, Huang et al. proposed
an integrated methodology unifying LCA, life cycle cost
assessment (LCCA), and multiobjective optimization.32 Tian
et al. conducted a holistic LCA using both attributional and
consequential approaches to pursue photovoltaic technologies
of high efficiency and low production cost.33 A consequential
life cycle optimization framework integrated by superstructure
optimization, techno-economic analysis methodology, and the
consequential LCA approach was developed by Zhao et al. to
minimize the environmental impacts and maximize the
economic performance.34 Nicoletti et al. studied a single-
leader−multiple-follower structure of the multistakeholder
crude oil supply chain problem. LCA was used to estimate
the environmental impacts for the leader.35

LCA requires a great deal of data, and setting up inventory
data can be one of the most labor and time intensive stages of
an LCA. Thus, many databases have been developed to
facilitate the LCA and avoid duplication in data compilation.24

The Chinese Life Cycle Database,36 Federal LCA Commons,37

and many other studies38−40 provide the basic data for this
study. A multiobjective economic and environmental opti-
mization model is formulated on the basis of the LCA data
collected. The COT, SHR, and feed flow rate were selected as
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decision variables. The novelty of this paper is summarized as
follows:

• An LCA-based multiobjective optimization framework is
proposed for the steam cracking process.

• The economic and sustainable objective functions are
developed utilizing industrial and simulation data.

• An industrial case study is carried out to show the
advantages of the proposed method.

The rest of this paper is organized as follows. Section 2
briefly introduces the cracking furnace and life cycle assess-
ment method. The proposed LCA-based multiobjective
optimization model is developed in section 3. Section 4
presents the case study and the results. Section 5 concludes
this paper.

2. PROBLEM STATEMENT
2.1. Ethylene Cracking Furnace. An ethylene cracking

furnace linked with transfer line exchangers (TLEs) is
illustrated in Figure 1. The ethylene cracking furnace is always

operated with TLEs in an ethylene plant. First, feed is sent into
a cracking furnace and mixed with dilution steam in a certain
proportion after preheating. Through the convection section,
the temperature of the feed/steam mixture increases to about
500−600 °C. Then the mixture enters the cracking tubes,
located in the firebox with a complex arrangement. In the
cracking tubes, the mixture is heated to high temperatures,
where the thermal cracking reaction of the feed takes place.
The coil outlet temperature (COT) can control the cracking
reaction degree. Different COTs will result in various product
profiles. At high temperatures, the secondary reaction will
deteriorate the yield of desirable products such as ethylene and
propylene. The TLEs are used to cool the hot cracked gas to
reduce the secondary reaction. Through TLEs, the secondary
reaction can be sharply reduced, and meanwhile, the huge heat
energy recovered can generate superhigh-pressure steam (SS).
The coke deposition will occur on the inner surface of the
cracking tubes and TLE tubes with continuous operations. The
coke in the cracking tubes will increase the heat transfer
resistance and decrease the cross-section of the cracking tubes,
which will reduce the desired product yields. For the coke in
the TLE tubes, the heat transfer resistance will increase, the SS

flow rate will decrease, and the TLE temperature (TLEOT)
will increase. A high TLEOT will increase the secondary
reaction of the cracked mixture, reducing the desired product
yields. Thus, the TLEOT should be monitored to ensure to
not exceed the upper boundary. As a result, the feed flow rate,
SHR, and COT are selected as the operational variables, and
TLEOT is chosen as the constraint.

2.2. Life Cycle Assessment. A life cycle assessment
consists of four phases: definition of goal and scope, inventory
analysis, impact assessment, and interpretation.25 The first
phase defines the purpose and the system’s boundary of the
assessment. The second phase collects the data for each unit
process and sums up the data according to the relation
between the different unit processes to obtain the environ-
mental impacts. The third phase is to quantify the environ-
mental impacts by normalization and weighting. The last phase
is to identify the environmentally significant issues and assess
the LCA’s completeness, sensitivity, and consistency.
This work aims to optimize the steam cracking process to

increase profits and reduce emissions. The scope of LCA in
this paper is the cracking process. The processes related to the
feed flow rate, COT, and SHR are included correspondingly.
Life cycle boundaries of ethylene production are illustrated in
Figure. 2. The life cycle of the feed is traced back to oil
extraction. The transportation and petroleum refining are also
included. Cracking feed and other coproducts from the refinery
are allocated according to their physical quantity. As the
dilution steam is directly produced in the plant, the
transportation part of the dilution steam is neglected. The
methane in the product is collected as the fuel, and natural gas
complements it if the fuel is not enough. As all the variables
depend on the feed flow rate to some extent, the function unit
is 1 kg of feed cracking in the furnace. CO2, CH4, SO2, NOx,
N2O, CO, volatile organic compounds (VOCs), and
particulate matter 10 (PM10) are selected as the pollution
gases. The external cost is introduced to evaluate the total loss
caused by the pollution gas. It estimates the effect of the
pollution gas on the environment and human health over a
long time span. As a result, the total emission cost is not an
actual number for the profit but just an index. Then, the total
pollution gas emissions are transformed to minimize the total
emission cost.

3. MODELING
This section provides the detailed modeling processes of the
cracking furnace and the LCA-based multiobjective optimiza-
tion model.

3.1. Cracking Furnace Models. The cracking furnace
model is the fundamental component of multiobjective
optimization. This paper modeled the furnace by COIL-
SIM1D,12 developed at the Laboratory for Chemical
Technology of Ghent University, to simulate steam cracking
of hydrocarbons in a tubular reactor. COILSIMID includes
furnace simulation, TLE simulation, and run period simulation
modules. The simulations will converge under different
conditions, such as fixed COT, conversion rate, or yields of
special products. It also includes a feedstock reconstruction. In
theory, it can simulate the cracking process for any feedstock if
the detailed components are given.11 The reaction network of
COILSIM1D is a radical scheme consisting of a mono-
molecular μ network and a β network. The model equations
contain the different species’ continuity equations, energy
balance, and pressure equations. These equations are

Figure 1. Schematic of an ethylene cracking furnace linked with
TLEs.
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integrated with the reactor coil, resulting in the product yields
and the pressure and temperature profiles.11 On the basis of
the feedstock’s molecular composition, the reactor’s geometry,
and the operating conditions, the product distribution,
temperature, pressure, and heat flux at different axial positions
throughout the reactor can be obtained by COILSIM1D. After
the mechanism model is developed using COILSIM1D, the
surrogate model is often used to reduce the computational
time. However, the computational time of COILSIM1D is
acceptable in this work. All of the furnace information is from
the actual furnace, and the industrial data are used to validate
the model. Therefore, the model is defined as eq 1

= f F Tyield ( , , SHR)i
feed cot

(1)

where yieldi is the yield of the product i and Ffeed, TCOT, and
SHR are the feedstock flow rate, the coil outlet temperature,
and the ratio of steam and hydrocarbon of the furnace,
respectively.
As the fuel consumption, SS production, and TLEOT can be

measured in the ethylene plant, data-driven models have been
developed for the optimization problem using the process data,
as respectively shown in eqs 2−4

= × + × + × +F a F a T a bSHRFG
FG,1

feed
FG,2

cot
FG,3 FG

(2)

= × + × + × +F a F a T a bSHRSS
SS,1

feed
SS,2

cot
SS,3 SS

(3)

= × + × + ×

+

T a F a T a

b

SHRTLEOT
TLE,1

feed
TLE,2

cot
TLE,3

TLE (4)

where aFG,1, aFG,2, aFG,3, bFG, aSS,1, aSS,2, aSS,3, bSS, aTLE,1, aTLE,2,
aTLE,3, and bTLE are the parameters of models obtained by the
industrial data.
3.2. Multiobjective Optimization Model. The environ-

mental objective is calculated by an LCA-based model to
estimate the emission of the steam cracking process. The

economic objective calculates the profit of the steam cracking
process.

3.2.1. LCA-Based Environmental Impact Model. The
emissions in this paper consist of CO2, CH4, SO2, NOx,
N2O, CO, volatile organic compounds (VOCd), and
particulate matter 10 (PM10). The total emission can be
calculated as the sum of the emission of every unit process.
The emission of the oil extraction, petroleum refining, oil
transportation, and feed transportation, which is related to the
feed flow rate, can be respectively calculated as eqs 5−8

= × ×F FPf efj j,OE
emission feed

,OE (5)

= ×F F efj j,PR
emission feed

,PR (6)

∑= × × ×F F DPf efj
k

j k k,OT
emission feed

,
petro

(7)

∑= × ×F F Defj
k

j k k,FT
emission feed

,
petro

(8)

where Pf is the petroleum consuming factor, which is
calculated by the mass fraction given in Table S1 in the
Supporting Information. efj,OE is the emission factor of the gas j
in the oil extraction, and efj,PR is the emission factor of the gas j
in the petroleum refining. efj,k

petro is the emission factor of the
gas j in the petroleum product transportation mode k, and Dk
is the distance in the transportation mode k.
The emission of the natural gas extraction and trans-

portation which are related to the feed flow rate, fuel
consuming and product yield can be respectively calculated
by eqs 9 and 10:

= − × ×F F F( yield ) efj j,NGE
emission FG feed

CH ,NGE4 (9)

∑= − × × ×F F F D( yield ) efj
k

j k k,NGT
emission FG feed

CH ,
gas

4

(10)

Figure 2. Life cycle boundaries of the steam cracking process.
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where yieldCH4
is the cracking yield of CH4, efj,NGE is the

emission factor of the gas j in the natural gas extraction, and
efj,k

gas is the emission factor of the gas j in the gas transportation
mode k. It should be noted that if the fuel needed is less than
the CH4 produced by the cracking, the emission of the natural
gas extraction and transportation is zero.
The emission of the steam produced, which is related to the

feed flow rate and SHR, can be calculated by eq 11

= × ×F F SHR efj j,SP
emission feed

,SP (11)

where efSP,j is the emission factor of the gas j in the steam
produced.
The emission of the electricity produced, which is related to

the feed flow rate, can be calculated by eq 12

= × ×F FEf efj j,EP
emission feed

,EP (12)

where Ef is the electricity-consuming factor and efj,EP is the
emission factor of the gas j in the electricity produced.
The emission of the steam cracking is calculated as the sum

of the natural gas combusting emission and the pollution gas
produced by the cracking (mainly CO and CO2)

= − × ×

+ ×

F F F

F

( yield ) ef

yield

j j

j

,SC
emission FG feed

CH ,NGB

feed
4

(13)

where efj,NGB is the emission factor of the gas j in the natural
gas combustion.
Thus, the total emission and the emissions cost can be

respectively calculated by eqs 14 and 15

∑=F Fj
l

j l,total
emission

,
emission

(14)

∑= ×Femission cost df
j

j j,total
emission

(15)

where the l is the unit process mentioned above and dfj is the
external cost of emission j.
3.2.2. Economic Profit Model. The economic objective is to

maximize the profit per unit time. The profit equals the income
minus the cost of the steam cracking process:

= −max profit income cost (16)

The income including the gain from the product and from the
superhigh-pressure steam is shown as eq 17

= ∑ × + ×e Fincom yield price pricei i i
product SS SS

(17)

where pricei
product is the price of product i. The cost including

the feed cost, the fuel cost, the water cost in the drum, and the
dilution steam cost is shown as eq 18:

= × + ×

+ × + × ×

F F

F F

cost price price

price SHR price

feed feed FG FG

SS water feed DS

(18)

Due to the price of natural gas being considered the same as
the price of CH4, it is not necessary to consider the yield of
CH4 and the natural gas consumption separately. In addition,
the water consumption in the drum equals the SS production.
Therefore, the profit can be expressed with eq 19:

∑= × +

× − +

× − × − ×

F

F

F

profit yield price

(price price )

(price SHR price ) price

i
i i

product SS

SS water feed

feed DS FG FG

(19)

Thus, the multiobjective problem is shown as eqs 20 and 21:

∑= ×

+ × −

+ × − ×

− ×

F

F

F

max profit yield price

(price price )

(price SHR price )

price

i
i i

product

SS SS water

feed feed DS

FG FG
(20)

∑ ∑= ×min emission cost emission df
j l

l j j,
(21)

3.2.3. Energy Cost Model. An energy cost model is defined
to study the difference between the LCA-based environmental
impact and the energy-consuming-based environmental
impact, shown as eq 22:

= +

= − × ×

+ × ×

F F

F

EC EC EC

( yield ) price

Ef price

total fuel el
FG feed

CH
FG

feed ele
4

(22)

The energy cost model consists of the fuel cost model and
the electricity cost model. The fuel consumption is calculated
as eq 9, but the fuel cost is calculated by the fuel price rather
than the emission factor. The electricity consumption is
calculated as eq 12, and the electricity price calculates the
electricity cost.

3.2.4. Constraint. TTLEOT should not be larger than its
upper limitation Tup

TLEOT in order to ensure safety and
efficiency:

≤T TTLEOT
up
TLEOT

(23)

The feed flow rate, COT, and SHR should keep within their
corresponding bounds as shown in eq 24:

l

m

ooooooo

n

ooooooo

≤ ≤

≤ ≤

≤ ≤

F F F

T T T

SHR SHR SHR

lo
feed feed

up
feed

lo
cot cot

up
cot

lo up (24)

4. CASE STUDIES
A case based on industrial data from an ethylene plant is
studied. In addition, a standard energy-consuming model is
introduced as a comparison to evaluate the performance of the
proposed framework. The multiobjective optimization problem
was solved by NSGA-II.

4.1. Model Validation. The SS prediction model, fuel
prediction model, and the TLEOT prediction model are
validated by comparing the industrial values and the predicted
ones. The results are shown in Figures 3−5.
The industrial data are sampled by day in one operation

cycle. The furnace starts at sample number 1 and stops
working at sample number 90. It can be illustrated from the
figures that the trend of the prediction model is the same as
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that of the industrial data despite some minor errors. As this
paper does not consider the time variable, some prediction

errors are inevitable. Figures 3−5 show that TLEOT and SS
are more significantly affected by time in comparison to the
fuel flow rate. The SS production and TLEOT are not stable at
the startup stage (samples 1−4). With the operation of the
cracking furnace, the coke is accumulating along the tube wall,
which eventually causes an increase in TLEOT. These explain
the trends in errors in Figures 4 and 5. In general, the
prediction errors of the three models are all within 5%, which
can be used for multiobjective optimization problems.

4.2. LCA Data. The transportation data are estimated
according to the actual situation of the plant. The external cost
for emissions is used to calculate the emission cost for each
unit.40 To distinguish the emission cost from the profit, we use
the monetary unit (mu) to represent the value of external cost.
Table S2 in the Supporting Information gives the detailed
emission factors of each unit process. Table S3 in the
Supporting Information gives the external cost of each
emission. The emission cost of each unit process can be
calculated accordingly, as shown in Table 1. As the emission

cost in the functional unit is not fixed but is related to all the
three variables (feed flow rate, COT, and SHR), Table 1 does
not show the emission cost in the functional unit but in the
unit of each process. Then the emission cost in the functional
unit (1 kg of cracking feed) can be calculated according to eqs
5−15.

4.3. Results. The steam cracking model is developed in
COILSIM1D. The LCA models and NSGA-II are pro-
grammed in VB.net and run on an Intel Core i7-8750CPU@
2.20 GHz personal computer with 32 GB RAM. In NSGA-II,
the population size is 30, the generation number is 50, the
crossover coefficient is set as 0.9, and the mutation coefficient
is set as 0.33. The constraints in eqs 21 and 22 are given in
Table 2. The computational time is 160 min. The result is
shown in Figure 6.
A tradeoff between profit minimization and emission cost is

shown in Figure 6. As can be observed, the reduction in the
emission cost can only be achieved by the loss of profits. Points
A and F are the extreme values of two objectives in the Pareto
front. At point A, the profit and emission cost reach the

Figure 3. Performance of fuel prediction model: (a) model prediction
and industrial value; (b) prediction errors.

Figure 4. Performance of SS prediction model: (a) model prediction
and industrial value; (b) prediction errors.

Figure 5. Performance of TLEOT prediction model: (a) model
prediction and industrial value; (b) prediction errors.

Table 1. Emission Cost of Each Unit Process

oil extraction
(mu/kg oil)

NG extraction
(mu/kg NG)

electricity produced
(mu/(kW h))

emission
cost

0.154 0.488 0.427

steam produced
(mu/kg steam)

petroleum refining
(mu/kg cracking feed)

NG combusting
(mu/kg NG)

emission
cost

0.198 0.256 0.456

gas pipeline
transportation

(mu/kg NG 1 km)

petroleum pipeline
transportation

(mu/kg oil 1 km)

liquid sea-tanker
transportation

(mu/kg oil 1 km)

emission
cost

1.11 × 10−2 6.37 × 10−3 2.37 × 10−2

Table 2. Constraints of the Optimization Model

variable lower bound upper bound

Ffeed (th) 39 45
Tcot (°C) 795 825
SHR 0.4 0.7
TTLEOT (°C) 510
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maximum (87134 CNY/h and 63249 mu/h). At point F, the
profit and the emission cost are at a minimum (72170.93
CNY/h and 52921.22 mu/h). Therefore, pointd A and F are
both not a good choice for the decision maker as a result of
ignoring the other objective.
Points B and E are the points in the inflection area. From

point A to point B, the emission cost decreases by nearly 3.36%
at the cost of almost 0.78% loss of profits. A rapid decrease in
emission cost can be observed in comparison to a slight loss of
profits. The reason is that the feed flow rate reaches the upper
bound near point B. From point B to point A, an increase in
profits can only benefit from an increase in the product yields
by raising the COT and SHR. However, increasing COT
causes higher fuel consumption and increasing SHR causes
higher consumption of dilution steam. Thus, the emission cost
increases.
In contrast, the emission cost decreases by approximately

0.45% at about a 4.06% loss of profits from point E to point F.
The reason is that the feed flow rate and the SHR both reach
the lower bound near point E. From point E to point F, the
decrease in emission cost is mainly because of the lower fuel
consumption by lowering COT but lowering COT causes
reducing a couple of product yields, thus resulting in a slump
in the profits. From point B to point E, the emission cost
decreases by approximately 13%, while the profit decreases by
nearly 13%. As a result, the solutions in the front between
points C and D are acceptable. The profit is 83339.98 CNY/h,
and the emission cost is 58941.42 mu/h at point C.
Furthermore, the profit is 79051.52 CNY/h, and the emission
cost is 55873.04 mu/h at point D.
Note that the SHR is near the lower bound for most

operating conditions. Usually, high COT, high SHR, and high
feed flow rate result in high product yields. As shown in Figure
7, the yields of ethylene and propylene increase with an
increase in SHR, but the yields of methane decrease
simultaneously with an increase in SHR. However, increasing
the SHR increases the consumption of dilution steam and fuel.
These will decrease the profits. However, if the yields of other
products rise fast enough, the SHR can still be high. As shown

in Figure 7, the growth of propylene is stable with an increase
in SHR, while the growth of ethylene slows down in the range
of 0.55−0.6. This explains why the profit reaches the maximum
at point A with an SHR value of 0.57.
A multiobjective optimization problem to minimize the

energy cost and maximize the profit has been carried out to
study the difference between the LCA-based environmental
impact model and the usual energy-consuming environmental
impact model. The Pareto front for the comparison problem is
shown in Figure 8.
At point G, the profit is 86861.35 CNY/h and the energy

cost is 3980.13 mu/h. At point I, the profit is 75241.32 CNY/h
and the energy cost is 3177.15 mu/h. The profit decreases by
nearly 13.38%, while the energy cost decreases by approx-
imately 20.17% from point G to point I. In general, the Pareto
front in Figure 8 resembles the point B to point E part of the
Pareto front in Figure 7. Significantly, the SHR is still always
near the lower bound and is even fixed. The reason is the yield
of methane, as was mentioned above. Due to the energy cost
consisting of only fuel cost and electricity cost, the effect of the
methane yield is much more substantial. As a result, there is no
inflection at point G in the Pareto front of the energy cost.

Figure 6. Pareto front of the multiobjective optimization problem.

Figure 7. SHR relative to the yields of ethylene, propylene, and
methane.
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Although the yields of propylene increase with a decrease in
COT, the yields of ethylene and methane decrease
simultaneously with a decrease in COT, as shown in Figure
9. Consequently, the profit and energy cost hardly increase
with a decrease in the COT, and the COT in the Pareto front
of the energy cost is always near the upper bound.

We selected some optimal points from both problems, of
which profits are at the same level to calculate their emission
cost. The results are shown in Table 3, which are compared
with the optimal points from the Pareto front for the emission

cost problem. The result shows that, when the profits of the
two problems are at the same level, the emission cost and feed
flow rate are also at the same level. However, the COT with
the emission cost model is slightly lower than that of the
energy cost model, while the SHR is marginally higher.
Figures 10−12 illustrate the effects of decision variables on

profits. As shown in Figure 10, the COT with the emission cost

model is slightly lower than that with the energy cost model
when the profits are at the same level. In contrast, the SHR
with the energy cost model is somewhat lower than the
emission cost model when the profits are at the same level, as
shown in Figure 11. Finally, Figure 12 indicates that the feed

Figure 8. Pareto front for the comparison problem.

Figure 9. COT relative to the yields of ethylene, propylene, and
methane.

Table 3. Comparison between Two Models

emission cost model energy cost model

1 2 3 1 2 3

profit (CNY/h) 75226.1 79499.3 86820.4 75241.3 79475.6 86861.3
emission cost (mu/h) 53162.0 56161.8 61754.2 53181.9 56119.5 61327.9
TCOT (°C) 822.63 823.85 823.013 825 824.94 823.94
SHR 0.40064 0.40304 0.43987 0.40009 0.40046 0.40011
Ffeed (t/h) 39 41.18 45 39 41.16 45

Figure 10. COT relative to profits with emission cost and with energy
cost models.
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flow rates are almost identical on both sides when profits are at
the same level. All of these show the same conclusion from
Table 3. In addition, the COT and SHR for the energy cost
model are nearly concentrated on a single point. The LCA-

based emission cost model, on the other hand, has a broader
scope for the decision variables, which is more suitable to
optimize the steam cracking process.
The decision variables relative to the two environmental

impact models have been analyzed to find the reason for the
differences in profits. The results are shown in Figure 13.
Figure 13a,c show the effects of COT, SHR, and feed flow

rate on the emission cost. The emission cost increases with an
increase in any of the three decision variables. Notably, the
feed flow rate has a more significant effect than the SHR and
COT. Figure 13b,d show the effects of COT, SHR, and feed
flow rate on the energy cost. The energy cost increases with an
increase in either the feed flow rate or SHR and decreases with
an increase in COT. Similarly, the feed flow rate also has more
significant consequences in comparison to the SHR and COT.
Figure 13a,b and Figure 13c,d show the opposite trend of the
emission cost and energy cost models when COT is increased.
It explains why COT with the energy cost model is
concentrated and higher than that with emission cost model.
On the other hand, when the COT is lower, it enables the SHR
to increase to stabilize the emission cost.
The LCA-based environmental impact model shows a more

conflicting relationship with the economic objective in
comparison to the standard energy cost model. The scope of
the operational variables from the Pareto front is also broader.
In this case, the optimum COT of the LCA-based environ-
mental impact model is lower than that integrated with the
energy cost model. The optimum SHR of the LCA-based
environmental impact model is higher than that of the energy
cost model. However, the optimum feed flow rates for the two
models are almost the same.

5. CONCLUSION

This paper proposed a multiobjective environmental and
economic optimization framework for the steam cracking

Figure 11. SHR relative to profit with emission cost and energy cost
models.

Figure 12. Feed relative to profit flow rate with emission cost and
energy cost models.

Figure 13. COT relative to (a) emission cost when SHR = 0.41, (b) energy cost when SHR = 0.41, (c) emission cost when feed = 43t/h, (d)
energy cost when feed = 43t/h.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c00189
ACS Omega 2022, 7, 15507−15517

15515

https://pubs.acs.org/doi/10.1021/acsomega.2c00189?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00189?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00189?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00189?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00189?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00189?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00189?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00189?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00189?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00189?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00189?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00189?fig=fig13&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c00189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


process. The LCA method is used to develop the environ-
mental impact model that considers raw material and utility
emissions. An industrial case study is carried out to indicate the
effectiveness of the proposed method. The effects of COT,
feed flow rate, and SHR on the two objectives are analyzed.
The obtained Pareto front of the profit and emission has also
been studied thoroughly. A multiobjective optimization
problem integrated with energy cost is used as a comparative
study. The results show that the LCA-based environmental
impact model is more conflicting with the economic objective
in comparison to the energy cost model. As a result, the
proposed LCA-based method is more suitable for the
multiobjective optimization issue. The obtained nondominated
solutions in the Pareto front can help reduce emissions when a
reasonable profit is achieved.
Our further studies will expand the LCA-based model from

only one cracking furnace to the upstream and downstream
units and develop a multiobjective scheduling framework for
the ethylene cracking system, which can guide the operators to
operate the ethylene plant well.
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■ NOMENCLATURE

Sets
i set of cracking product
j set of emissions
k set of transportation mode
l set of process unit

Parameters
aFG parameter of FG model
bFG parameter of FG model
aSS parameter of SS model
bSS parameter of SS model
aTLE parameter of TLE model
bTLE parameter of TLE model
Pf petroleum consuming factor
Ef electricity consuming factor
efj,l emission factor of the gas j in the unit process l
efj,k

petro emission factor of the gas j in the petroleum product
transportation mode k
efj,k

gas emission factor of the gas j in the gas transportation
mode k
dfj external cost of gas j
Dk distance in the transportation mode k
pricei

product price of product i
pricefeed price of feedstock
priceFG price of fuel gas
priceDS price of dilution steam
priceSS price of super high-pressure steam
pricewater price of water
priceele price of electricity
Tup
TLEOT upper limitation of TLE

Flo
feed lower bound of feed flow rate

Fup
feed upper bound of feed flow rate

Tlo
cot lower bound of feed COT

Tup
cot upper bound of feed COT

SHRlo lower bound of feed SHR
SHRup upper bound of feed SHR

Variables
yieldi yield of the product i
Ffeedi feedstock flow rate
TCOT coil outlet temperature
SHR steam to hydrocarbon ratio
FFG fuel gas flow rate
FSS super high pressure steam flow rate
TTLEOT transfer line exchangers outlet temperature
Fj,i
emission emission of gas j in the l process unit
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