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Abstract: Accumulating evidence suggests that individuals with sarcomeric hypertrophic cardiomy-
opathy (HCM) carrying MYH7 mutations may have a worse prognosis than MYBPC3 mutation
carriers. Myocardial deformation analysis is superior to standard echocardiography in detecting
subtle myocardial dysfunction and scar formation, but studies evaluating the association with HCM
genotype are scarce. We therefore aimed to compare myocardial strain parameters between MYBPC3
and MYH7 mutation carriers with proven HCM. Participants of the prospective Graz HCM Reg-
istry carrying at least one causative mutation in MYBPC3 (n = 39) or MYH7 (n = 18) were enrolled.
MYBPC3 mutation carriers were older, predominantly male and more often treated with an im-
plantable cardioverter-defibrillator (39% vs. 0%; p = 0.002). Using analyses of covariance, there
were no significant differences between MYBPC3 and MYH7 mutation carriers with regard to left
ventricular global longitudinal strain (estimated marginal means± standard deviation: −16.9 ± 0.6%
vs. −17.3 ± 0.9%; p = 0.807) and right ventricular 6-segments endocardial strain (−24.3 ± 1.0% vs.
26.3 ± 1.5%; p = 0.285). Our study suggests, that myocardial deformation analysis may not be helpful
in concluding on the underlying HCM genotype, and vice versa.

Keywords: hypertrophic cardiomyopathy; MYBPC3; MYH7; genotype-phenotype; speckle tracking;
myocardial deformation analysis; longitudinal strain; echocardiography

1. Introduction

Sarcomeric hypertrophic cardiomyopathy (HCM) is a heritable cardiac disease affect-
ing 1 in 200 to 500 people. While left ventricular hypertrophy is considered the hallmark of
sarcomeric HCM, also the right ventricle can be affected. The clinical spectrum ranges from
normal to severely impaired myocardial function leading to restrictive cardiomyopathy [1].
Pathogenic or likely pathogenic variants in sarcomere protein encoding genes can be iden-
tified in 40–60% of adolescents and adults affected by HCM. MYBPC3 (encoding cardiac
myosin binding protein—C, cMyBPC) and MYH7 (encoding β cardiac myosin heavy chain)
account for the majority of cases [2–4].

Accumulating evidence suggests that MYH7 mutations are associated with an earlier
onset of symptoms [5–7], more pronounced hypertrophy and poorer prognosis when
compared to MYBPC3 [8,9]. Both, MYH7 and MYBPC3 mutations affect the thick filament
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of the sarcomere [8], but via differing pathways. Regarding MYH7, more than 95% of
known disease causing variants are missense mutations leading to integration of altered
myosin into the sarcomere [10]. Most MYBPC3 mutations lead to diminished levels of
cMyBPC in the sarcomere resulting in haploinsufficiency [11]. Mutations in both genes
cause hyperdynamic contraction and poor relaxation of the myocardium [11]. Previous
studies failed in the majority to demonstrate phenotypic differences between MYBPC3 and
MYH7 mutation carriers.

Some imaging studies were suggestive of a more severe phenotype in individuals
carrying a pathogenic genetic variant in MYH7 mutations compared to MYBPC3, although
differences were often marginal and non-significant [3,8,12]. Other studies found no signif-
icant differences with regard to parameters of left ventricular (LV) function and structure,
and myocardial scar formation [13,14]. Most studies were, however, limited by their lack
to assess myocardial deformation analysis which is superior to standard echocardiogra-
phy in detecting myocardial scar formation [15]. Moreover, no study has yet reported on
association between genotype and right ventricular deformation in sarcomeric HCM.

Therefore, the aim of the present study was to compare echocardiographic characteris-
tics applying myocardial deformation analysis of both the left and the right ventricle, on
top of standard echocardiographic parameters in MYH7- and MYBPC3-associated HCM.

2. Materials and Methods
2.1. Design and Study Population

This is a cross-sectional analysis of the Graz HCM Registry (EC-No 30-286 ex 17/18).
The Graz HCM Registry is a prospective cohort study launched in February 2019 and
includes all patients aged over 18 years who are admitted to the HCM outpatient clinic
of the Department of Cardiology of the Medical University of Graz, and provide written
informed consent for participation. Registry procedures include a systematic transthoracic
echocardiographic examination (TTE), a 12-lead electrocardiogram (ECG) and a structured
patient interview.

For the present study we included participants with genetically proven sarcomeric
HCM [2]. Patients were excluded if no echocardiographic study recorded within 6 months
before or after registry inclusion was judged adequate of LV speckle tracking analysis.
Patients were enrolled between February 2019 and June 2021. Clinical characteristics were
assessed at the day of echocardiographic examination. 12-lead-ECG, laboratory analysis,
and medical history were in most cases assessed on the day of TTE, but at least during a
period of 6 months before or after the TTE.

2.2. Clinical Characteristics and Medical History

Clinical and medication history were systematically assessed during the patient in-
terview at registry inclusion and complemented using medical records. NYHA class > II
was defined as breathlessness, fatigue or palpitations at less than ordinary activities, e.g.,
at walking distance less than 1000 m or walking uphill [16]. Sarcomeric HCM was de-
fined as proven mutation either in MYBPC3 or MYH7 classified as pathogenic or likely
pathogenic and enddiastolic left ventricular wall thickness of ≥13 mm evidenced by
TTE [2,17]. Patients carrying mutations in other sarcomere genes were omitted. Left ven-
tricular outflow tract (LVOT) obstruction was defined as maximal left ventricular outflow
tract gradient ≥ 30 mmHg either at rest or during provocations such as Valsalva maneu-
ver or bicycle stress testing [18]. Septal reduction therapy was defined as either surgical
myectomy or percutaneous transluminal septal myocardial ablation (PTSMA).

2.3. Genetic Analysis

The results of performed genetic analyses were collected in the Graz HCM Registry
and were retrospectively analyzed. Genetic testing had been performed with DNA from
peripheral blood for routine clinical care at different diagnostic laboratories. Panel anal-
yses were used to identify the causal variants in the index patients. Sanger sequencing
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was used for segregation analysis in family members. Only patients with a confirmed
pathogenic or likely pathogenic mutation in MYBPC3 and MYH7 were included in the
study (Tables S1–S3). Variant classification followed international guidelines for the inter-
pretation of sequence variants [19].

2.4. Echocardiographic Assessment and Variables

All patients were examined at rest using Siemens Acuson SC 2000 and a 4Z1 transducer
(Siemens AG, Erlangen, Germany). An ECG was recorded during each study to define end-
diastole (ED) and end-systole (ES). Images and cine-loops with frame rates from 40 to 80 Hz
were stored and digitally archived in IntelliSpace Cardiovascular (ISCV, Philips, Eindhoven,
The Netherlands) [20]. All echocardiography derived parameters used in the present study
are listed in Table 1. Standard echocardiographic and Doppler measurements were assessed
according to EACVI recommendations [21–23]. Maximum ED interventricular septum
thickness (IVSEDd) was measured in the apical four-chamber view at basal, midventricular
and apical levels, respectively.

Table 1. Echocardiography derived parameters.

Chamber Parameter

Left ventricle

LVEF, Simpson’s biplane (%)
LVEF, triplane, 2dCPA (%)

Transmitral E velocity (cm/s)
Septal annular e′ velocity (cm/s)
Lateral annular e′ velocity (cm/s)

LV E/e′ (average) ratio
LV GLS, auto-strain (%)

LV GLS, 2dCPA (%)

Left atrium LAVi (mL/m2)

Right ventricle

RV basal ED diameter (mm)
RV wall thickness (mm)

TAPSE (mm)
TRVmax (m/s)

Fractional area change (%)
RVLS 6 segments, 2dCPA (%)
RVLS free wall, 2dCPA (%)

Right atrium RAVi (mL/m2)
Abbreviations: LV, left ventricular; EF, ejection fraction; 2dCPA, two-dimensional cardiac performance analysis;
E, transmitral early diastolic velocity; e′, mitral annular early diastolic velocity; LAVi, left atrial volume index;
GLS, global longitudinal strain; RV, right ventricular; ED, end-diastolic; TAPSE, tricuspid annular plane systolic
excursion; TRVmax, maximal tricuspid regurgitation velocity; RLVS, right ventricular longitudinal strain; RAVi,
right atrial volume index.

2D speckle-tracking echocardiography (2D STE) was performed by experienced in-
vestigators (D.Z., N.S.) who were blinded to patients’ clinical characteristics, using the
vendor-independent post-processing software TomTec-Arena including 2D Cardiac Per-
formance Analysis (TomTec Imaging Systems, Munich, Germany). Cine-loops with the
best image quality were selected for 2D STE. In patients with atrial fibrillation, special
care was taken to choose cardiac cycles of similar duration. If tracking did not match the
visual impression of wall motion, contours were readjusted until optimal tracking was
achieved [24].

For the present study, we focused on endocardial strain analysis. LV global longitudi-
nal strain (LV GLS) was calculated using the entire endocardial line length while computing
LV deformation from the apical four-, three- and two-chamber views; conducted in two
separate cardiac cycles whenever possible and reported as mean values. The endocardium
was tracked as the region of interest using two different methods, once automatically gen-
erated (i.e., LV GLS auto) and once user-defined (i.e., LV GLS 2DCPA) [17]. Additionally,
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endomyocardial contouring by 2D Cardiac Performance Analysis was used to calculate ES
and ED volumes of each apical view to subsequently compute a triplane ejection fraction
of the left ventricle (LVEF) and to determine a triplane left ventricular basal ED diameter
(LVEDd basal).

Right ventricular (RV) longitudinal strain was calculated by averaging peak lon-
gitudinal systolic strain values of equal segment lengths of the free wall and septum
(six segments, i.e., RV4CLS) as well as the free wall only (three segments, i.e., RVFWSL);
obtained in the apical four-chamber view. ED was defined by tricuspid valve closure and
ES as the moment at which the RV was at its smallest [25,26]. If feasible, measurements
were performed in three different cardiac cycles and reported as mean values.

2.5. Statistical Analysis

Categorical variables were expressed as counts (percentages), continuous variables
were shown as mean ± standard deviation (SD) in case of normal distribution or as
medians with interquartile range if non-normally distributed. Distribution of variables
was evaluated by test of Kolmogorov-Smirnov, kurtosis, skewness, concordance between
the mean and median, and visual inspection. For univariate group comparisons, we used
Mann-Whitney U test, Student’s t-test or Chi-Square test, as appropriate.

In order to compare echocardiography derived parameters between MYBPC3 and
MYH7 mutation carriers, analyses of covariance (ANCOVA) were used and adjusted for
potentially confounding parameters including age, sex and history of septal reduction
therapy. Means are reported as estimated marginal means and standard error derived from
multivariate ANCOVA.

Homogeneity of regression slopes was not violated with regard to the dependent
variable, as the interaction terms were not statistically significant (p > 0.05). The residuals
were normally distributed, as determined by the Kolmogorov-Smirnov test (p > 0.05).
The assumptions of homogeneity of variances were found to be satisfied, as assessed by
Levene’s test (p > 0.05).

For all statistical analysis IBM SPSS Statistics Version 26 was used. The significance
level α was set at 5%. Due to the exploratory character of the study we did not adjust for
multiple testing.

3. Results

The cohort comprised 57 patients, including 39 (68%) with MYBPC3 mutation and
18 (32%) with MYH7 mutation. There was one patient with two disease causing mutations
in MYBPC3 and one patient with a disease-causing mutation in MYBPC3 and MYH6. In
10 patients with MYBPC3 mutation and in six patients with MYH7 mutation, there was
at least one additional variant of unknown significance (in MYH6, MYLK2, TTN, FLNC,
RYR2, MYO6, TNNT2, MYPN, ILK, COX15, VCL, respectively).

3.1. Clinical Characteristics

Mean age was 49.1 ± 15.2 and 28 patients (49.1%) were females. Patients with
MYBPC3 mutation were significantly older than those with MYH7 mutation (51.8 ± 14.4
vs. 41.4 ± 14.0 years; p = 0.013) and were less often female (n = 16, 41% vs. n = 12, 67%;
p = 0.072). Patients carrying a MYBPC3 mutation had a lower estimated glomerular fil-
tration rate (eGFR; 80.6 ± 22.4 vs. 100.6 ± 31.6 mL/min/1.73 m; p = 0.008) and were
more often treated with a loop diuretic (21% vs. 0%; p = 0.038). Fifteen MYBPC3 mutation
carriers had a previous implantation of an implantable cardioverter-defibrillator (ICD)
compared with 0 patients carrying a MYH7 mutation (39% vs. 0%; p = 0.002). Nine patients
received an ICD for primary prevention, and six patients for secondary prevention after
survived sudden cardiac death (SCD). One SCD survivor with MYH7 mutation had refused
ICD implantation for personal reasons. Atrial fibrillation was more common in MYBPC3
mutation carriers (31% vs. 6%; p = 0.035). Clinical characteristics are listed in more detail in
Table 2.
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Table 2. Clinical characteristics and medical history.

Whole Cohort (n = 57) MYBPC3 (n = 39) MYH7 (n = 18) t-Test/Pearson Chi2-Test

Characteristics n (%) or Mean ± SD
or Median (IQR)

n (%) or Mean ± SD
or Median (IQR)

n (%) or Mean ± SD
or Median (IQR) p Value

Female 28 (49.1) 16 (41.0) 12 (66.7) p = 0.072
Age (years) 49.07 ± 15.24 51.82 ± 14.40 41.44 ± 13.95 p = 0.013

Age at first diagnosis (years) 1 40.78 ± 15.55 41.80 ± 14.61 36.4 ±16.91 p = 0.259
BMI (kg/m2) 2 27.52 ± 5.90 26.55 ± 4.47 29.59 ± 7.91 p = 0.143

RR systolic (mmHg) 2 134.73 ± 18.31 135.88 ± 19.13 132.33 ± 16.71 p = 0.505
RR diastolic (mmHg) 2 80.32 ± 10.04 79.71 ± 10.18 81.61 ± 9.91 p = 0.513
Heartrate (beats/min) 67.39 ± 10.20 68.44 ± 10.04 65.11 ± 10.44 p = 0.256

NYHA > II 19 (33.3) 15 (38.5) 4 (22.3) p = 0.227
LVOT obstruction 22 (38.6) 16 (41.0) 6 (33.3) p = 0.579

Loop diuretics 8 (14.0) 8 (20.5) 0 p = 0.038
MRA 5 (8.8) 4 (10.3) 1 (5.6) p = 0.560

Verapamil 5 (8.8) 4 (10.3) 1 (5.6) p = 0.560
Amiodarone 3 (5.3) 2 (5.1) 1 (5.6) p = 0.946

ACEI/ARB/ARNI 12 (21.2) 11 (28.2) 1 (5.6) p = 0.051

NTproBNP (pg/mL) 536 (193, 1470) 817 (197, 2802) 390 (164, 789) p = 0.158
eGFR (ml/min/1.73 m) 86.89 ± 27.07 80.55 ± 22.4 100.62 ± 31.62 p = 0.008

History

Surgical myectomy 3 (5.3) 1 (2.6) 2 (11.1) p = 0.179
PTSMA 9 (15.8) 7 (17.9) 2 (11.1) p = 0.510

Mitral valve replacement/repair 0 0 0
Survived sudden cardiac death 7 (12.3) 6 (15.4) 1 (5.6) * p = 0.293

Hospitalization for WHF 8 (14.0) 7 (17.9) 1 (5.6) p = 0.211
Arterial hypertension 23 (40.4) 17 (43.6) 6 (33.3) p = 0.463

Stroke 4 (7.0) 4 (10.3) 0 p = 0.132
PE 3 (5.3) 2 (5.1) 1 (5.6) p = 0.946
AF 13 (22.8) 12 (30.8) 1 (5.6) p = 0.035

permanent 4 (30.8 **) 4 (33.3 **) 0 p = 0.159
paroxysmal 8 (61.5 **) 8 (66.7 **) 1 (100 **) p = 0.150

ECG

Sinus rhythm 48 (84.3) 30 (77) 18 (100) p = 0.026
Ventricular stimulated rhythm 5 (8.8) 5 (12.8) 0 p = 0.112

Atrial fibrillation 4 (7.0) 4 (10.3) 0 p = 0.159
QRS duration (ms) 111.43 ± 33.67 113.8 5 ± 37.72 104.67 ± 21.65 p = 0.251

LBBB 19 (33.3) 11 (28.2) 8 (44.4) p = 0.227
RBBB 11 (19.3) 8 (20.5) 3 (16.7) p = 0.732

Devices

Pacemaker 15 (26.3) 15 (38.5) 0 p = 0.002
CRT 1 (1.8) 1 (2.6) 0 p = 0.493
ICD 15 (26.3) 15 (38.5) 0 * p = 0.002

ICD shock 4 (26.7 **) 4 (26.7 **)
Primary prevention 9 (60.0 **) 9 (60.0 **)

Secondary prevention 6 (40.0 **) 6 (40.0 **)

1 MYBPC3 (n = 35) MYH7 (n = 15). 2 MYBPC3 (n = 38). * patient refused ICD therapy. ** Relative percentage. Bold, statistically significant.
Abbreviations: SD, standard deviation, IQR, interquartile range; BMI, body mass index; RR, blood pressure; NYHA, New York Heart
Association; LVOT, left ventricular outflow tract; MRA, mineral corticoid receptor antagonist; ACEI, angiotensin converting enzyme
inhibitor; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor neprilyin inhibitor; NTproBNP, N-terminal pro-brain natriuretic
peptide; eGFR, estimated glomerular filtration rate; PTSMA, percutaneous transluminal septal myocardial ablation; WHF, worsening heart
failure; PE, pulmonary embolism; AF, atrial fibrillation; LBBB, left bundle branch block; RBBB, right bundle branch block; CRT, cardiac
resynchronization therapy; ICD, implantable cardioverter-defibrillator.

3.2. Echocardiographic Parameters

Using analyses of covariates (ANCOVA), there were no significant differences be-
tween MYBPC3 and MYH7 mutation carriers with regard to LV GLS (estimated marginal
means ± standard error: −16.9 ± 0.6 vs.−17.3 ± 0.9; p = 0.807), as illustrated in Figure 1.
The LV ejection fraction (Simpson method) was slightly lower in MYBPC3 mutation carri-
ers when compared to MYH7 mutation carriers without reaching statistical significance
(53.03 ± 1.2 vs. 55.4 ± 1.8; p = 0.338). Parameters of LV structure were similar between
the groups.
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Figure 1. Echocardiographic analysis of the left ventricle. Estimated marginal means and standard error adjusted for age, 
sex and septum reduction therapy, compared between MYBPC3 (dark blue) and MYH7 (light blue) mutation carriers. (a) 
Left ventricular strain analysis user—(LVGLS) (p = 0.807) and automatically (LVGLS auto) (p = 0.892) generated; (b) Ejec-
tion fraction of the left ventricle (%) measured biplane (Simpson) (p = 0.338) and triplane (p = 0.410) in %; (c) enddiastolic 
basal diameter of the left ventricle (LVd) (p = 0.693) and maximal enddiastolic thickness of the interventricular septum 
(IVSd) (p = 0.897). 

Figure 2. Echocardiographic analysis of the diastolic function and the atrial volume. Estimated marginal means and stand-
ard error adjusted for age, sex and septum reduction therapy compared between MYBPC3 (dark orange) and MYH7 (light 
orange) mutation carriers. (a) ratio of early transmitral velocity to average velocity of the transmitral annulus (E/e’) (p = 
0.630) and maximal tricuspid regurgitation velocity (TRVmax) (p = 0.390); (b) left atrial volume index (LAVi) (p = 0.637)
and right atrial volume index (RAVi) (p = 0.443). 

Figure 1. Echocardiographic analysis of the left ventricle. Estimated marginal means and standard error adjusted for
age, sex and septum reduction therapy, compared between MYBPC3 (dark blue) and MYH7 (light blue) mutation carriers.
(a) Left ventricular strain analysis user—(LVGLS) (p = 0.807) and automatically (LVGLS auto) (p = 0.892) generated;
(b) Ejection fraction of the left ventricle (%) measured biplane (Simpson) (p = 0.338) and triplane (p = 0.410) in %;
(c) enddiastolic basal diameter of the left ventricle (LVd) (p = 0.693) and maximal enddiastolic thickness of the inter-
ventricular septum (IVSd) (p = 0.897).

The mitral annular early diastolic velocity (e′ average) was significantly higher in the
MYBPC3 group (8.5 ± 0.4 vs. 6.8 ± 0.6 cm/s; p = 0.026), but in relation to the transmitral
early diastolic velocity (E/e′) no significant difference could be observed (p = 0.630). The
mean left atrial volume index (LAVi) was similar between both groups (MYBPC3 54.3 ± 4.7,
MYH7 50.1 ± 7.2; p = 0.637), as shown in Figure 2.
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Figure 2. Echocardiographic analysis of the diastolic function and the atrial volume. Estimated marginal means and
standard error adjusted for age, sex and septum reduction therapy compared between MYBPC3 (dark orange) and MYH7
(light orange) mutation carriers. (a) ratio of early transmitral velocity to average velocity of the transmitral annulus (E/e′)
(p = 0.630) and maximal tricuspid regurgitation velocity (TRVmax) (p = 0.390); (b) left atrial volume index (LAVi) (p = 0.637)
and right atrial volume index (RAVi) (p = 0.443).

RV 6-segments endocardial strain was similar between MYBPC3 and MYH7 mutation
carriers (−24.3 ± 1.0 vs. 26.3 ± 1.5; p = 0.285). Fractional area change of the right ventricle
(RVFAC) showed significantly lower values in the MYBPC3 cohort (43.7± 1.7 vs. 52.4 ± 2.5;
p = 0.007). Tricuspid annular plane systolic excursion (TAPSE) showed similar values in
both groups (see Figure 3). All findings are resumed in Table 3.
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carriers. (a) Right ventricular strain analysis (RV4CLS) (p = 0.285) and strain analysis of the right free wall (RVFWLS) (p = 
0.643); (b) right ventricular fractional area change (RVFAC) (p = 0.007), tricuspid annular plane systolic excursion (TAPSE)
(p = 0.798); (c) enddiastolic basal diameter of the right ventricle (RVd) (p = 0.551) and enddiastolic thickness of the right 
ventricular free wall (RVWT) (p = 0.917). 
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Figure 3. Echocardiographic analysis of the right ventricle. Estimated marginal means and standard error adjusted for age,
sex and septum reduction therapy and compared between MYBPC3 (dark green) and MYH7 (light green) mutation carriers.
(a) Right ventricular strain analysis (RV4CLS) (p = 0.285) and strain analysis of the right free wall (RVFWLS) (p = 0.643);
(b) right ventricular fractional area change (RVFAC) (p = 0.007), tricuspid annular plane systolic excursion (TAPSE)
(p = 0.798); (c) enddiastolic basal diameter of the right ventricle (RVd) (p = 0.551) and enddiastolic thickness of the right
ventricular free wall (RVWT) (p = 0.917).

Table 3. Echocardiographic parameters compared between MYBPC3 and MYH7 mutation carriers.

MYBPC3 (n = 39) MYH7 (n = 18) t-Test ANCOVA

Not Adjusted Adjusted Not Adjusted Adjusted

Mean ± SD
or Median (IQR) Mean ± SE Mean ± SD

or Median (IQR) Mean ± SE p Value p Value

Sinus rhythm during TTE n (%) 30 (77) 18 (100)
heart rate during TTE (beats/min) 68.44 ± 10.04 68.9 ± 1.7 65.11 ± 10.44 64.0 ± 2.6 p = 0.256 p = 0.139

LV average loops 2 ± 0 2 ± 0
RV average loops 2.53 ± 0.6 2.47 ± 0.7

LV

LVGLS auto 1 −16.7 ± 4.1 −17.2 ± 0.6 −18.3 ± 2.6 −17.3 ± 0.9 p = 0.138 p = 0.892
LVGLS 2dCPA −16.5 ± 4.0 −16.9 ± 0.6 −18.3 ± 2.8 −17.3 ± 0.9 p = 0.088 p = 0.807

LVEF Simpson biplane (%) 2 52.9 ± 8.0 53.03 ± 1.2 56.3 ± 4.8 55.4 ± 1.8 p = 0.100 p = 0.338
LVEF triplane (%) 51.1 ± 8.6 51.6 ± 1.3 54.7 ± 4.8 53.5 ± 1.9 p = 0.105 p = 0.410

E/e′ average (ratio) 3 11.4 ± 5.8 11.0 ± 0.9 11.1 ± 4.6 11.9 ± 1.4 p = 0.652 p = 0.630
E (cm/s) 3 83.0 ± 27.1 84.3 ± 4.6 79.4 ± 22.6 76.7 ± 7.1 p = 0.647 p = 0.397

e′ average (cm/s) 3 8.1 ± 2.7 8.5 ± 0.4 7.7 ± 2.4 6.8 ± 0.6 p = 0.892 p = 0.026
IVSd maximal (mm) 20.8 ± 4.6 20.3 ± 0.8 19.2 ± 4.8 20.1 ± 1.1 p = 0.226 p = 0.897

IVSd basal (mm) 15.2 ± 3.8 14.9 ± 0.6 13.5 ± 3.8 14.3 ± 0.9 p = 0.125 p = 0.626
IVSd midventricular (mm) 20.7 ± 4.6 20.2 ± 0.8 19.1 ± 4.7 20.1 ± 1.1 p = 0.233 p = 0.911

IVSd apical (mm) 14.4 ± 4.6 14.1 ± 0.7 13.7 ± 4.3 14.3 ± 1.1 p = 0.593 p = 0.868
LVEDd (cm) 3.03 ± 0.54 2.98 ± 0.1 2.94 ± 0.36 3.04 ± 0.11 p = 0.527 p = 0.693

LAVi MOD (mL/m2) 4 50.2 (37.8, 68.8) 54.3 ± 4.7 42.5 (33.5, 49.9) 50.1 ± 7.2 p = 0.097 p = 0.637

RV

RVLS 6 segments 2dCPA 5 −24.1 ± 6.3 −24.3 ± 1.0 −26.9 ± 3.8 −26.3 ± 1.5 p = 0.062 p = 0.285
RVLS free wall 2dCPA 5 −29.1 ± 7.4 −29.4 ± 1.2 −30.9 ± 4.2 −30.4 ± 1.8 p = 0.395 p = 0.643

RVFAC (%) 2 43.5 ± 10.9 43.7 ± 1.7 52.8 ± 7.4 52.4 ± 2.5 p = 0.002 p = 0.007
TRVmax (m/s) 6 2.6 ± 0.4 2.6 ± 0.1 2.5 ± 0.2 2.5 ± 0.1 p = 0.206 p = 0.390
TAPSE (mm) 7 21.9 ± 4.5 22.1 ± 0.8 22.2 ± 5.0 21.7 ± 1.3 p = 0.823 p = 0.798

RVEDd basal (mm) 2 38.4 ± 7.1 37.5 ± 1.2 34.3 ± 8.2 36.2 ± 1.8 p = 0.059 p = 0.551
RVWT (mm) 8 7.2 ± 1.7 7.2 ± 0.3 7.2 ± 2.0 7.2 ± 0.5 p = 0.950 p = 0.917

RA Area (cm2) 9 18.5 ± 1.0 18.3 ± 1.0 16.6 ± 1.6 17.3 ± 1.6 p = 0.045 p = 0.619
RAVi (mL/m2) 2,9 31.4 ± 19.1 29.1 ± 2.5 20.3 ± 7.4 25.3 ± 3.9 p = 0.003 p = 0.443

1 MYBPC3 (n = 34), MYH7 (n = 17). 2 MYBPC3 (n = 38). 3 MYBPC3 (n = 33), MYH7 (n = 15). 4 MYBPC3 (n = 35) MYH7 (n = 16). 5 MYBPC3
(n = 32), MYH7 (n = 15). 6 MYBPC3 (n = 25), MYH7 (n = 7). 7 MYBPC3 (n = 35), MYH7 (n = 14). 8 MYBPC3 (n = 31), MYH7 (n = 13).
9 MYH7 (n = 17). Bold, statistically significant. Abbreviatons: SD, standard deviation; IQR, interquartile range; SE, standard error;
ANCOVA, analysis of covariance; TTE, transthoracic echocardiography; LV, left ventricule/ventricular; RV, right ventricle/ventricular;
GLS, global longitudinal strain; auto, automatically generated; 2dCPA, 2D cardiac performance analysis; EF, ejection fraction; E, transmitral
early diastolic velocity; e′, mitral annular early diastolic velocity; IVS, interventricular septum; d, diameter; ED, end-diastolic; LAVi, left
atrial volume index; MOD, method of discs; LS, longitudinal strain; FAC, fractional area change; TRVmax, maximal tricuspid regurgitation
velocity; TAPSE, tricuspid annular plane systolic excursion; WT, wall thickness; RAVi, right atrial volume index.
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4. Discussion

This is the first study describing detailed genotype-phenotype correlations in sarcom-
eric HCM focusing on myocardial deformation markers of both RV and LV. There were no
significant differences between MYBPC3 and MYH7 mutation carriers with regard to LV
and RV longitudinal strain, respectively. In multivariate statistical models, only RVFAC
and e’ were significantly different. However, while MYBPC3 mutation carriers had lower
RVFAC suggesting a poorer RV function, they presented with higher e’ indicating better
LV relaxation. In light of this ambiguity, these findings may be interpreted as effects of
chance rather than as results of phenotypic differences related to the underlying mutations.
The higher rate of ICD implantations in the MYBPC3 group may have confounded these
associations as well.

The reason for the suggestively earlier onset of symptoms, worse prognosis and
more pronounced hypertrophy in MYH7 mutations [5–9] could be explained by functional
differences between the proteins coded by MYBPC3 and MYH7. Cycling interaction
between actin and myosin drives sarcomeric contraction through sliding of thick and
thin filaments past one another, creating force that allows cardiomyocytes to contract
and relax. Cardiac MyBPC (cMyBPC) regulates myocardial contractility, with reduced
cMyBPC levels leading to hypercontractility and impaired relaxation. MYBPC3 mutations
are supposed to cause HCM by haploinsufficiency. Myosin is a mechanoenzyme that drives
ventricular contraction and produces force when binding actin and hydrolyzing ATP [4].
Most HCM causing MYH7 mutations cluster between residues 181 and 937, forming
the myosin head domain and approximately 20% are located in the coiled coil region
forming the thick filament [27]. Mutant myosins show altered parameters of myocardial
contraction like actin gliding velocity, intrinsic force production, cross—bridge cycling
kinetics, calcium sensitivity of force generation and acto-myosin ATPase activity leading to
hypercontractility and impaired relaxation [27–30]. Consistent with previous results [31],
causal MYH7 variants in our cohort were predominantly missense mutations (see Table S3).

Pathogenic variants in MYBPC3 are predominantly truncating [7,32,33], which is
in accordance with our results. Causal MYBPC3 variants in our cohort were primarily
frameshift and splice site mutations (see Table S1). Only a few probands had disease
causing missense mutations and there was one proband with an in-frame deletion and
one with a nonsense mutation, respectively (see Tables S1 and S2). MYBPC3-associated
HCM shows a later disease onset with a variability in the rate of progression even within
a family, influenced by lifestyle, environment and other genetic factors [5,34]. The later
age of onset is discussed as explanation for a relatively high proportion of founder muta-
tions. All of them result in a shortened cMyBPC. Members of two families of our cohort
carry a Dutch founder mutation (c.2864_2865delCT) [33]. A Tuscany founder mutation
(c.772G > A) was detected in members of five families of our cohort [35].

Our results showed a higher age of disease onset in MYBPC3 patients. This is in line
with a recent meta-analysis including 51 studies with 7675 HCM patients, where mutations
in MYH7 were associated with earlier age of onset and higher risk of sudden cardiac death
when compared to MYBPC3 [9]. In contrast, an earlier meta–analysis comprising 18 studies
with 2459 patients found no differences in terms of symptoms, age of onset and grade of
left ventricular hypertrophy between MYBPC3 and MYH7 mutation carriers [36].

Interestingly, MYBPC3 mutations carriers had significantly more often a history of
ICD implantation. This is not in line with other and larger studies attributing a higher
risk of SCD to MYH7 [8,9]. Patients with missense mutations affecting the actin binding
site or the head–rod portion of β MHC showed decreased survival [37]. For instance, the
p.Arg453Cys mutation in MYH7 is associated with a high incidence of end-stage heart
failure and premature death [38]. Similarly, a significantly higher proportion of the MYBPC3
group had history of atrial fibrillation which is not in line with previous studies [9,39,40].
Both of these controversial observations are likely a consequence of referral bias in a
tertiary HCM care center which is a well-known phenomenon in epidemiological research
on HCM [41].
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Only a few studies compared echocardiographic parameters between HCM genotypes
although none explicitly reported results of RV myocardial deformation analyses. One
recent multicenter study including 63 adult individuals evaluated the association between
mutations in both genes and phenotypes in patients with sarcomeric HCM. They found
that patients carrying a MYH7 mutation were similar to MYBPC3 carriers in the majority
of measured echocardiographic parameters. Only systolic anterior motion of the mitral
valve and mitral valve calcification were significantly more common in MYH7 mutation
carriers [8]. It is well accepted that analysis of myocardial deformation markers is superior
to standard echocardiographic parameters in detecting scar formation [15], predicting
arrhythmias [42] and cardiovascular outcomes in HCM [43]. Evidence on differences of
myocardial deformation markers between distinct HCM susceptibility genes is scarce. One
previous study found that LV strain is similar between MYBPC3 and MYH7 mutation carri-
ers. In this study the authors concluded that LV morphology rather than genotype predicts
myocardial deformation markers in HCM [44]. However, RV myocardial deformation
analyses were not included in their report.

Particular strengths of our study include its novelty, since myocardial deformation,
particularly of the RV, has not been sufficiently investigated in patients with sarcomeric
HCM. A further strength of our study is the high quality of strain measurements which
were performed by blinded investigators analyzing several cine loops per patient.

Limitations of our study include the relatively low sample size and the single-center de-
sign. Moreover, characteristics of our cohort may be confounded by referral bias which may
be inherent to our tertiary care setting, although we performed multivariate analysis to min-
imize this bias. Nevertheless, results may not be generalizable to other HCM populations.

5. Conclusions

Echocardiographic myocardial deformation parameters of both RV and LV were
similar between MYBPC3 and MYH7 mutation carrying individuals with sarcomeric HCM.
Myocardial deformation analysis may not be helpful in concluding on the underlying
HCM genotype, and vice versa.
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