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Abstract

Background: Some natural systems are big in size, complex, and often characterized by convoluted mechanisms of
interaction, such as epistasis, pleiotropy, and trophism, which cannot be immediately ascribed to individual natural events
or biological entities but that are often derived from group effects. However, the determination of important groups of
entities, such as genes or proteins, in complex systems is considered a computationally hard task.
Results: We present Pyntacle, a high-performance framework designed to exploit parallel computing and graph theory to
efficiently identify critical groups in big networks and in scenarios that cannot be tackled with traditional network analysis
approaches.
Conclusions: We showcase potential applications of Pyntacle with transcriptomics and structural biology data, thereby
highlighting the outstanding improvement in terms of computational resources over existing tools.

Background

Interactive systems are commonly represented as graphs (or
networks), which are mathematical representations of “ele-
ments” (nodes) and their relationships (edges). The semantics of
relationships is specific for each graph and completely defines
its expressiveness. Protein interaction networks, for example,
represent physical interactions as edges and proteins as nodes;
metabolic networks wire metabolites whenever these partici-
pate in the same biochemical reactions; regulatory networks are
directed graphs, where the directionality of relationships mat-
ters. Thus, a link exists between 2 molecules if there is evidence
either of regulatory activity by a transcription factor onto a gene
or of post-translational modifications. These, together with sev-

eral other kinds of networks, such as RNA, signaling, neuronal,
trophic, and co-expression networks, are the concrete signs of
an exceptional growth of molecular interaction data and, hence,
of an intense research activity in the field of network medicine
[1].

Network medicine is a relatively new discipline that exploits
graph theory to identify key molecules in the human disea-
some [2], together with their hidden molecular relationships.
The general aim is that of reverse-engineering the mechanisms
of pathogenesis of complex disorders and traits, whereby the
etiology is notoriously convoluted. The diseasome is, in fact, a
network where diseases are nodes and links represent relation-
ships between the disease-associated cellular components. De-
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termining such links would help identify the molecular relation-
ships between phenotypes and the reasons for certain comor-
bidities and would positively affect diagnosis, treatment, and
drug multi-purposing.

Certain kinds of biological networks share the feature of hav-
ing a few relatively highly connected nodes, often called “hubs,”
suggesting that the molecules represented by hubs should play
special biological roles. The first hypothesis of network medicine
is that most known disease genes, which are non-essential, lie
in the periphery of these networks and are far from hubs. On
the contrary, at least in human cells, hub molecules are encoded
by essential genes [3]. A database, Database of Essential Genes
(DEG), exists that reports essential genes for some bacteria, ar-
chaea, and eukaryotes [4]. An interesting speculation is that, be-
cause of their many links, hubs are reasonably associated with
disease genes [5–7], which in turn, by virtue of the local hypoth-
esis of network medicine, exhibit increased tendency to interact
with each other, all being involved in the same disease. Thus,
molecular networks are not random but tightly organized on the
basis of specific principles, according to which the effect of a
central gene, which is eventually aberrant, reverberates on the
gene products of neighboring genes in its network. Hence, the
expression of a disease phenotype rarely results from an individ-
ual aberrant gene, rather from the harmonized effects of groups
of related genes. This holds true also for other types of networks,
ranging from ecological to evolutionary and chemical networks.

Graph theory draws upon various tools to identify the most
central elements, i.e., the key molecules, in a network. Here, the
concept of centrality is synonymous with importance, even if
the term has been declined differently in the literature. A topo-
logically important node may be a hub, a “bottleneck,” namely,
a node that lies in many pathways, or one that is “close” to most
other nodes. Despite the above description, local (i.e., regarding
nodes or edges) and global (i.e., regarding the entire network)
properties of networks are unlikely to completely explain the
functioning of complex systems because they either fail to take
into account or underestimate the effects that groups of impor-
tant nodes may jointly exert on these systems. Node 2 in Fig. 1
has 7 ties, and it is the highest-degree node in this example net-
work. It is connected with 7 unimportant nodes because these
exhibit low degree values. Node 9 is the second-most connected
node with only 1 fewer edges than Node 2, but 2 of its neighbors,
i.e., Nodes 16 and 21, are the third- and fourth-ranked nodes by
degree, with 5 and 4 ties, respectively. Thus, although Node 2 is
top ranked by degree, it may not be the most functionally cen-
tral node. Whether this assertion is true strictly depends on the
purposes for which a network is being studied.

More interestingly, the “network parsimony” principle of
network medicine, according to which causal molecular path-
ways often coincide with the shortest molecular paths between
known disease-associated components, implies that it is funda-
mental to find the nodes that lie within the highest number of
pathways in networks because these are more likely to be func-
tionally critical [1]. The betweenness centrality index [8] is the
most suitable for this task. Node 21 in Fig. 1 is the top-ranked
node by betweenness. This was expected because it lies in the
exact middle of the network, which, in turn, exhibits a quasi-
tree topological node organization. But even if Node 21 belongs
to almost all shortest paths of the network, it ranks only fourth
by degree because it is not individually much connected. Node
9 is the second node by betweenness, with a score very close to
that of Node 21, but, on the contrary, it ranks second by degree
(Supplementary Data S1). Whether the most important node is
2, 21, or 9 depends on the aims and context of the study.

Table 1: Group centrality metrics calculated for the example network.

Group Degree Betweenness Closeness∗

{2, 21} 0.5 0.39 0.58
{2, 9} 0.59 0.43 0.69
{21, 9} 0.36 0.35 0.38
{2, 9, 21} 0.71 0.45 0.75

Higher scores indicate higher centrality. ∗ The “minimum” method was used to

measure the distance from the group to an outside node.

Table 2: KPP-Neg and KPP-Pos metrics calculated for the example
network

Group DF (0.66) m-reach∗ DR

{2, 21} 0.87 79.2% 0.65
{2, 9} 0.91 95.8% 0.72
{21, 9} 0.84 62.5% 0.53
{2, 9, 21} 0.93 95.8% 0.74

DF (Neg) achieves its maximum value of 1.0 when the graph consists entirely of
isolated nodes. m-reach (Pos) is a count of the number of unique nodes reached
by any member of the group in m links or fewer. DR (Pos) achieves a maximum

value of 1 when every non-group node is adjacent to ≥1 member of the group. ∗

The m parameter of the algorithm was set to 2. The percentage of nodes reached
by the group, including the group nodes, is reported.

Whenever >1 node exhibits similar topological scores, as in
this case, or when a co-responsibility for a phenotype is sus-
pected, studying groups and their centrality might be a reason-
able option. In 1999, Everett and Borgatti expanded the defini-
tion of degree, betweenness, and closeness to groups of nodes
[9]. Calculating these indices for the following groups: {2, 21}, {9,
21}, {2, 9}, the latter achieved the highest scores. Moreover, con-
sidering the group made by all 3 nodes, only degree and close-
ness increased significantly in respect to {2, 9} (cf. Table 1).

In 2006, Borgatti introduced 2 other classes of metrics for
groups that were meant to assess the ability of groups either to
disrupt a network, when removed, or to efficiently spread infor-
mation through a network. These were defined as “Key-Player
Problem/Negative” (KPP-Neg) and “Key-Player Problem/Positive”
(KPP-Pos), respectively [10]. Note that similar concepts were also
covered in other research fields and scientific contexts [11, 12],
where specific search strategies [13, 14] were implemented. KPP-
Neg and KPP-Pos were calculated for the same groups and re-
ported in Table 2. It is interesting to notice that {2, 9} is still the
most important group in terms of disruption potential and con-
nectivity. Their scores were slightly lower than those of group
{2, 9, 11}, meaning that even here Node 11 does not contribute
significantly to the centrality of {2, 9}.

What remains to be verified is whether any other group ex-
ists that exhibits similar or higher centrality values. Consider-
ing the small network size, the option of running a “brute-force”
algorithm to search the absolute best group(s) among all possi-
ble ones is computationally feasible, in place of a “greedy op-
timization” search, as suggested by Borgatti [10]. In this case,
the best group of size 2 for all metrics is still {2, 9}, whereas {5,
9} reaches 100% of non-group nodes and is ranked first by m-
reach. However, because none of the centrality scores of {2, 9}
equaled their maximum possible values, we again applied the
brute-force search to groups of increasing sizes, 3–6. We thus
found that degree and closeness reached their absolute maxi-
mum scores, i.e., 1, equally with 2 groups {2, 9, 11, 16, 21}, {2,
9, 10, 16, 21} of size 5, meaning that nodes 10 and 11 are in-
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Figure 1: Left: Example network. The darker the blue color, the higher the degree of nodes. Right: Pie chart of the most central nodes. The outer circle reports the highest-
degree nodes (counterclockwise, blue through gray). The inner circle represents the highest betweenness nodes, from light orange to gray, counterclockwise. Node
names are reported within circle sectors. Sector width is proportional to the degree (outer) and betweenness (inner) values of nodes. Gray sectors contain unimportant

nodes, i.e., nodes with unitary degree and negligible betweenness values.

Figure 2: Brute-force search algorithm applied to all groups of sizes 2–6. For any
size, the maximum scores obtained for (top) group degree, group closeness, and
group betweenness and (bottom) DF and DR are plotted.

terchangeable and equally important; betweenness obtained its
maximum score (0.497) with the group {2, 9, 11, 16, 21} (Supple-
mentary Data S2). The best group by DF is {2, 9, 11, 14, 16, 21},
which achieves the score of 1. The groups {2, 9, 10, 16, 21} and
{2, 9, 11, 16, 21} equally obtained the best DR score (0.792). It is
worth noticing that DR and betweenness do not reach their ab-
solute maximum scores, which however are plausibly the high-
est possible for this network, because groups of bigger sizes ex-
hibit lower scores (Fig. 2). It is also interesting to notice that
Nodes 2, 9, and 21 are included in all groups described above,

thereby highlighting their central roles in the network (Supple-
mentary Data S3).

Computing the nestedness, which consists in verifying
whether sets of nodes recur in groups of increasing sizes, could
confirm the importance of Nodes 2, 9, and 21. Hence, if larger
sets contain smaller sets, higher values of nestedness may be
a proxy for identifying upstream/master regulators through the
key nodes of the smallest groups. One way to calculate the
nestedness of the example network is by the Nrow metrics [15,
16]. Nrow is defined as the average percentage of nodes from
smaller sets that are contained in larger sets, taking all possi-
ble pairs of sets. Thus, after computing all the best sets of in-
creasing sizes, from 2 to 5, for each group centrality metric but
m-reach, Nodes 2 and 9, and not 21, resulted in being nested in
all sets, regardless of their size (Fig. 3 and Supplementary Data
S2). The same evidence emerged with the key-player metrics
(Supplementary Data S3). The nestedness scores were generally
quite high, meaning that nodes are not interchangeable among
groups, i.e., there are few equally important nodes. The group {2,
9} is definitely important from a topological point of view, and its
discovery would not have been immediately hypothesized with-
out this investigation because Nodes 2 and 9 are 5 links apart.

This “practical” introduction aims at introducing the theory
underlying Pyntacle. A toy model was used to describe the main
features, outline a possible analytical pathway, and highlight
how Pyntacle may help extract valuable information from real-
world networks. The rest of the article thus presents (i) the soft-
ware and its main components; (ii) its design and implemen-
tation; (iii) details of how to use it; (iv) benchmarks, assessed
on real and simulated networks of increasing sizes, in compar-
ison with a similar software package; and (v) 2 real-world case
studies.

Pyntacle

Pyntacle is an open-source network analysis framework that
was originally designed to tackle the Borgatti Key-Player Problem
[10] efficiently through the identification of maximally reachable
or disruptive groups of nodes. Contrary to similar software pack-
ages that either analyze networks with standard global and lo-
cal topological metrics [17, 18] or provide the users with limited
tools to detect important groups of nodes [19], Pyntacle adopts
optimized heuristic algorithms and parallel computing strate-
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Figure 3: Nestedness graphs for group (A) betweenness, (B) closeness, and (C) degree centrality metrics. Nodes represent groups with top centrality values in respect
to all other possible groups of nodes with same sizes. Edges connect groups when the bigger group contains ≥1 element of the smaller one. Edges are labeled with the
overlap ratio between the elements of the connected groups.

gies to make the task of identifying key-player nodes feasible.
It has the following attributes: (i) is available for Windows, Mac,
and Linux OS; (ii) is available as both command line tool and
API, with an easy and user-friendly interface for both input com-
mands and results visualization; and (iii) allows the manage-
ment of real-world graphs in a computationally efficient way.

Pyntacle is implemented in modules, each designed to ana-
lyze a particular aspect of a network. These can calculate global
and local topological metrics (metrics module), the importance
of groups of nodes (groupcentrality and keyplayer modules),
search and analyze clusters of nodes (communities module),
perform set operations between networks (set module), gen-
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erate networks with different topological organizations (e.g.,
random, scale-free, and small-world networks, generate mod-
ule), and convert and load/save networks using different data
formats (e.g., adjacency matrix, edge list, SIF and dot, convert
module).

Features

Centrality measures for groups
Pyntacle tackles the problem of identifying key-player nodes
that, together, optimally diffuse something through a network
or maximally disrupt or fragment a network when removed. It
further extends the standard network centrality measures of de-
gree, closeness, and betweenness (refer to [20] for a clear in-
troduction and to [21] for further theoretical explanations) to
groups rather than individual elements. To this regard, these
methods are a direct generalization of the corresponding indi-
vidual measures, in such a way that if, e.g., group degree and
degree are applied to groups consisting of single elements, they
yield identical results. The classes of algorithms are thus two:
one that measures the importance of a set on the basis of its
impact on the remaining nodes of a network and another that
does it by considering the sole properties of the elements of a
set.

The former class is composed by the DF (KPP-Neg; cf. Eq. 2
in Methods), DR (cf. Eq. 3), and m-reach (KPP-Pos; cf. Eq. 4) al-
gorithms [10]. KPP-Neg measures the fragmentation of a net-
work because of a set. KPP-Pos measures the overall cohesion
that members of a set have with the remainder of the network.
As described in the Methods section, DF measures the degree of
reachability of a set of nodes, taking also into account the degree
of cohesion of the set. m-reach counts the number of unique
nodes reached by any member of a set in m links or fewer. DR is
the weighted proportion of all nodes reached by the set, where
nodes are inversely weighted by their minimum distance from
the set.

The latter class is formed by the group-degree centrality
measure, which accounts for the number of non-group nodes
that are connected to group members (cf. Eq. 5 in Methods);
the group-betweenness centrality measure, which measures the
proportion of (shortest) paths connecting pairs of non-group
members that pass through the group (cf. Eq. 6); and the group
closeness, which sums the distances from the group to all ver-
tices outside the group (cf. Eq. 7).

Search strategies for optimal sets
When the aim is not to quantify the centrality of a specific set of
nodes but that of discovering which is/are the most central set(s)
in a network, search heuristics might come in handy. In particu-
lar, Pyntacle implements a “greedy optimization” search heuris-
tics presented in [10] and a brute-force combinatorial optimiza-
tion search strategy (cf. Search algorithms section in Methods).
The former progressively replaces the components of a starting
random set with all other nodes of a graph, calculating one of
the aforementioned centrality metrics for that group, and then
stops when a suboptimal solution is obtained. The latter loops
through all possible groups of a predefined size and returns only
those exhibiting the best scores for any of the centrality mea-
sure. It is immediate that the computational complexity of the
heuristic method is much lower than that of the exact method,
at the cost of suboptimal solutions. The brute-force search yields
exact solutions but is computationally impracticable for big net-
works. The choice of a heuristic approach is due to its scalabil-
ity to large-scale networks, while exact solutions are provided

for smaller biological networks, for which there is no signifi-
cant computational burden. It has to be noted that more effi-
cient search strategies for large networks exist: Integer Linear
Programming for exact solutions or metaheuristic approaches,
such as population-based incremental learning methods [13].

Exploration of cross-talk pathways of sparse real-world networks
Real-world biological networks exhibit hierarchical organiza-
tions, where subnetworks (e.g., signaling pathways) are bridged
by cross-talk links [22]. A number of developmental processes
rely on cross-talk, where their aberrant regulation has been
found to be associated with inflammatory response defects, as
well as cancer and neurodegeneration [23, 24]. Together with
the observation that causal molecular pathways often coin-
cide with the shortest molecular paths between known disease-
associated components (cf. the network parsimony principle
[1]), these render the study of cross-talk in networks fundamen-
tal. Pyntacle eases the exploration of cross-talk by set operations
on graphs. Individual networks can thus be compared (union,
intersection, and difference) or merged and then studied topo-
logically.

These networks are typically sparse and can be analyzed us-
ing algorithms that work best with graphs with a few edges. Pyn-
tacle is optimized to work with increasingly large and complex
networks. It lets the user assess the extent of sparseness of a
network though mathematical indices, including the compact-
ness and completeness indices [25, 26]. In addition, it chooses
the best implementation of computationally heavy algorithms
at run-time (e.g., the search for all the shortest paths), accord-
ing to the available hardware (i.e., single or multi-core proces-
sors and GPU-enabled graphics cards) and some network global
metrics, including the sparseness.

Data format compatibility and reporting
Pyntacle is compliant with the Cytoscape SIF data format and
with the dot network data format. It can input and output adja-
cency matrices and edge lists as textual files, as well as serial-
ized binary Python objects. Graph, node, or edge attributes can
be imported/exported from/to file.

Pyntacle can report any analysis result in 2 formats: as tex-
tual files and as rich HTML files. In particular, the PyntacleInk
module outputs an interactive, automatically generated web
page that displays the graph, its attributes, and all the results
of the analyses that were performed on it.

Implementation

Pyntacle is accessible via command line and exposes a Python
API for fine-tuning its algorithms. It depends on iGraph [17] for
handling the graph data structure and borrowing some basic lo-
cal and global topological measures and network generators.

Heavy computations of new algorithms are just-in-time com-
piled to native machine instructions by Numba [27] and thus run
on multi-process CPU or NVIDIA-compatible GPU hardware, if
available in the hosting computing infrastructure (experimental
feature only accessible through APIs in version 1.3). Differently
from similar packages, this allows Pyntacle to process graphs
with thousands of nodes, thus helping it manage, for example,
the whole human transcriptome and other networks of com-
parable sizes. Moreover, GPU acceleration provides high-speed
computing of Pyntacle’s algorithms, thereby making heavy and
long-running tasks feasible.

The PyntacleInk visualizer exploits HTML5, Javascript, and
Sigma to produce an interactive representation of the input
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graph, its base metrics, and a graphic rendering of the results of
most of Pyntacle’s algorithms (KPP, group centrality, graph gen-
eration, set operations, community detection, Fig. 6B). A graph
can be displayed using different layouts (i.e., Random, Circular,
ForceAtlas, Fruchterman-Reingold), and the canvas renderer en-
ables visualization and smooth interaction with graphs ≤5,000
nodes in size, using a web browser of a standard desktop PC. All
the information about a graph and the analyses that were per-
formed on it are stored in a JSON file; this dictionary is updated
with new information whenever a new run of analysis is per-
formed on the same graph, allowing the user to simultaneously
explore the results of different algorithms and—through the use
of timestamps—the results of the same algorithm run with dif-
ferent parameters over time. Any graphical representation can
be exported as vector graphics (SVG) or PNG screenshots.

Finally, Pyntacle is fully compatible with Jupyter Notebook.

Benchmarks

Compared with the keyplayer 1.0.3 R package [28] and KeyPlayer
1.44 [29], Pyntacle has the following attributes: (i) is available
for Windows, Mac, and Linux OS; (ii) is available as both com-
mand line tool and API; and (iii) allows management of real-
world graphs in a computationally efficient way.

Wall-clock time comparisons of Pyntacle and keyplayer,
when searching for optimal kp-sets of some real and simulated
graphs, are shown in Fig. 4. Noteworthy is that KeyPlayer is not
rigorously testable here because it is a Windows-only GUI-based
application.

Random networks were generated according to the Erdős–
Rényi model. Six random networks, 3 with 100 nodes and 3 with
1,000 nodes, were generated. These 2 groups of networks dif-
fered for their wiring probability, which varied as 0.3, 0.5, and 0.7.
This probability is a kind of weighting function, which ranges
from 0 to 1, with bigger numbers producing denser networks.
Four other real networks were used: the network representing
strong advice-seeking ties in a global consulting company [10]
(32 vertices and 55 edges); the parasite-host food web of the
Carpinteria Salt Marsh Reserve (128 vertices and 1,198 edges)
[15]; the Caenorhabditis elegans connectome (a modified version
of the network published in [30], 279 vertices and 1,960 edges);
and a high-quality C. elegans protein-protein interaction network
(3,303 vertices and 5,561 edges, downloaded from the Agile Pro-
tein Interactomes DataServer [APID] [31, 32]).

Wall-clock times were measured 3 times for each network
and centrality algorithm. DR, m-reach, and DF were the only 3 al-
gorithms in common between the 2 software packages. The sub-
optimal sets of size 2 were determined by both software pack-
ages using their own implementations of the greedy optimiza-
tion search algorithm (cf. Search algorithms in the Methods sec-
tion). Starting from the 100-node random networks, Pyntacle
computed all indices in fractions of seconds (or a few seconds
for DF), irrespective of the wiring probability. keyplayer com-
puted the same indices of the same networks in 4–9 minutes.
Considering the 1,000-node networks, keyplayer completed the
computation of all indexes in >1 day, while Pyntacle took a few
minutes to 5 hours (DF). Similarly, real networks were analyzed
in fractions (or tenths for DF) of seconds by Pyntacle and in a
few seconds to 1 hour by keyplayer, which took >1 day to ana-
lyze the APID network, as opposed to Pyntacle, which ran for a
few minutes to 17 hours. Generally, Pyntacle was 40–3,900 times
faster than keyplayer, depending on the test.

The brute-force search algorithm yields exact solutions at the
cost of an intrinsic combinatorial complexity. However, its com-

putational load can be split into parallel processors. In Pyntacle,
the best solutions are obtained after the enumeration of all pos-
sible groups of nodes and the calculation of their topological in-
dices. Calculations are in fact independent from each other and
hence suitable to being executed in parallel. When applied to our
test networks with the aim of calculating the DR index, we veri-
fied that the smaller ones (≤100 nodes) have benefited from par-
allel execution only to a limited extent. While the strong advice-
seeking ties in global consulting company network exhibited
the best speedup with the use of 4 computing cores (1.76×),
before decreasing its performance, the net execution time im-
provement consisted in fact of only 82 milliseconds, on average
(Fig. 5C). Similarly, 100-node random networks, proportionally
to the rewiring probability, achieved the best speedup values
with 16 cores (∼8×), with an improvement of just ∼4 seconds
(Fig. 5B). As expected, bigger networks benefited from parallel
execution increasingly with the number of nodes. The Carpin-
teria network achieved the best speedup record (∼11×) with 16
cores, although saving just 7 seconds of computation, while the
connectome peaked at ∼25× with 32 cores (Fig. 5A). The com-
putations of 1,000-node random networks scaled well up to 16
nodes, exhibiting comparable speedups of ∼7×, ∼6×, and ∼6×
when the rewiring probability was varied from 0.3 to 0.5 and 0.7,
respectively. The bigger APID network exhibited the best perfor-
mance with 32 cores, achieving a speedup of ∼29× and termi-
nating the computation 23 hours earlier than the non-parallel
run (Fig. 5D).

Although these are far from being linear speedups, the ad-
vantage and efficacy of parallel computing strategies is evident
for big networks. These results can be reproduced using a Docker
image available from the Pyntacle website.

Analyses
Case Study 1—protein-protein interaction interface

NADH dehydrogenase [ubiquinone] flavoproteins 1 and 2
(NDUFV1 and NDUFV2) are 2 core subunits of the mitochondrial
respiratory Complex 1 [33]. Their interaction is mediated by 138
interface residues (Fig. 6A).

We have built a network whose edges linked interacting
residues of the 2 proteins with the aim of identifying key
residues at the interface between the 2 proteins and whose
mutations might significantly affect their interaction (Fig. 6B).
Thus, we computed several local topological metrics for these
residues, e.g., degree, betweenness, closeness, radiality, and a
few others, but none of them were shown to correlate apprecia-
bly with the contribution provided by each residue (Supplemen-
tary Fig. S1) on the NDUFV1-NDUFV2 interaction energy (��G,
expressed in kcal/mol and calculated with FoldX [34], see Meth-
ods): a maximum Pearson correlation of 0.32 was observed be-
tween ��G and betweenness.

We then applied Pyntacle to the network, searching for the
best positive and negative key-player sets of size 2 (colored in
blue and red, respectively, in Fig. 6, Supplementary Data S4).
The residues Glu161 and Tyr46 of NDUFV1 were identified as the
best negative key players in the network (according to both F
and DF metrics), namely, their removal was estimated to max-
imally fragment the network and thus potentially hamper the
interaction between the 2 proteins. This was further confirmed
by their energetic contributions to the interaction when mutated
to alanine (��G +0.9 and +3.7 kcal/mol, respectively, for Glu161
and Tyr46). Moreover, Glu161 of NDUFV1, paired with Leu234 of
NDUFV2, and Cys125 of NDUFV1, paired with Tyr46, were identi-
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Figure 4: Greedy optimization search, metrics: DR. (A) Strong advice-seeking ties in global consulting company [10]; (B) parasite-host food web of the Carpinteria Salt
Marsh Reserve [15]; (C) C. elegans connectome; (D) high-quality C. elegans protein-protein interaction network (APID); Erdős–Rényi random networks with (E–G) 100
nodes and rewiring probability p = 0.3, 0.5, and 0.7; (H–L) 1,000 nodes and p = 0.3, 0.5, and 0.7.

APID

B

C D

A

Carpinteria Connectome Random (100, 0.3) Random (100, 0.5) Random (100, 0.7)

Strong advice-seeking ties Random (1000, 0.3) Random (1000, 0.5) Random (1000, 0.7)

Figure 5: Improvement of execution times (in seconds) of Pyntacle using parallel computing on different networks using increasing numbers of computing cores. Bars

represent mean and SD values.

fied as the best positive key-player pairs (respectively calculated
with the DF and m-reach metrics), namely, they resulted in be-
ing immediately reachable from the remaining network by direct
links or indirect links joining close neighbor residues.

Contrary to Glu161 and Tyr46, Leu234 and Cys125 neither ex-
hibited a significant ��G when mutated to alanine nor were
characterized by high values of local topological metrics. For
these reasons, they would have been overlooked by all other
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Figure 6: A: Representation of the interaction between NDUFV1 (white) and NDUFV2 (cyan) (PDB id 5xtd). The residues forming the interaction interface are represented
as a graph (bottom) connecting residues close in space. Positive and negative key players are colored in blue and red, respectively, in both the interaction structure and
interaction network. B: The PyntacleInk viewer. Different menus can be used to (i) visualize all the analyses that have been performed on a network, (ii) visualize the

network general metrics, (iii) filter nodes by attributes, and (iv) change the overall layout of the network.

techniques, even the more accurate and computationally inten-
sive, such as alanine scanning [35]. Other than being computa-
tionally demanding and impracticable for large-scale analyses,
alanine scanning is known to be blind to residues that are chem-
ically similar to alanine, thereby ignoring their epistatic features,
which are critical in some regions of the interaction interface.

All these issues are overcome with Pyntacle, which makes it
possible to look for topologically important groups of residues
between proteins efficiently and regardless of their chemical
structure.

Case Study 2—miRNA-miRNA interaction network

MicroRNAs (miRNAs) are small RNA molecules (18–25 nu-
cleotides) able to regulate gene expression levels through differ-
ent cellular mechanisms, the most important of which is that a
miRNA can recognize different messenger RNAs as targets and,
at the same time, one of those targets can be recognized by mul-
tiple miRNAs. Owing to the renowned role played by miRNAs in
tumorigenesis and cancer progression [36], we have analyzed a
miRNA interaction network of patients affected by breast cancer.

Expression data of healthy and tumor tissue samples of 87
patients affected by breast cancer were retrieved from The Can-
cer Genome Atlas (TCGA) and were used to wire 487 miRNAs in
2 correlation networks, built on healthy and tumor samples, re-
spectively. A functional association between any 2 miRNAs was
assumed to exist if the absolute values of the Pearson correla-
tion coefficients of their expression levels exceeded 0.5 (cf. Case
Study 2 in Methods).

The healthy network was very dense and highly connected
(average degree of 40.4), as opposed to the tumor network, which
was mostly disconnected (average degree of 17.4). Both networks
were analyzed with Pyntacle, which identified miR-1307-3p and
miR-140-3p as negative key players and miR-136-5p, miR-484,

and miR-127-5p as positive key players of the healthy tissue net-
work. These are all associated with the onset and development
of breast cancer and some are even used as markers for progno-
sis [37–42] (Supplementary Data S5).

In the tumor network, Pyntacle identified miR-192-5p, miR-
483-5p, and miR-577 as negative key players and miR-324-5p and
miR-337-3p as positive key players, all involved in proliferation,
cell migration, and metastasis of breast cancer [43–47] (Supple-
mentary Data S6). It has to be noted that while these miRNAs
individually have high betweenness values, it would not have
been possible to infer a possible synergistic interaction between
them without the key-player analysis of Pyntacle.

Discussion and Concluding Remarks

The motivations behind Pyntacle come from the constant
growth of experimental data sets and from the increasing need
to represent and analyze them with computationally efficient
methods. This first release of Pyntacle has been designed with
these aims and thus with the intent to help researchers from
different scientific fields and with different levels of computing
skills to approach network biology and benefit from its analyti-
cal tools.

We showed the attributes of Pyntacle and its versatility in
dealing with different problems, all of which are traceable to
possibly big networks of interactive elements. In one case study,
Pyntacle was thus able to identify key amino acids that were
greatly contributing to the formation of a protein-protein inter-
action interface. This otherwise time-consuming task was ac-
complished very efficiently by translating the problem into a
network analysis task, compared with current approaches that
take tens of minutes to handle even small interaction interfaces.
Another similar and detailed case study can be found in [48]. In a
second case study, Pyntacle was used to analyze the TCGA data
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set of miRNA expression in breast cancer to build miRNA-miRNA
networks. These were analyzed in search of miRNAs that were
occupying key positions in the network, which were later recog-
nized as already known biomarkers or responsible for the onset
and progression of breast cancer.

In conclusion, Pyntacle represents a starting point for large-
scale network biology studies. Being a modular framework, it
will be expanded to handle weighted networks, in the near fu-
ture, and directed networks, immediately after. These features,
which are shared with some other key-player detection methods
and tools [28, 49, 50], are relevant to make Pyntacle fully capable
of analyzing all kinds of biological networks. It will also be en-
riched with new optimization search algorithms and with a new
algorithm to compute the set nestedness. New applications and
use-cases are envisaged, the currently most concrete being one
concerning the analysis of trajectories of molecular dynamics
simulation of proteins.

Potential Implications

The main problem concerning most of the currently available
network analysis tools, which is also the main reason why we
made Pyntacle, is that these do not handle networks of medium
to big sizes efficiently. This issue not only relates to the big
networks and the suitability and effectiveness of the currently
available algorithms to analyze them but also their practicability
over a reasonable time axis and in terms of required computing
resources. This point is critical for most fields of research, from
biology to medical and social sciences, where systems are natu-
rally big and complex (e.g., the whole proteome, the diseasome,
and socialnomics, to mention a few). In particular, a field that
at the time of this writing is hitting the headlines, i.e., epidemi-
ology, is greatly developing in terms of the capability to draw
contagion maps and predict infection growth over time. These
maps are actually networks where nodes are people and edges
are relationships that occurred in recent and short periods of
time. There are many ways these networks could be studied.
One way could be determining the leading front of the infec-
tion, namely, a group composed of healthy people that are close
to the affected people and highly social and to administer a vac-
cine to curb the infection. Another possibility would be that of
determining the minimum possible number of communication
routes to be closed at a national level to implement a clever lock-
down. These and several other options may be implemented in
Pyntacle using ad hoc algorithms and computing protocols tai-
lored for big networks.

Methods
Key-player and group-centrality metrics

Pyntacle tackles the problem of identifying key-player nodes
that, together, optimally diffuse something through a network
or maximally disrupt or fragment a network when removed. The
classes of algorithms are thus two: one that measures the impor-
tance of a set on the basis of its impact on the remaining nodes of
a network and another that does it by considering the sole prop-
erties of the elements of a set. The former class, also known as
KPP-Neg, measures the fragmentation of a network because of
the removal of a set of nodes. It is composed by the F metrics:

F = 1 −
∑

k sk(sk − 1)
n(n − 1)

, (1)

which are based on the size sk of its components k; and by the
DF metrics:

DF = 1 − 2
∑

i> j (1/di j )

n(n − 1)
, (2)

where dij denotes the distance between the ith and the jth node.
It ranges from 1, when all nodes are adjacent, to 0, when all
nodes are isolates.

The latter class, also known as KPP-Pos, measures the overall
cohesion that members of a set have with the remainder of the
network and is made up of:

DR =
∑

j (1/dK j )

n
, (3)

where n is the size of the graph and dKj denotes the minimum
distance (shortest path) between any member i of the set K and
the remaining nodes j in the graph. Similarly, the m-reach met-
ric counts how many unique nodes can be reached from K in m
steps or less. The formulation is:

CK =
∑

j∈V\K
∪ 1

di j
, (4)

where CK ranges from 0 to n − k, n representing the size of the
graph and k that of the considered set of nodes. It is important
to notice that this index assumes that all paths of length m or
less are equally important and that all paths longer than m are
wholly irrelevant [10].

Pyntacle further extends the standard network centrality
measures of degree, closeness, and betweenness to groups of
nodes, in a way that if, e.g., group-degree and degree centrality
measures are applied to groups consisting of single elements,
they yield identical results. This class of metrics is formed by
the group-degree centrality measure, which is intended as the
number of non-group nodes that are connected to group mem-
bers. Multiple ties to the same node are counted only once. It is
defined as follows:

GDK =
∑

i∈K , j∈V\K ai j

‖V \ K ‖ , (5)

where aij = 1 when i and j are adjacent nodes, if i ∈ K and j ∈
{V\K}, and counting ai, j and av, j only once ∀v ∈ K when ai, j = 1
and av, j = 1. Hence, the group-degree centrality ranges from 0 to
1 if the group K is completely isolated or fully connected to all
other nodes. Group-betweenness centrality of a set K is defined
as the number of shortest paths connecting any 2 nodes u and
v passing through K over the number of all paths between the
two.

GBK = pu,v (K )
pu,v

, (6)

where u and v are any pair of nodes not belonging to the group K,
pu, v(K) represents the number of shortest paths connecting u and
v and that traverses K, while pu, v is the total number of shortest
paths between u and v. Group closeness of a group K is defined
as the sum of the minimum, maximum, and average distances
from the nodes belonging to the group to all other nodes outside
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the group.

GCK =
∑

j∈V\K d̄K j

‖V \ K ‖ , (7)

where d̄i j is the minimum, maximum, or average distance be-
tween nodes in K and all other nodes.

Search algorithms

When the aim is not to quantify the centrality of a specific set
of nodes but to discover which is/are the most central set/s of
nodes in a network, search heuristics might come in handy. In
particular, Pyntacle implements a greedy optimization search
heuristics presented in [10], and a brute-force combinatorial op-
timization search strategy. The former follows this naive algo-
rithm:

Algorithm 1 Greedy optimization search

1: procedure greedySearch(k: int, V: list, FUNC: lambda)
2: score = 0.0
3: scoredict = {} ← hashmap
4: halt = false
5: K = drawNodes(k, V)
6: while not halt do
7: for all u ∈ K do
8: for all v ∈ V \ K do
9: K temp = swap(K , u, v)

10: scoretemp = func(K temp)
11: scoredict[(u, v)] = scoretemp

12: ubest, vbest = getPairsWithBestScore(scoredict)
13: bestscore = scoredict[(ubest, vbest)]
14: if bestscore > score then
15: K = swap(K , ubest, vbest)
16: score = bestscore
17: else
18: halt = true

return (K , score)
19: end

FUNC is an appropriate key-player metrics; “drawnodes” is a
function that randomly picks k nodes from V, which contains all
nodes of the network; “swap(K,u,v)" substitutes the element u in
K with v; “getPairsWithBestScore” is a function that returns the
pairs that yielded the best centrality score. This method progres-
sively replaces the components of a starting random set K with
all other nodes of a graph, calculating one of the aforementioned
centrality metrics for that group and then stopping when a sub-
optimal solution is obtained.

The brute-force combinatorial optimization search strategy
implemented in Pyntacle loops through all possible groups of
a predefined size (k) and returns only those exhibiting the best
scores for any of the previous centrality measure (F). Even if
the computation can be performed in parallel (the “for all” loop
below), it is obvious that the computational complexity of the
heuristic method is much lower than that of this method, at the
cost of yielding suboptimal solutions. The algorithm below re-
turns exact solutions but is computationally impracticable with
big networks.

generateCombinations is a function that generates all possi-
ble sets of nodes of size k picking nodes from V.

Algorithm 2 Brute-force search

1: procedure bruteforceSearch(k: int, V: list, FUNC: lambda)
2: bestscore = 0.0
3: scoredict = {} ← hashmap
4: allsets = generateCombinations(k, V)
5: for all set ∈ allsets do
6: scoretemp = func(set)
7: scoredict[set] = scoretemp

8: bestsets = getSetsWithBestScore(scoredict)
9: bestscore = scoredict[bestsets]

10: return (bestsets, bestscore)
11: end

Set operations on graphs

Graph union, G1∪G2, is implemented as (V1∪V2, E1∪E2), namely,
as the union of nodes (V) and edges (E). Graph intersection is
defined as G1∩G2 = (V1∩V2, E1∩E2), where only common nodes
and edges are reported in the resulting graph. The difference be-
tween G1 and G2 results in a graph with nodes and edges only
present in G1 and not in G2. Because the difference between
graphs is not reciprocal, G1 − G2 = G2 − G1.

Case Study 1

Chains A and O of the Protein Data Bank (PDB) structure 5xtd
were considered for the analysis of NDUFV1 and NDUFV2, re-
spectively. First, the structure has been repaired (RepairPDB
module of FoldX) and thus allows more relaxed residue side-
chain rotamers and the solution of clashes. Then, residues lo-
cated at the interaction interface and the interaction energy
were determined with the AnalyseComplex module of FoldX.
Alanine scanning of the interface residues was performed by
substituting each amino acid with an alanine residue (Build-
Model module). The interaction energy of each mutant has been
calculated with the AnalyseComplex module to determine the
��G of the mutant compared to the wild-type interaction struc-
ture. A residue-residue interaction network was built, which
connected residues belonging to different chains in the com-
plex if any of their non-hydrogen atoms (both backbone and
side-chain) were within a 4.5 Å radius from each other. The net-
work was then analyzed with the keyplayer module of Pynta-
cle and a greedy search algorithm was used to find the opti-
mal key-player sets of size 2, considering all available metrics
(F and DF, as KPP-Neg; and DR and m-reach, with m set to 2, as
KPP-Pos).

Case Study 2

Expression levels of 547 miRNAs in 87 healthy and 87 tumor
breast samples were retrieved from TCGA. Separately for healthy
and tumor individuals, correlations of expression between any
possible pairs of miRNAs (149,331 total pairs) were calculated
by Pearson correlation coefficient. Only significant values that
exceeded ±0.5 were considered to represent edges connect-
ing miRNAs in the healthy and tumor networks. In both net-
works, the best KPP-Pos and KPP-Neg sets of size 2 were sought
using Pyntacle’s greedy optimization search and calculating F
and DF, as KPP-Neg; and DR and m-reach, with m set to 1, as
KPP-Pos.
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Availability of Source Code and Requirements
� Project name: Pyntacle
� Project home page: http://pyntacle.css-mendel.it
� Operating systems: Linux, Mac, and Windows
� Programming language: Python 3.7+
� Other requirements: CUDA toolkit (optional)
� License: GNU GPL 3.0
� RRID:SCR 019030
� bio.tools ID: biotools:pyntacle

Source code is stored in GitHub. Installation procedures, tuto-
rials, case studies, and a Docker container are all available from
the Pyntacle website.

Availability of Supporting Data and Materials

An archival copy of the supporting data, for the reproduction of
the case studies, is also available via the GigaScience repository,
GigaDB [51].

Additional Files

Supplementary Figure S1.
Supplementary Data S1. Centrality metrics calculated for the
network in Figure 1
Supplementary Data S2. Nestedness of the best sets by group-
centrality metrics for the network in Figure 1
Supplementary Data S3. Nestedness of the best KP sets for the
network in Figure 1
Supplementary Data S4. Local topological metrics and ��G val-
ues of the residues represented in Figure 6A
Supplementary Data S5. Local topological metrics for the
“healthy” network described in Case Study 2
Supplementary Data S6. Local topological metrics for the “tu-
mor” network described in Case Study 2
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