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A B S T R A C T

Identification of appropriate clean technologies for industrial implementation requires systematic evaluation
based on a set of criteria that normally reflect economic, technical, environmental and other aspects. Such
multiple attribute decision-making (MADM) problems involve rating a finite set of alternatives with respect to
multiple potentially conflicting criteria. Conventional MADM approaches often involve explicit trade-offs in be-
tween criteria based on the expert's or decision maker's priorities. In practice, many experts arrive at decisions
based on their tacit knowledge. This paper presents a new induction approach, wherein the implicit preference
rules that estimate the expert's thinking pathways can be induced. P-graph framework is applied to the induction
approach as it adds the advantage of being able to determine both optimal and near-optimal solutions that best
approximate the decision structure of an expert. The method elicits the knowledge of experts from their ranking of
a small set of sample alternatives. Then, the information is processed to induce implicit rules which are subse-
quently used to rank new alternatives. Hence, the expert's preferences are approximated by the new rankings. The
proposed induction approach is demonstrated in the case study on the ranking of Negative Emission Technologies
(NETs) viability for industry implementation.
1. Introduction

Climate change is a worldwide issue caused mainly by emissions of
CO2. A recent report by the Intergovernmental Panel on Climate Change
(IPCC) states that global greenhouse gas (GHG) emissions need to be
reduced to zero bymid-century in order to keep temperature rise to a safe
level of about 1.5 �C by 2100 [1]. On the other hand, carbon capture and
storage and negative emission technologies (NETs) have gained research
attention for their potential to address such climate change [2].
Deployment of mature NETs would contribute to the reduction of CO2
emissions as targeted by the Paris Climate Agreement. According to Le
Qu�er�e et al. [3], 82% of the CO2 emissions from 1959 to 2016 are from
the use of fossil fuels and industries. Mitigating CO2 emissions from the
industries with appropriate clean technologies is crucial.

The best technologies can be identified by using multiple attribute
decision-making (MADM) methods. These methods are employed for
ranking a finite set of alternative technologies based on a set of poten-
tially conflicting criteria which reflect economic, technical, environ-
mental and social aspects [4]. In general, a classical decision-making
process relies on the explicit elicitation process. Upon the addition of new
alternatives, the elicitation process has to be repeated. Hence, soft
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computing tools have been developed as decision support systems to
encapsulate the expert's knowledge from the problem domains. The soft
computing tools have the capability of approximating human thinking
pathways by transforming the information that a decision-maker pro-
vides into a set of decision rules [5]. As a result, new alternatives can be
assessed using the established model which was developed based on
previous examples or experiences. For instance, classical MADM ap-
proaches such as simple additive weighting (SAW) and the analytic hi-
erarchy process (AHP) rely on explicit prior knowledge of criteria
weights based on decision-maker priorities. An enhancement of AHP
method with fuzzy set theory (FST) has also been done to capture the
vagueness in human decision [6]. Similarly, Rough Set Theory (RST)
which was developed by Pawlak (1982) using the concept of dis-
cernibility [5] has been utilized for generating rules which can be used
for categorizing objects or events according to their attributes. This
property enables the use of RST for various machine learning (ML) ap-
plications [7].

Using the classical MADM methods, the process of eliciting the
preference and knowledge may be burdensome and confusing to the
experts when the decision problem becomes more complicated. As a
result, a high degree of inconsistency may be introduced into the
a).
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decisions, making the results unreliable [8]. Nevertheless, in practice,
many experts arrive at decisions that are based on tacit knowledge that
they may be unable to fully articulate [9]. This tacit knowledge contains
rich information about the problem domain and can be sampled via
appropriate model induction strategies. This inductive approach is
conceptually similar to approaches used in ML, where models are
generated via training on sample data [9]; in contrast, most MADM
techniques rely on a deductive approach where weights are determined
by direct elicitation or estimation of the importance of the criteria.

In this work, a new inductive approach based on the P-graph frame-
work is developed to identify feasible sets of criteria as well as their
weights, based on an expert's ranking of a small set of alternatives. A SAW
model is then calibrated to approximate the expert's opinion, and sub-
sequently used to rank a larger set of alternatives. A similar approach is
used in the classical LINMAP technique [10] where weight induction is
done using linear programming (LP). In this work, the Process Graph or
P-graph, which was initially utilized for process network synthesis (PNS)
[11]. However, no prior use of P-graph for MADM has been reported in
the literature. Furthermore, the inherent capabilities of P-graph and its
network structure, allows for the superior elucidation of decision
structure.

In the next section, a formal problem statement is described, Section 3
then focuses on the development of the induction model framework
based on P-graph. A case study on Negative Emissions Technologies
(NETs) is used to demonstrate the proposed induction model. Finally,
conclusions and directions for future work are discussed.

2. Problem statement

The formal problem statement is as follows. Two sets of technology
alternatives: I and I0 are given, in which Set I is the extended set with P
number of alternatives whereas Set I0 is a subset of Set I referred to as the
training set with M number of alternatives. There are N number of
criteria to be considered in Set J. Alternatives in Set I’ are ranked by an
expert according to their professional tacit knowledge based on the
performance data of the alternatives with respect to the given criteria. In
the SAW approach, the final score of any alternative can be calculated
using Eq. (1)

D
⇀ � w⇀ ¼ s⇀ (1)

where D
⇀¼ decision matrix, w⇀¼ column vector of criteria weights, and s⇀

¼ total score vector of the alternatives. Note that this backward induction
approach can make use of the partial information from the given alter-
natives' ranking without necessitating the scoring (global vector) of al-

ternatives, s⇀ , when determining w⇀: The objective is to determine optimal
and near-optimal weight vectors that result in SAW rankings that are
consistent with the rankings given by the expert based on tacit knowl-
edge. The implicit mental process used by the expert is approximated by
the proposed induction approach.

3. Model induction framework

This section discusses the development of an optimization model for
inducing the decision structure, the general principles of P-graph, and
how the optimization model is translated into the proposed P-graph In-
duction model.
3.1. Optimization model

In this work, the weight vector needs to be determined based on a
small training data set consisting of ranked alternatives. It is necessary to
limit the sample size to a small number (e.g. 4–7 alternatives) so that the
human mind can easily process the information [12]. The objective
function as defined by Eq. (2), is to determine a set of consistent criteria
2

weights with minimum deviation from a default assumption of equal
weights:

min¼
Xn

j2J
abs

�
wj � 1

N

�
(2)

However, to linearize Eq. (2) and translate it into Eq. (3), it was
necessary to introduce two parameters which correspond to the positive
deviation (DUWj) and negative deviation (DLWj) of the parameter
weights from a scenario where all criteria are considered to be of equal
importance.
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X
j
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The optimization model is subject to Eq. (4) and Eq. (5), which
calculate the difference between the optimal criterion weight and the
weight for equal preference. The two constraints are mutually exclusive
of each other. Furthermore, DUWj and DLWj should be non-negative as
indicated in Eq. (6), to ensure that only either Eq. (4) or Eq. (5) is acti-
vated. Eq. (7) ensures that the weights of criteria sum up to unity. Eq. (8)
extracts partial information by conducting pairwise comparisons be-
tween alternatives based on the a priori ranks given by the expert. Note
that alternative i always outranks alternative i’ in Eq. (8). By utilizing Eqs.
(3), (4), (5), (6), (7), and (8), the decision structure can be extracted and
converted into a matrix-based model which can be implemented using
the P-graph framework. This is described in more detail in the succeeding
section. The criteria weights induced from the P-graph are used to rank a
larger number of alternatives using the SAW approach.
3.2. P-graph methodology

P-graph is a graph theoretic framework developed by Friedler et al.
[13] to solve process network synthesis (PNS) problems. It makes use of
bipartite graphs consisting of nodes representing operating units and
material streams which can be linked by arcs. The three component al-
gorithms of P-graph methodology are Maximal Structure Generation
(MSG) [14], Solution Structure Generation (SSG) [15], and Accelerated
Branch and Bound (ABB) [16]. MSG enables rigorous and automated
generation of superstructures in PNS, and eliminates the risk of human
error in problem specification. SSG generates all combinations of feasible
network structures (subsets of the maximal structure), each of which
contains a potential local optimum. ABB enables computationally efficient
optimization by taking advantage of embedded information that is implicit
in all PNS problems. Compared to conventional branch-and-bound,
redundant structures are excluded, thus achieving accelerated search
that is particularly advantageous for large-scale problems.

P-graph has been successfully applied to solving problems which
exhibit a similar structure to PNS like chemical reaction pathways [17],
carbon management networks [18], economic systems [19], workforce
allocation [20] and human resource planning [21] to a name a few. A
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comprehensive review regarding such applications are discussed in the
work of Tan et. al [22]. This similarity in problem structure is exploited in
this work to develop the P-graph induction model as described in
Figure 1.

Step 1 involves the identification of the training set matrix from the
extended set matrix. This simply means that a subset of alternatives
together with their performance in the criteria considered will be used to
train the induction model.

Step 2 is the construction of the Delta Matrix from the information in
the training matrix. The rows of the training matrix correspond to the
constraints of the optimization model (Eqs. (4), (5), (6), (7), and (8)) and
the columns correspond to the model variables.

Step 3 then calculates for the criteria weights using the optimization
model.

The optimization model is then translated into P-graph as shown in
Figure 2. Figure 2a shows a simple decision structure with 2 criteria and 2
alternatives. The alternatives will be rated with respect to different
criteria in which each criterion has individual weights according to the
decision maker's preference. Figure 2b is a P-graph representation
translated from the Delta Matrix and illustrates the decision structure in
Figure 2a. Figure 2b on the other hand is the P-graph representation of
the induction model where the process units correspond to the variables
(columns) while the nodes correspond to the constraints (rows) of the
induction framework's Delta Matrix. It should be noted that a positive
entry in the Delta Matrix refers to an output from the “process unit”while
a negative entry refers to an input into the “process unit”. The nodes in
the P-graph are also defined by parameters in net output, y, or the last
column of the Delta Matrix. The blue nodes (RDU1, RDL1, RDU2 and
RDL2) are treated as fictitious raw materials which are meant to repre-
sent the deviation of the optimal weights from equal preference (i.e. 1/
N). RDU1 and RDU2 are activated if the optimal weight is greater than 1/
Nwhile RDL1 and RDL2 are activated if the optimal weight is less than 1/
N. These are used to model the objective function described in Eq. (3).
These nodes are linked to the optimal criteria weights (W1 and W2) via
nodes EUW1, ELW2, EUW2 and ELW2. These nodes regulate the acti-
vation of the fictitious units by ensuring that ELW1 and ELW2 should
have a minimum of 1/N units and a maximum of 1.0 units while EUW1
and EUW2 should have a minimum of 0.0 units and a maximum of 1/N
units. The green nodes (material_1 and material_2) are meant to fulfil the
axioms of P-graph (i.e. every vertex of the O-type has at least one path
leading to a vertex of the M-type representing a final product). In
Figure 1. The flow of propo
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addition, a minimum difference in performance between Alternative 1
and Alternative 2 (D12) has to be indicated to establish that one alter-
native is preferred to another. The arcs flowing into the node D12 from
process unit W1 represents the difference in performance of Alternative 1
with respect to Alternative 2 in criterion 1. Similarly, the arc flowing into
node D12 from process unit W2 represents the difference in performance
of Alternative 1 with respect to Alternative 2 in criterion 2. The capa-
bilities of the model are demonstrated using a case study on Negative
Emission Technologies as discussed in the succeeding section.

In Figure 2(b), the P-graph contains fictitious units of DUW1, DUW2,
RDU1, and RDU2 that activate when criterion weight is >1/N. Other
fictitious units (DLW1, DLW2, RDL1, RDL2) activate when the criterion
weight is <1/N. On the other hand, W1 and W2 are the optimal weights
for criteria 1 and 2 and they make the TOTAL equals to 1.

4. Case study

A set of Negative Emission Technology (NET) alternatives is used here
for illustration based on data reported by McLaren [23]. Seven NETs are
considered here, with additional data for the different systems obtained
from several resources including the techno-economic assessment results
ofMcGlashan et al. [24], process description of electrochemical splitting of
CaCO3 described in Rau [25] and the definitions of technology readiness
[26]. The selected NETs can be categorized into three, namely mineral,
pressurized, and oceanic. Table 1 summarizes the description of each NET
alternative. Table 2 describes the four criteria which are considered rele-
vant for evaluating NETs. This includes technical status (C1), potential
capture capacity (C2), cost (C3), and energy requirement (C4). The
Extended Decision Matrix is formed by normalizing the raw data into
dimensionless form using Min-Max approach as shown in Table 3. Note
that the relative magnitudes of the scores reflect the preference among the
NETs with respect to each criterion, with the value of 1.0 indicating the
best performing alternative for a given criterion. For the Training Set
Matrix, 3 NET alternatives are chosen and ranked in descending order by
an expert based on industry implementation viability. The ranking order of
preference is biochar > BECCS > artificial tree.

The maximal structure for the training set is illustrated in Figure 3.
This structure provides all the possible solutions that approximate the
decision structure of the expert.

Optimizing the system such that the deviation from the default equal
weights is minimized results in the network shown in Figure 4, which
sed induction network.



Figure 2. (a) Hierarchical decision structure for 2 criteria and 2 alternatives and (b) P-graph representation translated from Delta Matrix which illustrates the decision
structure in part (a).
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corresponds to a total deviation of 0.456. Additional 6 sub-optimal so-
lutions are generated due to the unique feature of P-graph. For the
optimal structure, the highest weight of 0.460 is allocated to technical
status (C1) followed by the energy requirement (C4) and cost (C3) with
allocated weights of 0.268 and 0.250 respectively, resulting in the
criteria order of preference C1 > C4 > C3 > C2. The influence of po-
tential capture capacity criteria, C2, on selecting NETs can be seen to be
almost negligible based on its allocated weight of 0.022. Subsequently,
the deviation from equal preference is 0.210 for C1 (0.460–0.250 ¼
0.210), 0.228 for C2, 0.00 for C3 and 0.018 for C4 such that the total
deviation is 0.456 (0.210 þ 0.228 þ 0.00 þ 0.018 ¼ 0.456). An example
of a sub-optimal solution has 7.8% increase in the total deviation of
Table 1. Descriptions of NET alternatives in Set I (adapted from [23] to [26]).

Category NET alternatives Descriptions

Mineralization Biochar Sequestration of thermochemically
stabilized biomass carbon in soil.

Enhanced weathering Acceleration of mineral carbonation process
in soil.

Pressurized Bioenergy and Carbon
Capture Storage (BECCS)

Combination of biomass and Carbon Capture
and Storage (CCS) technology.

Direct Air Capture
(Artificial Tree)

Adsorption and sequestration of CO2 using
amine-based sorbent and CCS technology.

Direct Air Capture
(Lime-soda Process)

Adsorption and sequestration of CO2 using
sodium hydroxide in scrubbing tower and
CCS.

Oceanic Ocean Liming
(Calcination)

Addition of lime into ocean for carbonation
process.

Ocean Liming
(Electrochemical
Splitting)

Sequestration of Ca(HCO3)2 aq. produced
from the electrolysis process into the ocean.

Table 2. Descriptions of the criteria involved in the decision-making problem.

Criteria Descriptions

Technology Status
(C1)

To approximate the technology status of NETs by considering a
technology's scalability and maturity for industry deployment
[26].

Potential Capture
Capacity (C2)

To estimate the capability of the NETs to remove anthropogenic
CO2.

Cost (C3) To estimate the financial feasibility of the NETs by considering
the costs of material inputs, equipment, utility and
implementation.

Energy Requirement
(C4)

To approximate the energy feasibility of the NETs.

4

criteria weights compared to the optimal solution. The order of criteria
importance of the solution according to weight is C1 > C3 > C4 > C2
with corresponding weights of 0.429> 0.318> 0.250> 0.003. Note that
there is a rank reversal in the criteria preference when comparing the
optimal and the sub-optimal solution. It is notable that the weight of
technical status is quite steady and comparably robust. We can deduce
that this criterion is prioritized for the NETs deployment in industry. The
induced criteria are then used to evaluate the final rankings of the
extended set of alternatives using SAW approach and is shown in Table 3.

A similar P-graph approach has been conducted using 5 NET alter-
natives with respect to the same set of criteria such that the ranking is
given by the same expert (i.e. Biochar > BECCS > Artificial Tree >

Calcination Ocean Liming > Lime-Soda Process). The performance of all
alternatives using the optimal criteria weights obtained can be calculated
using Eq. (1) are shown in Table 4. The comparison in the performance
between the training and validation sets are summarized in Table 5. Both
training set and validation set yield biochar as the most feasible NET for
deployment due to its comparably higher technology status and lower
energy requirement. From Table 5, the results are in close agreement,
except that rank reversal happens with the Artificial Tree and Ocean
Liming Calcination NET. This implies that final ranking of the training
sets is not consistent with the initial ranking given by the expert. Apart
from the possible ambiguity and uncertainty incorporated during the
human decision-making process, the reason could also be that these two
alternatives work almost using the same principle as well as in the same
technical status (Table 3). Artificial tree uses amine-based resins to
capture CO2 in the atmosphere, while ocean liming captures CO2 in the
ocean. Both are capturing CO2 directly in a passive manner, by just
simply adding artificial trees on the surface of the earth and adding lime
Table 3. Extended Decision Matrix of 7 alternatives with respect to the 4 criteria
(adapted from [23] to [26]).

NET alternatives Criteria

Technical status
(TRL)

Potential
Capacity

Cost Energy
Requirement

Biochar 1.00 0.11 0.65 1.00

BECCS (Combustion) 1.00 0.58 0.63 0.42

DAC (Artificial Tree) 0.67 1.00 0.60 0.42

DAC (lime-soda process) 1.00 1.00 0.00 0.00

Ocean Liming (Calcination) 0.67 0.00 0.92 0.24

Ocean Liming
(Electrochemical
splitting)

0.33 0.00 0.69 0.19

Enhanced weathering 0.00 0.00 1.00 0.16



Figure 3. Maximal structure of training set.

Figure 4. Optimal Network structure.
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into the ocean. Hence, one might get these two alternatives as
comparable.

Use of the induction approach for determining the expert's implicit
weights offer several advantages over conventional MADM approaches.
Table 4. Performance of NET alternatives using optimal criteria weights.

NET alternatives Criteria Total
Score

Technical
status (TRL)

Potential
Capacity

Cost Energy
Requirement

(weights) (0.460) (0.022) (0.250) (0.268)

Biochar 1.00 0.11 0.65 1.00 0.893

BECCS (Combustion) 1.00 0.58 0.63 0.42 0.743

DAC (Artificial Tree) 0.67 1.00 0.60 0.42 0.593

DAC (lime-soda process) 1.00 1.00 0.00 0.00 0.482

Ocean Liming (Calcination) 0.67 0.00 0.92 0.24 0.603

Ocean Liming
(Electrochemical
splitting)

0.33 0.00 0.69 0.19 0.375

Enhanced weathering 0.00 0.00 1.00 0.16 0.293

5

Firstly, this method provides a means of extracting the implicit prefer-
ence rules from a small set of ranked alternatives instead of relying on the
explicit expert's preference elicitation. Secondly, this approach is less
time-consuming and eases the burden on expert decision makers despite
the seeming computational complexity. The unique feature of the P-
Table 5. The final NET rankings.

Alternatives Performance Ranking Validation Ranking
from
Validation

Optimal Sub-optimal

Biochar 0.893 0.886 1 0.766 1

BECCS (Combustion) 0.743 0.736 2 0.689 2

DAC (Artificial Tree) 0.593 0.586 4 0.639 3

DAC (Lime-soda Process) 0.483 0.432 5 0.477 5

Ocean Liming
(Calcination)

0.603 0.641 3 0.528 4

Ocean Liming
(Electrochemical
Splitting)

0.375 0.408 6 0.342 6

Enhanced Weathering 0.293 0.357 7 0.312 7
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graph offers a key advantage to produce optimal and near-optimal so-
lutions and can provide a decision structure which can be consistently
used for evaluating future similar alternatives.

5. Conclusion

A novel methodology based on P-graph has been developed and
applied for the ranking of NETs. In this approach, criteria weights are
determined inductively from training data to generate a SAW model that
can then be used to rank additional options. Among the 7 NETs, Biochar
is the most feasible clean technology to be implemented in the industry,
followed by BECCS and Calcination Ocean Liming. For 4 of the consid-
ered criteria, technology status is identified as the determining criterion
with the weight of 0.460. In conclusion, the proposed induction approach
managed to induce the implicit preference rules of experts by making use
of the expert's ranking of a sample set of alternatives. The preferences are
reflected as criteria weights that can then be applied to a more complex
system with an expanded set of alternatives. The P-graph framework has
the additional advantage of identifying alternative near-optimal solu-
tions, which provide alternative sets of preference weights to achieve the
ranking given by the expert and might possibly be more realistic for
implementation. This approach can be used to solve other similarly
structured decision problems in industry. This methodology has critical
limitations on the technical issues that usually arise in real problems,
such as decision inconsistency and data uncertainty which should be
explored in future work. Future works may also integrate this method-
ology in conjunction with other decision-making tools.
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