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ABSTRACT:  Average daily gain is an indicator 
of the growth rate, feed efficiency, and current 
health status of livestock species including pigs. 
Continuous monitoring of daily gain in pigs aids 
producers to optimize their growth performance 
while ensuring animal welfare and sustainability, 
such as reducing stress reactions and feed waste. 
Computer vision has been used to predict live 
body weight from video images without direct 
handling of the pig. In most studies, videos were 
taken while pigs were immobilized at a weighing 
station or feeding area to facilitate data collec-
tion. An alternative approach is to capture videos 
while pigs are allowed to move freely within their 
own housing environment, which can be easily 
applied to the production system as no special 
imaging station needs to be established. The ob-
jective of this study was to establish a computer 
vision system by collecting RGB-D videos to cap-
ture top-view red, green, and blue (RGB) and 
depth images of nonrestrained, growing pigs to 
predict their body weight over time. Over a period 
of 38 d, eight growers were video recorded for ap-
proximately 3 min/d, at the rate of six frames per 

second, and manually weighed using an electronic 
scale. An image-processing pipeline in Python 
using OpenCV was developed to process the im-
ages. Specifically, each pig within the RGB frame 
was segmented by a thresholding algorithm, and 
the contour of the pig was identified to extract 
its length and width. The height of a pig was es-
timated from the depth images captured by the 
infrared depth sensor. Quality control included re-
moving pigs that were touching the fence and sit-
ting, as well as those showing extremely distorted 
shape or motion blur owing to their frequent 
movement. Fitting all of the morphological image 
descriptors simultaneously in linear mixed models 
yielded prediction coefficients of determination 
of 0.72–0.98, 0.65–0.95, 0.51–0.94, and 0.49–0.93 
for 1-, 2-, 3-, and 4-d ahead forecasting, respect-
ively, of body weight in time series cross-valida-
tion. Based on the results, we conclude that our 
RGB-D sensor-based imaging system coupled 
with the Python image-processing pipeline could 
potentially provide an effective approach to pre-
dict the live body weight of nonrestrained pigs 
from images.
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INTRODUCTION

The average daily gain is important to enhance 
swine production as it can be used to determine 
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animal growth rates and possible health challenges. 
Rapidly identifying changes in average daily gain is crit-
ical for efficient management of pig nutrition, feed ef-
ficiency, and detection of disease outbreaks. However, 
the labor-based measurement of live body weight 
using electronic scales is intensive, time-consuming, 
and may induce stress to pigs or cause injury to pro-
ducers. Additionally, automatic scales typically inte-
grated into feeding systems are still cost-prohibitive, 
and more than one animal may show up on the scale 
during weighing, which compromise the accuracy of 
the data. Reducing labor costs and enhancing welfare 
are expected to increase swine production and conse-
quently secure the sustainability of meat production. 
Thus, developing new technologies that require less 
human involvement and are pig-friendly are essential.

Computer vision plays a pivotal role in acceler-
ating phenotyping efforts by providing nonintrusive 
morphological measurements of animals with a tem-
poral and spatial resolution (Morota et al., 2018). One 
example of computer vision systems is video-based 
high-throughput phenotyping by recording videos 
of animals as a sequence of images or frames (Van 
der Stuyft et al., 1991; Frost et al., 1997). The use of 
video-based high-throughput phenotyping technolo-
gies enables in collecting morphological traits more 
frequently with reduced workload and cost, thereby 
facilitating better pig management (Whittemore and 
Schofield, 2000; Tscharke and Banhazi, 2013). Earlier 
applications of computer vision systems to quantify 
pig morphological traits can be traced back to the late 
eighties to mid-nineties (Schofield, 1990; Minagawa 
and Ichikawa, 1994; Brandl and Jørgensen, 1996). 
These systems have been largely applied to monitor 
growth-related traits over time (Marchant et al., 1999; 
Schofield et  al., 1999; Doeschl-Wilson et  al., 2004, 
2005; White et  al., 2004; Banhazi et  al., 2011). The 
advancement of imaging systems has led to the use 
of stereoscopy to estimate three-dimensional (3D) pig 
images (Minagawa, 1995; Wu et al., 2004; McFarlane 
et al., 2005; Shi et al., 2016), but the application of 
a stereo vision system requires multiple cameras with 
a detailed calibration process to synchronize them. 
Another 3D pig image reconstruction technology to 
estimate the live weight is the structure from motion; 
however, this has not yet been widely applied to swine 
(Pezzuolo et al., 2018b).

The recent availability of low-cost, off-the-shelf  
consumer 3D depth sensor cameras that provide 
additional depth information (third dimension) 
using infrared sensors, has greatly facilitated the 
development of 3D imaging system-based agricul-
tural research (Rosell-Polo et  al., 2015; Vázquez-
Arellano et al., 2016). These depth sensor cameras 

apply structured light or time of flight technology 
to obtain depth data that can be used to estimate 
the height of a pig from a single top-view camera. 
This type of depth-sensing camera, also known as 
RGB-D camera if a red, green, and blue (RGB) sen-
sor is jointly equipped, has been recently used to 
estimate the mass and size of pigs. For example, ap-
plications of these depth cameras include the ASUS 
Xtion series (Wang et  al., 2018, 2019), Microsoft 
Kinect series (Kongsro 2014; Condotta et al., 2018, 
2020; Pezzuolo et al., 2018a; Fernandes et al., 2019), 
and Intel RealSense series (Condotta et al., 2020).

Most studies deployed computer vision systems 
while restraining pigs at a weighing station or a feeder 
to facilitate data collection and subsequent image ana-
lysis. The approach can ensure that the pig is standing 
instead of lying or sitting, and that its posture is straight 
with as little bending or twisting as possible. However, 
given that pigs are typically housed in pens during pork 
production, it is more desirable to record videos while 
pigs are allowed to move freely within the pen. Although 
this creates a new challenge in terms of image analysis, 
videos collected from freely walking pigs will reflect a 
more practical scenario, because it is not required to 
immobilize the pigs each time they need to be weighed. 
Studies have reported body weight estimates from im-
ages of semirestrained (Wang et al., 2008a, 2008b) or 
nonrestrained (Kashiha et al., 2014; Jun et al., 2018) 
pigs automatically and from images of nonrestrained 
pigs manually (Wongsriworaphon et al., 2015; Buayai 
et al., 2019); however, depth images were not used in 
these studies. Furthermore, an RGB-D camera has 
not yet been used to collect time-series growth data by 
tracking the body weight measurements of the same 
pigs repeatedly and validate these data with statistical 
forecasting. Therefore, the objective of this study was 
to establish a computer vision system by collecting 
RGB-D videos and to develop an image-processing 
pipeline to automatically transform images of freely 
walking pigs into reliable, accurate, and biologically 
meaningful morphological image descriptors that can 
be used to predict live pig body weights.

MATERIALS AND METHODS

All animal experiments were approved and 
carried out in accordance with the Virginia Tech 
Institutional Animal Care and Use Committee 
(IACUC) under protocol #19-182.

Animals and Experimental Setup

A total of eight pigs housed in a swine facility at 
Virginia Tech were used to collect video image data 
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over 38 d from early February to late March 2020. 
The pigs were a crossbreed of Yorkshire and Large 
White pigs. The grower entered the trial at 5 wk post-
weaning with the average (standard deviation) initial 
body weight of 23.4 (7.6) kg and their average final 
weight was 46.7 (8.7) kg at the end of the trial. A wide 
range of body weights was selected to test the robust-
ness of the pipeline. The pigs were separated into four 
groups, each of which consisted of two pigs housed 
in a single pen (5 × 7 ft). The pigs were fed once a day. 
An imaging system was set up at the ceiling pipe of 
an indoor testing pen located in the middle of the fa-
cility. An Intel RealSense D435 camera (Intel, Santa 
Clara, CA, USA) was set perpendicularly to the 
floor and fixed at the ceiling pipe using a clamp. This 
depth-sensing camera was equipped with an RGB 
camera, an infrared camera, and an infrared emitter. 
Infrared coded structured light combined with stereo 
RGB matching technology was used to estimate the 
height of a pig. The distance between the camera and 
the floor was 2.25 m. The camera was controlled by 
a laptop computer via the Intel RealSense Viewer to 
capture RGB and depth images with a resolution of 
848 × 480. A digital scale (Arlyn Scales, New York, 
NY, USA) was placed in a pen next to the image-re-
cording pen to acquire pig body weight records 
manually. Both the scale-derived body weight records 
and the image data of each pig were collected daily in 
the afternoons.

Data Collection

Manual body weight measurements. The digital 
scale was calibrated before obtaining the measure-
ments. An assessor first recorded the pig identifi-
cation data and then navigated the pig to the scale 
using a pig board. The scale-based body weight of 
each pig was recorded when the pig stood stably on 
the scale. The pig was then released to the adjacent 
image-recording pen to collect image data. All pigs 
were weighed repeatedly once per day during the 
growth period.

Image acquisition. A  top-view video was 
obtained using the depth sensor camera while the 
pig was free to move within the pen. Each pig was 
recorded once per day for approximately 3 min/d, 
at a rate of six frames per second, totaling approxi-
mately 1,080 frames. The Intel RealSense Viewer 
was used to save all images and depth information 
as the Robot Operating System (ROS) bag files 
to optimize the storage. In total, 200 data points, 
including videos and corresponding scale-based 
body weight records of pigs, were collected. This re-
sulted in more than 200,000 images to be processed.

Image processing. An automated image-pro-
cessing pipeline was developed to acquire accurate 
and reproducible image descriptors. These image 
descriptors included length, width, and height de-
rived from RGB and depth images. A unique chal-
lenge in image processing was that pig movement 
resulted in nonstationary images. OpenCV, a li-
brary in Python (Bradski, 2000), coupled with data 
science libraries NumPy (Virtanen et al., 2020) and 
Pandas (Reback et al., 2020), was used for image 
analysis. The details of the image-processing pipe-
line are described below.

Extracting length and width from RGB images. 
The ROS bag video files were converted to RGB im-
ages in a portable network graphics (PNG) format 
using the Intel RealSense software development kit 
2.0. For each frame, the RGB image was converted 
to a single-channel grayscale image (Figure 1A). 
The region occupied by the pig was segmented from 
the grayscale image. In this step, we applied thresh-
olding to separate the pig from the background by 
identifying the largest connected object in the image. 
This was followed by performing a morphological 
opening to remove the tail from the segmented pig 
image (Figure 1B). We then extracted the contour 
of the segmented pig (Figure 1C). Here, the con-
tour referred to a line that described the shape of 
the segmented pig and consisted of edge points. 
Contour coordinates from the contour image were 
then obtained to draw a rotated bounding box 
of the pig (Figure 1D). A quality control step in-
cluded checking whether the pig was attached to 
the border. A  frame was removed from the ana-
lysis if  its rotated bounding box was attached to the 
fence. If  the pig was not attached to the border, the 
length and width of the rotated bounding box were 
calculated in terms of pixels to represent the spine 
length (Kollis et  al., 2007) and width of the de-
tected pig. If  the pixel count of the pig region was 
lower or higher than the predefined threshold, the 
corresponding frames were discarded because they 
were likely to include severe shape distortion or mo-
tion blur owing to pig movement. All RGB frames 
were processed according to these steps. Instead of 
selecting the single best frame, the width and length 
estimate medians were calculated from all frames to 
derive the single final estimates for each video. The 
median was chosen so that the final estimates were 
robust against outliers owing to shape distortion or 
motion blur resulting from pig movement.

Acquiring pig height from depth images. The depth 
sensor camera employed infrared coded structured 
light technology, in which each pixel value was asso-
ciated with the distance from the camera. For each 
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pig, the ROS bag video file was converted into a PNG 
format depth image and the corresponding depth map 
that included numerical distances between the sensor 
and the pig or between the sensor and the background 
for each image pixel in metric units. Each infrared-de-
rived depth image was first converted to a single-chan-
nel hue image using the hue, saturation, and value 
(HSV) transformation. After some experiments, this 
color space yielded the best result by correctly separ-
ating pigs from the background. Then, the pig was 
segmented following the same procedure as described 
for the RGB images (Figure 1B). The centroid coord-
inate of the segmented pig in the depth image was 
identified to obtain the distance of the camera from 

the pig in the depth map (Figure 2). By subtracting 
the distance from the camera to the ground (i.e., 2.25 
m) and the distance from the camera to the centroid 
of the segmented depth image, we obtained a pig 
height estimate from the top-view camera. All the 
depth frames were processed according to these steps. 
However, as pigs were allowed to move freely during 
video recordings, their positions could have varied 
over time. In order to distinguish whether a pig was 
standing or sitting, k-means clustering was performed 
on the height estimates by setting the number of clus-
ters equals to two. The cluster with the highest median 
value was considered as the estimate of height when 
the pigs were standing. The median of this cluster was 

Figure 2. A flow of extracting pig height from depth images. The depth image was used to identify the centroid coordinate of a pig. This co-
ordinate was used to obtain the distance or depth map value between the pig surface to the camera using the depth map. Similarly, the distance 
between the ground to the camera was obtained using the depth image and depth map. The height of the pig was estimated by subtracting these 
two distances.

A B

C D

Figure 1. A flow of extracting pig length and width from RGB images. (A) Grayscale image converted from RGB image. (B) Segmented image 
coupled with morphological opening. (C) Contour of the segmented image. (D) Bounding box of the contour image.
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calculated to derive the single final height estimate for 
each video.

Statistical Analysis

The relationship between manual body weight 
measurements and morphological image descrip-
tors (length, width, and height) was analyzed 
statistically. A  volume image descriptor was fur-
ther derived by multiplying the length, width, and 
height. We first estimated pairwise Pearson’s correl-
ations between manual body weight measures and 
the four image descriptors. As each pig was weighed 
and video recorded repeatedly during the experi-
ment, the observations constituted growth data. 
Thus, the predictive performance of the image 
descriptors was evaluated using a move forward 
time-series cross-validation scheme, as is shown in 
Figure 3. The most recent 14 d were trained to fore-
cast 1-, 2-, 3-, and 4-d ahead body weights by sliding 
the training data by one. We quantified the predic-
tion performance of length, width, and height mor-
phological image descriptors using a linear mixed 
model (Bates et al., 2015). The image descriptor of 
the volume was not considered, in order to avoid 

multicollinearity. A random intercept model includ-
ing fixed morphological image descriptors and the 
random animal effect was used. Forecasting was 
performed using either the image descriptors alone 
(LMM1) or both the image descriptors and the 
animal effect (LMM2). The prediction perform-
ance was evaluated by the prediction coefficient of 
determination (R2). The R package lme4 was used 
for statistical analysis (Bates et al., 2015).

RESULTS

Relationships Between Body Weight Records and 
Image Descriptors

The pairwise Pearson’s correlation heat map 
between manually measured body weight and each 
image descriptor across all time points is reported 
in Figure 4. The image descriptor volume had the 
highest correlation with body weight (0.90), followed 
by length (0.89), width (0.83), and height (0.70). 
Among all the image descriptors, the highest correl-
ation was obtained between length and volume and 
width and volume (0.92), whereas width and height 
had the lowest correlation coefficient (0.68).

Figure 3. Time-series cross-validation scenarios. Scenario 1: One-day ahead forecasting from the most recent 14 d. Scenario 2: Two-day ahead 
forecasting from the most recent 14 d. Scenario 3: Three-day ahead forecasting from the most recent 14 d. Scenario 4: Four-day ahead forecasting 
from the most recent 14 d. Blue and red points represent the training and testing sets, respectively.
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Prediction Performance

The prediction performance of the image de-
scriptors is presented in Figure 5. Time series 
cross-validation based on a window size of 14 d was 
used to derive the prediction R2. Fitting all of the 
morphological image descriptors simultaneously in 

linear mixed models yielded R2 of 0.72–0.98, 0.65–
0.95, 0.51–0.94, and 0.49–0.93 for 1-, 2-, 3-, and 
4-d ahead forecasting, respectively, of body weight. 
The best prediction was achieved when the random 
intercept model coupled with the image descriptors 
and random animal effect was used for forecasting 
(LMM2). The use of three image descriptors alone 
for forecasting yielded lower prediction perform-
ance and less stable results according to cross-val-
idation uncertainty (LMM1). Overall, 1-d ahead 
forecasting resulted in the highest prediction per-
formance. The prediction performance decreased 
as the forecasted day was further away from the 
training set. Four-day ahead forecasting resulted in 
the lowest prediction performance.

DISCUSSION

The size and shape of animals measured over 
time are of great importance as they can reflect 
the animal growth rate, feed efficiency, and health 
status. Live body weight is typically measured 
manually or through electronic scales; however, 
the approach can be labor intensive and may cause 
stress to animals. Therefore, the use of imaging 
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systems offers an alternative approach that does 
not require direct contact with the animal. We used 
an RGB-D camera to build an advanced computer 
vision system to capture morphological measures 
to predict pig body weight from RGB and depth 
video images. However, an important challenge is 
that image data are not yet phenotypes. It is neces-
sary to process and extract meaningful traits from 
images. A Python-based image-processing pipeline 
was developed in this study to obtain morpho-
logical image descriptors automatically.

There are a few factors that affect the accuracy 
of RGB and depth images. The most notable factor 
in this study was that pigs were not static or im-
mobilized but allowed to move freely in a pen. 
Nonstationary imaging has brought a new challenge 
in image processing. For example, a two-thirds re-
duction in height repeatability has been reported in 
walking dairy cows compared to still-standing cows, 
during image processing (Salau et al., 2017). As the 
ideal pig posture was hardly obtained in the current 
study, extra steps were added as a quality control 
process to remove pig images that were touching the 
fence and sitting as well as those showing extremely 
distorted shape, or motion blur due to their move-
ment. These filtering steps decreased the number 
of low-quality images arising from the dynamic 
movement of pigs, but somehow still influenced the 
image segmentation results.

The second factor was the distance between 
the sensor and the pig. It has been reported that 
random error measurements increase with increas-
ing distance between the sensor and the object 
(Condotta et al., 2020). In this study, the distance 
between the camera and the floor was 2.25 m, which 
made it possible to capture the entire pen. Previous 
studies have reported shorter distances than that 
utilized in the present study, for example, 1.7 m 
above the ground (Condotta et al., 2020) or 1.0–1.2 
m above the pig (Pezzuolo et al., 2018a). A longer 
camera clamp may be required to reduce the dis-
tance to be either equal to or less than 2 m in fu-
ture experiments to obtain more accurate depth 
data. Although the distance between the camera 
and the ground is not always reported in livestock 
computer vision studies, this information should be 
shared more frequently for comparison purposes. 
In this study, the light intensity or illumination vari-
ation was of less concern, as the sensor camera was 
set up in an indoor housing system.

The third factor is the image processing of RGB 
data. In the majority of previous studies that util-
ized RGB-D cameras, only depth images were ana-
lyzed to extract morphological image descriptors 

such as length, width, height, or volume (Kongsro 
2014; Condotta et al., 2018, 2020; Fernandes et al., 
2019). The use of depth images alone was not a 
viable option in the current study because their 
quality was not sufficient to estimate length and 
width, partly owing to motion blurs and the rela-
tively small size of pigs (early growers). This was 
why RGB images were processed to obtain length 
and width. Depth images were used to estimate 
height, while volume was estimated from a combin-
ation of RGB and depth images in this study.

The highest R2 value of 0.98 obtained from 1-d 
forecasting (LMM2) was similar to those obtained 
from recent studies using RGB-D cameras on re-
strained pigs (e.g., 0.94 (Fernandes et  al., 2019), 
0.95 (Pezzuolo et  al., 2018a), and 0.99 (Condotta 
et  al., 2018)). This value corresponded to 2.2  kg 
of mean absolute error. In this case, however, we 
fitted both the image descriptors and the animal ef-
fect in the training set used for forecasting. When 
both the image descriptors and the animal effect 
were trained, but only the image descriptors were 
used for prediction, the R2 value decreased to 0.72 
(LMM1). This result was similar to the reported R2 
value of 0.79 when pigs were likewise not restrained 
(Jun et al., 2018). The predicted power in the lon-
gitudinal data is a function of morphological 
image features and individual animal growth pat-
terns. Accounting for individual animal variation 
across time via random animal effects in the testing 
set was critical to improve forecasting results. An 
intermediate body weight forecast may allow us to 
perform interventions if  required. However, cau-
tion should be exercised because, in the aforemen-
tioned studies, each pig was measured only once, 
and time-series cross-validation was not employed. 
Collectively, the choice of depth cameras and statis-
tical methods, and the aforementioned three factors 
contributed to the differences observed between 
our results and those of recent studies.

To the best of our knowledge, the present study 
is the first to predict live body weight of nonre-
strained pigs over time using an RGB-D camera. 
Depth sensor technology is advancing rapidly, thus 
sensor cameras quickly fade from state-of-the-art 
to out-of-date. For example, Kinect cameras ver-
sions 1 and 2, and Xtion Pro, which have been 
widely used in recent studies, are no longer avail-
able on the market (Kongsro 2014; Condotta et al., 
2018; Jun et al., 2018; Fernandes et al., 2019). On 
the other hand, the RealSense camera used in the 
current study can be purchased in 2020. We be-
lieve that the image acquisition and image-process-
ing steps reported here could be useful for anyone 
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interested in using RealSense depth sensor cameras 
for performing image-based livestock phenotyping.

Our results showed that we could predict the 
daily weight gain of pigs nonintrusively from RGB 
and depth image data, while preventing frequent 
contact between animal take care person and pigs. 
However, three challenges should be taken into 
account in future research. The first challenge is ex-
tending the scope of this research to include mul-
tiple pigs in a single image. The analysis of multiple 
pigs requires animal identification and tracking. The 
second challenge is to automate the image acquisi-
tion process. Although the image-processing pipeline 
was automated in the present study, the image acqui-
sition process involved a manual step for controlling 
the video recordings. The third challenge is that body 
weight itself may not reflect, to great extent, the ac-
tual fat and lean content of pigs, both of which are 
critical parameters in swine production (Whittemore 
and Schofield, 2000). In such a case, not only a top-
view camera, but also a side-view depth camera 
may be required to reconstruct the 3D surface area 
of pigs, in order to obtain more quantitative body 
conformation data. Image-based phenotyping can 
be classified as one of the recently emerging preci-
sion livestock farming technologies (Vranken and 
Berckmans, 2017; Benjamin and Yik, 2019). We con-
tend that RGB-D camera-based phenotyping can 
be used to collect body weight data more frequently 
than before and enhance swine production efficiency 
by promoting precision livestock farming.

ACKNOWLEDGMENTS

This study was supported by the USDA-NIFA 
grant 2020-67030-31339.

Conflict of interest statement. The authors de-
clare no real or perceived conflicts of interest.

LITERATURE CITED

Banhazi, T. M., M. Tscharke, W. M. Ferdous, C. Saunders, and 
S.  H.  Lee. 2011. Improved image analysis based system 
to reliably predict the live weight of pigs on farm: prelim-
inary results. Austr. J.  Multi-Discipl. Eng. 8(2):107–119. 
doi:10.1080/14488388.2011.11464830

Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting 
linear mixed-effects models using lme4. J. Stat. Softw. 
67(1):1–48. doi:10.18637/jss.v067.i01

Benjamin, M., and S. Yik. 2019. Precision livestock farming in 
swine welfare: a review for swine practitioners. Animals 
9(4):133. doi:10.3390/ani9040133

Bradski, G. 2000. The OpenCV library. Dr. Dobb’s J. Softw. 
Tools. 25:120–125.

Brandl,  N., and E.  Jørgensen. 1996. Determination of 
live weight of pigs from dimensions measured using 

image analysis. Comput. Electron. Agric. 15(1):57–72. 
doi:10.1016/0168-1699(96)00003-8

Buayai, P., K. Piewthongngam, C. K. Leung, and K. R. Saikaew. 
2019. Semi-automatic pig weight estimation using digital 
image analysis. Trans. ASABE. 34:521–534. doi:10.13031/
aea.13084

Condotta, I. C. F. S., T. M. Brown-Brandl, S. K. Pitla, J. P. Stinn, 
and K. O. Silva-Miranda. 2020. Evaluation of low-cost depth 
cameras for agricultural applications. Comput. Electron. 
Agric. 173:105394. doi:10.1016/j.compag.2020.105394

Condotta, I. C. F. S., T. M. Brown-Brandl, K. O. Silva-Miranda, 
and J.  P.  Stinn. 2018. Evaluation of a depth sensor for 
mass estimation of growing and finishing pigs. Biosyst. 
Eng. 173:11–18. doi:10.1016/j.biosystemseng.2018.03.002

Doeschl-Wilson, A. B., D. M. Green, A. V. Fisher, S. M. Carroll, 
C. P. Schofield, and C. T. Whittemore. 2005. The relation-
ship between body dimensions of living pigs and their 
carcass composition. Meat Sci. 70:229–240. doi:10.1016/j.
meatsci.2005.01.010

Doeschl-Wilson,  A.  B., C.  T.  Whittemore, P.  W.  Knap, and 
C. P. Schofield. 2004. Using visual image analysis to de-
scribe pig growth in terms of size and shape. Anim. Sci. 
79(3):415–427. doi:10.1017/S1357729800090287

Fernandes, A. F. A., J. R. R. Dórea, R. Fitzgerald, W. Herring, 
and G.  J.  M.  Rosa. 2019. A novel automated system to 
acquire biometric and morphological measurements and 
predict body weight of pigs via 3D computer vision. J. 
Anim. Sci. 97:496–508. doi:10.1093/jas/sky418

Frost,  A.  R., C.  P.  Schofield, S.  A.  Beaulah, T.  T.  Mottram, 
J.  A.  Lines, and C.  M.  Wathes. 1997. A review of live-
stock monitoring and the need for integrated systems. 
Comput. Electron. Agric. 17(2):139–159. doi:10.1016/
S0168-1699(96)01301-4

Jun, K., S. J. Kim, and H. W. Ji. 2018. Estimating pig weights 
from images without constraint on posture and il-
lumination. Comput. Electron. Agric. 153:169–176. 
doi:10.1016/j.compag.2018.08.006

Kashiha, M., C. Bahr, S. Ott, C. P. H. Moons, T. A. Niewold, 
F.  O.  Ödberg, and D.  Berckmans. 2014. Automatic 
weight estimation of individual pigs using image ana-
lysis. Comput. Electron. Agric. 107:38–44. doi:10.1016/j.
compag.2014.06.003

Kollis,  K., C.  S.  Phang, T.  M.  Banhazi, and S.  J.  Searle. 
2007. Weight estimation using image analysis and stat-
istical modelling: a preliminary study. Appl. Eng. Agric. 
23(1):91–96. doi:10.13031/2013.22332

Kongsro, J. 2014. Estimation of pig weight using a Microsoft 
Kinect prototype imaging system. Comput. Electron. 
Agric. 109:32–35. doi:10.1016/j.compag.2014.08.008

Marchant,  J.  A., C.  P.  Schofield, and R.  P.  White. 1999. Pig 
growth and conformation monitoring using image analysis. 
Anim. Sci. 68(1):141–150. doi:10.1017/S1357729800050165

McFarlane,  N.  J.  B., J.  Wu, R.  D.  Tillett, C.  P.  Schofield, 
J.  P.  Siebert, and X.  Ju. 2005. Shape measurements of 
live pigs using 3-D image capture. Anim. Sci. 81(3):383. 
doi:10.1079/ASC41990383

Minagawa,  H. 1995. Stereo photogrammetric errors in 
determining the surface area of a small pig model with 
non-metric cameras. J. Agric. Meteorol. 51(4):335–343. 
doi:10.2480/agrmet.51.335

Minagawa, H., and T. Ichikawa. 1994. Determining the weight 
of pigs with image analysis. Trans. ASAE 37(3):1011–
1015. doi:10.13031/2013.28172

https://doi.org/10.1080/14488388.2011.11464830
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.3390/ani9040133
https://doi.org/10.1016/0168-1699(96)00003-8
https://doi.org/10.13031/aea.13084
https://doi.org/10.13031/aea.13084
https://doi.org/10.1016/j.compag.2020.105394
https://doi.org/10.1016/j.biosystemseng.2018.03.002
https://doi.org/10.1016/j.meatsci.2005.01.010
https://doi.org/10.1016/j.meatsci.2005.01.010
https://doi.org/10.1017/S1357729800090287
https://doi.org/10.1093/jas/sky418
https://doi.org/10.1016/S0168-1699(96)01301-4
https://doi.org/10.1016/S0168-1699(96)01301-4
https://doi.org/10.1016/j.compag.2018.08.006
https://doi.org/10.1016/j.compag.2014.06.003
https://doi.org/10.1016/j.compag.2014.06.003
https://doi.org/10.13031/2013.22332
https://doi.org/10.1016/j.compag.2014.08.008
https://doi.org/10.1017/S1357729800050165
https://doi.org/10.1079/ASC41990383
https://doi.org/10.2480/agrmet.51.335
https://doi.org/10.13031/2013.28172


9Image-based pig body weight prediction

Translate basic science to industry innovation

Morota,  G., R.  V.  Ventura, F.  F.  Silva, M.  Koyama, and 
S. C. Fernando. 2018. Machine learning and data mining 
advance predictive big data analysis in precision animal 
agriculture. J. Anim. Sci. 96(4):1540–1550. doi:10.1093/jas/
sky014

Pezzuolo,  A., M.  Guarino, L.  Sartori, L.  A.  González, and 
F. Marinello. 2018a. On-barn pig weight estimation based 
on body measurements by a kinect V1 depth camera. 
Comput. Electron. Agric. 148:29–36. doi:10.1016/j.
compag.2018.03.003

Pezzuolo,  A., V.  Milani, D.  Zhu, H.  Guo, S.  Guercini, and 
F. Marinello. 2018b. On-barn pig weight estimation based 
on body measurements by structure-from-motion (SfM). 
Sensors 18(11):3603. doi:10.3390/s18113603

Reback, J., W. McKinney, J. Den Van Bossche, T. Augspurger, 
P. Cloud, A. Klein, M. Roeschke, S. Hawkins, J. Tratner, 
C.  She, et  al. 2020. pandas-dev/pandas: Pandas 1.0. 3. 
Zenodo.

Rosell-Polo,  J.  R., F.  A.  Cheein, E.  Gregorio, D.  Andujar, 
L.  Puigdomenech, J.  Masip, and A.  Escolà. 2015. 
Advances in structured light sensors applications in pre-
cision agriculture and livestock farming. Adv. Agron. 
133:71–112. doi:10.1016/bs.agron.2015.05.002

Salau, J., J. H. Haas, W. Junge, and G. Thaller. 2017. A mul-
ti-kinect cow scanning system: calculating linear traits 
from manually marked recordings of Holstein-Friesian 
dairy cows. Biosyst. Eng. 157:92–98. doi:10.1016/j.
biosystemseng.2017.03.001

Schofield, C. P. 1990. Evaluation of image analysis as a means 
of estimating the weight of pigs. J. Agric. Eng. Res. 47:287–
296. doi:10.1016/0021-8634(90)80048-Y

Schofield, C. P., J. A. Marchant, R. P. White, N. Brandl, and 
M. Wilson. 1999. Monitoring pig growth using a proto-
type imaging system. J. Agric. Eng. Res. 72(3):205–210. 
doi:10.1006/jaer.1998.0365

Shi, C., G. Teng, and Z. Li. 2016. An approach of pig weight 
estimation using binocular stereo system based on lab-
view. Comput. Electron. Agric. 129:37–43. doi:10.1016/j.
compag.2016.08.012

Tscharke, M., and T. M. Banhazi. 2013. Review of  meth-
ods to determine weight and size of  livestock from  
images. Austr. J.  Multi-Discipl. Eng. 10(1):1–17. doi: 
10.7158/14488388.2013.11464860

Van der Stuyft, E., C. P. Schofield, J. M. Randall, P. Wambacq, 
and V.  Goedseels. 1991. Development and applica-
tion of computer vision systems for use in livestock 
production. Comput. Electron. Agric. 6(3):243–265. 
doi:10.1016/0168-1699(91)90006-U

Vázquez-Arellano,  M., H.  W.  Griepentrog, D.  Reiser, and 
D. S. Paraforos. 2016. 3-D imaging systems for agricultural 
applications—a review. Sensors 16(5):618. doi:10.3390/
s16050618

Virtanen,  P., R.  Gommers, T.  E.  Oliphant, M.  Haberland, 
T.  Reddy, D.  Cournapeau, E.  Burovski, P.  Peterson, 
W.  Weckesser, J.  Bright, et  al. 2020. SciPy 1.0: funda-
mental algorithms for scientific computing in python. 
Nat. Method. 17(3):261–272.

Vranken,  E., and D.  Berckmans. 2017. Precision livestock 
farming for pigs. Anim. Front. 7(1):32–37. doi:10.2527/
af.2017.0106

Wang, K., H. Guo, Q. Ma, W. Su, L. Chen, and D. Zhu. 2018. A 
portable and automatic Xtion-based measurement system 
for pig body size. Comput. Electron. Agric. 148:291–298. 
doi:10.1016/j.compag.2018.03.018

Wang, Y., W. Yang, L. T. Walker, and T. M. Rababah. 2008a. 
Enhancing the accuracy of area extraction in ma-
chine vision-based pig weighing through edge detec-
tion. Int. J.  Agric. Biol. Eng. 1(1):37–42. doi:10.3965/j.
issn.1934-6344.2008.01.037-042

Wang,  Y., W.  Yang, P.  Winter, and L.  Walker. 2008b. Walk-
through weighing of pigs using machine vision and an 
artificial neural network. Biosyst. Eng. 100(1):117–125. 
doi:10.1016/j.biosystemseng.2007.08.008

Wang, K., D. Zhu, H. Guo, Q. Ma, W. Su, and Y. Su. 2019. 
Automated calculation of  heart girth measurement in 
pigs using body surface point clouds. Comput. Electron. 
Agric. 156:565–573. doi:10.1016/j.compag.2018.12.020

White, R. P., C. P. Schofield, D. M. Green, D. J. Parsons, and 
C.  T.  Whittemore. 2004. The effectiveness of  a visual 
image analysis (via) system for monitoring the perform-
ance of  growing/finishing pigs. Anim. Sci. 78(3):409–
418. doi:10.1017/S1357729800058811

Whittemore, C. T., and C. P. Schofield. 2000. A case for size and 
shape scaling for understanding nutrient use in breeding 
sows and growing pigs. Livest. Prod. Sci. 65(3):203–208. 
doi:10.1016/S0301-6226(99)00136-0

Wongsriworaphon,  A., B.  Arnonkijpanich, and 
S.  Pathumnakul. 2015. An approach based on digital 
image analysis to estimate the live weights of pigs in 
farm environments. Comput. Electron. Agric. 115:26–33. 
doi:10.1016/j.compag.2015.05.004

Wu,  J., R.  Tillett, N.  McFarlane, X.  Ju, J.  P.  Siebert, and 
P.  Schofield. 2004. Extracting the three-dimensional 
shape of live pigs using stereo photogrammetry. 
Comput. Electron. Agric. 44(3):203–222. doi:10.1016/j.
compag.2004.05.003

https://doi.org/10.1093/jas/sky014
https://doi.org/10.1093/jas/sky014
https://doi.org/10.1016/j.compag.2018.03.003
https://doi.org/10.1016/j.compag.2018.03.003
https://doi.org/10.3390/s18113603
https://doi.org/10.1016/bs.agron.2015.05.002
https://doi.org/10.1016/j.biosystemseng.2017.03.001
https://doi.org/10.1016/j.biosystemseng.2017.03.001
https://doi.org/10.1016/0021-8634(90)80048-Y
https://doi.org/10.1006/jaer.1998.0365
https://doi.org/10.1016/j.compag.2016.08.012
https://doi.org/10.1016/j.compag.2016.08.012
https://doi.org/10.7158/14488388.2013.11464860
https://doi.org/10.1016/0168-1699(91)90006-U
https://doi.org/10.3390/s16050618
https://doi.org/10.3390/s16050618
https://doi.org/10.2527/af.2017.0106
https://doi.org/10.2527/af.2017.0106
https://doi.org/10.1016/j.compag.2018.03.018
https://doi.org/10.3965/j.issn.1934-6344.2008.01.037-042
https://doi.org/10.3965/j.issn.1934-6344.2008.01.037-042
https://doi.org/10.1016/j.biosystemseng.2007.08.008
https://doi.org/10.1016/j.compag.2018.12.020
https://doi.org/10.1017/S1357729800058811
https://doi.org/10.1016/S0301-6226(99)00136-0
https://doi.org/10.1016/j.compag.2015.05.004
https://doi.org/10.1016/j.compag.2004.05.003
https://doi.org/10.1016/j.compag.2004.05.003

