
Association of Eosinophilic Inflammation with FKBP51
Expression in Sputum Cells in Asthma
Tomoko Tajiri1, Hisako Matsumoto1*, Akio Niimi1,2, Isao Ito1, Tsuyoshi Oguma1, Hitoshi Nakaji1,3,

Hideki Inoue1, Toshiyuki Iwata1, Tadao Nagasaki1, Yoshihiro Kanemitsu1, Guergana Petrova1,

Michiaki Mishima1

1Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan, 2Division of Respiratory Medicine, Department of Medical Oncology

and Immunology, Nagoya City University School of Medical Sciences, Aichi, Japan, 3Department of Respiratory Medicine, Japanese Red Cross Wakayama Medical Center,

Wakayama, Japan

Abstract

Background: Airway eosinophilia is a predictor of steroid responsiveness in steroid-naı̈ve asthma. However, the relationship
between airway eosinophilia and the expression of FK506-binding protein 51 (FKBP51), a glucocorticoid receptor co-
chaperone that plays a role in steroid insensitivity in asthma, remains unknown.

Objective: To evaluate the relationship between eosinophilic inflammation and FKBP51 expression in sputum cells in
asthma.

Methods: The FKBP51 mRNA levels in sputum cells from steroid-naı̈ve patients with asthma (n = 31) and stable asthmatic
patients on inhaled corticosteroid (ICS) (n = 28) were cross-sectionally examined using real-time PCR. Associations between
FKBP51 levels and clinical indices were analyzed.

Results: In steroid-naı̈ve patients, the FKBP51 levels were negatively correlated with eosinophil proportions in blood
(r =20.52) and sputum (r =20.57), and exhaled nitric oxide levels (r =20.42) (all p,0.05). No such associations were
observed in patients on ICS. In steroid-naı̈ve patients, improvement in forced expiratory volume in one second after ICS
initiation was correlated with baseline eosinophil proportions in blood (r = 0.74) and sputum (r = 0.76) and negatively
correlated with FKBP51 levels (r =20.73) (all p,0.0001) (n = 20). Lastly, the FKBP51 levels were the lowest in steroid-naı̈ve
asthmatic patients, followed by mild to moderate persistent asthmatic patients on ICS, and the highest in severe persistent
asthmatic patients on ICS (p,0.0001).

Conclusions: Lower FKBP51 expression in sputum cells may reflect eosinophilic inflammation and glucocorticoid
responsiveness in steroid-naı̈ve asthmatic patients.
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Introduction

Asthma is a chronic inflammatory disorder of the airways in

which eosinophils, Th2 cells, and Th2-type cytokines play a role

[1]. Glucocorticosteroid (GC), an established key treatment in

asthma, efficiently reduces cytokine production and induces

apoptosis of eosinophils [2] and Th2 cells via GC receptor a
(GRa). Thus, eosinophilia in asthma is responsive to GC; steroid-

naı̈ve asthmatic patients with blood [3,4] or sputum [3,5]

eosinophilia show greater improvement in lung function after

GC treatment than patients without eosinophilia.

FK506-binding protein 51 (FKBP51) is a co-chaperone of GR

and is expressed in various tissues and cell types [6]. FKBP51 is

induced by the auto-regulatory process of GC-activated GR [7],

modulates GRa activity, and plays a role in GC insensitivity,

which may be a homeostatic reaction for regulating the effects of

GC, similar to the reduction in GR number following GC

treatment [8]. In steroid-naı̈ve patients with asthma, lower

expression of FKBP51 mRNA in airway epithelial cells [9] and

in peripheral blood mononuclear cells [10] is correlated with

greater improvement in lung function after GC treatment,

suggesting that low expression of FKBP51 may be a mechanism

underlying the GC sensitivity. However, a potential association

between FKBP51 expression and airway inflammatory cells, in

particular eosinophils, has not been reported.

In this study, we examined FKBP51 expression in induced

sputum cells in patients with asthma to test the hypothesis that the

level of FKBP51 expression is down-regulated in eosinophilic

inflammation in steroid-naı̈ve asthma, and that this down-

regulation disappears in patients on inhaled corticosteroid (ICS)

treatment.
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Patients and Methods

Patients
Newly referred steroid-naı̈ve patients with asthma and stable

patients with asthma who were treated with ICS at the Asthma

Clinic in the Kyoto University Hospital were enrolled. Asthma was

defined according to the American Thoracic Society criteria [11].

The asthmatic patients on ICS were stable, and they had been free

of exacerbations for 4 weeks or more. Patients who had smoked

within the previous 6 months or who had failed sputum induction

were excluded. The disease severity of asthma on ICS was

classified into four categories: intermittent, mild persistent,

moderate persistent, and severe persistent, according to the

Global Initiative for Asthma guidelines, as revised in 2002 [12],

after determining the minimum medication necessary to maintain

control.

Healthy participants who had not smoked within the previous 6

months were recruited from our hospital staff.

The study protocol (UMIN000005106) was approved by the

Ethics Committee of Kyoto University, and written informed

consent was obtained from all participants.

Methods

In this study, patients with asthma cross-sectionally underwent

the following examination: fractional exhaled nitric oxide (FeNO)

levels, pulmonary function test, sputum induction, and blood test.

In steroid-naı̈ve patients with asthma, a follow-up pulmonary

function test was also performed after they were treated with the

minimum ICS dose needed to maintain control.

Peripheral blood was obtained from healthy controls, and

eosinophils were purified as described below.

Measurement of FeNO Levels
FeNO levels at an expiratory flow rate of 50 ml/s were

measured with a chemiluminescence analyzer (NOA 280; Sievers,

Table 1. Patients’ characteristics.

Steroid-naı̈ve patients
with asthma

Mild to moderate
persistent asthmatics
on ICS*

Severe persistent
asthmatics on ICS p-value{

Patients, number 31 6 22

Gender, male/female 16/15 3/3 11/11 0.99{

Age, years 53617 57623 57616 0.48{

Smoking history, ex/never 7/24 1/5 10/12 0.15{

Disease duration, years 466 10612 17619 0.0008"

Atopic status`, yes/no 22/9 4/2 18/4 0.60{

Doses of ICS1, mg daily – 2836134 12146696 0.0001#

FEV1, % predicted 100626 101627 83625 0.01{

Exhaled nitric oxide levels, ppb 35631 42620 37632 0.50{

Blood eosinophils, % 464 466 464 0.94#

Sputum eosinophils, % 11622 565 7610 0.87#

Serum IgE, IU/ml 83 (5–1106) 86 (9–220) 185 (5–1800) 0.19"

Values are given as means 6 SD or medians (range).
*included four patients with mild and two with moderate persistent asthma.
{with the x2 test or analysis of variance.
`Patients were considered atopic when they were positive for one or more serum allergen-specific IgE antibodies against house dust, Japanese cedar pollen, mixed
gramineae pollen, mixed weed pollen, mixed mold, cat dander, dog dander, and Trichophyton rubrum.
1Equivalent to fluticasone propionate.
"by Kruskal Wallis test,
#by unpaired t-test or analysis of variance after data were log-transformed.
Abbreviations: ICS, inhaled corticosteroid; FEV1; forced expiratory volume in one second.
doi:10.1371/journal.pone.0065284.t001

Figure 1. FKBP51 levels in induced sputum cells in patients with
asthma. FKBP51 mRNA levels normalized to b2 microglobulin mRNA
levels in induced sputum cells became progressively higher from
steroid-naı̈ve asthmatic patients (naı̈ve, n = 31), to mild to moderate
asthmatic patients on inhaled corticosteroid (mild to moderate, n = 6),
and then to severe persistent asthmatic patients on inhaled cortico-
steroid (severe, n = 22) (p,0.0001 by the Kruskal-Wallis test). *Signifi-
cant by the Wilcoxon rank-sum test. Values and bars represent means.
doi:10.1371/journal.pone.0065284.g001
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Boulder, Colorado, USA) [13] according to current guidelines

[14].

Pulmonary Function Test
After FeNO measurements, pre-bronchodilator forced expira-

tory volume in one second (FEV1) was measured using a Chest

Graph HI-701 spirometer (Chest, Tokyo, Japan). Spirometry was

performed according to the standards of the American Thoracic

Society and the European Respiratory Society [15]. For steroid-

naı̈ve patients with asthma, follow-up FEV1 was also measured.

Changes in FEV1 were calculated as 100 6 (FEV1 at the 2nd

measurement 2 FEV1 at baseline)/FEV1 at baseline.

Sputum Induction, RNA Isolation from Sputum Cells,
Real-time PCR, and Immunostaining for FKBP51
Expression in Sputum Cells
Sputum induction and processing were performed as described

previously [16]. Adequate plugs of sputum were separated from

saliva, stored at 4uC, and processed within 2 hours. The sputum

plugs were treated with 0.1% dithiothreitol (Sputasol, Oxoid Ltd.,

Hampshire, UK) followed by Dulbecco’s phosphate-buffered

saline (PBS). After centrifugation, supernatants were removed,

and cell pellets were re-suspended in PBS. Sputum cells were

mounted on slides by cytocentrifugation, air-dried, and fixed in

acetone/methanol (75:25). Cell differentials were determined by

counting at least 400 non-squamous cells on a slide that was

stained with the May-Grünwald-Giemsa method. The remaining

slides were stored at 220uC and used for immunostaining as

described below.

Total RNA was extracted from the remaining cells using an

RNeasy Mini kit (Qiagen, Osaka, Japan). cDNA was synthesized,

and real-time PCR was performed using the ABI Prism 7300

sequence detection system (Applied Biosystems, Tokyo, Japan)

with SYBR green (Qiagen). The relative quantity of FKBP51

mRNA expression levels was normalized to the mRNA expression

levels of b2 microglobulin (b2MG) in the same sample. The specific

primer sets used were forward 59-CCAAAGCTGTT-

GAATGCTGTGA-39 and reverse 59-CAAACTCGTTCAT-

GAGCAGCTG-39 for FKBP51, and forward 59-

TGTCTTTCAGCAAGGACTGGTC-39 and reverse 59-

CAAACCTCCATGATGCTGC-39 for b2MG [17].

We also evaluated FKBP51 protein expression with immuno-

cytochemistry in sputum cells. For double immunostaining,

previously prepared samples on the slides were first blocked with

Figure 2. Associations between FKBP51 levels and eosinophilic inflammation in steroid-naı̈ve patients with asthma. Associations
between FKBP51 mRNA levels normalized to b2 microglobulin mRNA levels and a) blood and b) sputum eosinophil proportions (n = 31 each) and c)
exhaled nitric oxide levels (n = 30) in steroid-naı̈ve patients with asthma.
doi:10.1371/journal.pone.0065284.g002
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CAS Block (Invitrogen Corp., Carlsbad, California, USA) and

then incubated with either rabbit anti-human FKBP51 (4 mg/ml)

(Santa Cruz Biotechnology, Santa Cruz, California, USA) or

rabbit IgG (Santa Cruz Biotechnology) at the same concentration,

and either mouse anti-human major basic protein (MBP;

Chemicon, Temecula, California, USA) or mouse IgG (Sigma-

Aldrich, Tokyo, Japan). After rinsing in PBS, samples were

incubated with Alexa Fluor 488 donkey anti-rabbit IgG (Invitro-

gen) and Alexa Fluor 546 goat anti-mouse IgG (Invitrogen).

Samples were viewed with a fluorescence microscope. Positive

staining was green for the FKBP51 antigen and red for the MBP

antigen.

Purification of Blood Eosinophils, Real-time PCR, and
Immunostaining for FKBP51 Expression in Purified Blood
Cells
Peripheral blood was obtained from healthy controls, and

FKBP51 mRNA expression in purified eosinophils, neutrophils

and mononuclear cells [18] was examined. Briefly, granulocytes

were isolated from mononuclear cells by sedimentation with 2%

dextran, followed by centrifugation on 1.103 and 1.085 Percoll

(GE Healthcare, Uppsala, Sweden) density gradients as modified

from previous reports [18,19]. After lysis of red blood cells with

0.2% and 1.6% saline, eosinophils and neutrophils were purified

by negative and positive selection, respectively, using anti-CD16

immunomagnetic beads and the mini-MACS system (Miltenyi

Biotec, Bergish Gladbach, Germany).

Total RNA was extracted from individual pools of purified

eosinophils, neutrophils, and mononuclear cells, and the levels of

FKBP51 mRNA expression normalized to b2MG were determined

as described above.

We also evaluated FKBP51 protein expression with immuno-

cytochemistry in individual pools of purified eosinophils, neutro-

phils, and mononuclear cells. Purified blood cells were smeared on

slides, air-dried, fixed in acetone/methanol (75:25), and immuno-

stained as described above.

RNA Quality Assessment
RNA quality was determined using the Experion Automated

Electrophoresis System (BIO-RAD, Tokyo, Japan) according to

the manufacturer’s instructions. RNA integrity was expressed as

the RNA quality indicator (RQI), which ranged from 1 (degraded)

Figure 3. Associations between pretreatment FEV1 and eosinophilic inflammation and FKBP51 levels in steroid-naı̈ve patients with
asthma. Associations between pretreatment FEV1 (% predicted) and a) blood and b) sputum eosinophil proportions and c) FKBP51 mRNA levels
normalized to b2 microglobulin mRNA levels in induced sputum cells in steroid-naı̈ve patients with asthma (n = 31). Abbreviation: FEV1, forced
expiratory volume in one second.
doi:10.1371/journal.pone.0065284.g003
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to 10 (intact) [20]. Samples were categorized as having poor RNA

integrity if 1# RQI #4, as having moderate RNA integrity if 4,

RQI #7, and as having high RNA integrity if 7, RQI #10,

according to the manufacturer’s instructions.

Statistical Analysis
JMP system version 6 (SAS Institute Japan; Tokyo, Japan) was

used. Data are expressed as the mean 6 SD or median (range).

Eosinophil proportions in blood and sputum, FKBP51 mRNA

levels normalized to b2MG in sputum cells, ICS doses, and changes

in FEV1 were log-transformed to achieve normal distributions. For

parametric data, Pearson correlation coefficients were used to

analyze the relationships among the data, and unpaired t-test was

used to compare two groups. For comparison of three groups, the

chi-squared test, Kruskal-Wallis test, or analysis of variance was

used, where appropriate. A p value of ,0.05 was considered

statistically significant.

Results

Patient Characteristics
The patients’ characteristics are shown in Table 1. A total of six

patients with mild to moderate persistent asthma and 22 patients

with severe persistent asthma were included in the group of

asthmatic patients on ICS. Severe persistent asthmatics on ICS

showed the longest disease duration and the lowest FEV1 among

the three patient groups (Table 1). Sputum and blood eosinophil

proportions did not differ among the three groups. One steroid-

naı̈ve patient with asthma was unable to undergo FeNO

measurement because of time constraints. The average RQI of

our sputum samples was 8.561.9. The RQI was independent of

the cell type; no association was found between RQI and

proportion of cell type (neutrophils (r =20.06, p = 0.67), mono-

nuclear cells (r = 0.15, p = 0.29), or eosinophils (r = 0.09, p = 0.54)).

FKBP51 Expression in Induced Sputum Cells from Steroid-
naı̈ve Asthmatic Patients
The level of FKBP51 expression in induced sputum cells in

steroid-naı̈ve patients with asthma was significantly lower than that

in patients on ICS (p,0.0001) (Fig. 1). In steroid-naı̈ve patients

with asthma, FKBP51 expression was significantly inversely

correlated with eosinophil proportions in blood (r =20.52,

p = 0.003) and sputum (r =20.57, p = 0.0008) (Fig. 2a, b), and

with FeNO levels (r =20.42, p = 0.019) (Fig. 2c). The significant

correlation between FKBP51 expression and sputum eosinophil

proportions remained even after the right most and lowest outlier

in Fig. 2b was excluded from the analysis (r =20.45, p = 0.013).

When using a second order regression equation for FKBP51

Figure 4. Associations between changes in FEV1 after ICS initiation and pretreatment eosinophilic inflammation and FKBP51 levels.
Associations between changes in FEV1 after ICS initiation and pretreatment a) blood and b) sputum eosinophil proportions and c) FKBP51 mRNA
levels normalized to b2 microglobulin mRNA levels in steroid-naı̈ve patients with asthma (n = 20). Abbreviation: FEV1, forced expiratory volume in one
second; ICS, inhaled corticosteroid.
doi:10.1371/journal.pone.0065284.g004
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expression levels and sputum eosinophil proportions in steroid-

naı̈ve patients with asthma, FKBP51 expression in a sputum non-

eosinophil cell (i.e., neutrophil, mononuclear cell, or lymphocyte)

was estimated to be 6.1 times higher than that in a sputum

eosinophil. We applied 100 to ‘‘sputum eosinophil proportion’’ in

the equation of ‘‘log10 FKBP51 (expression normalized to

b2MG) = 0.948 2 0.246 6 (log10 sputum eosinophil proportion)

2 0.101 6 (log10 sputum eosinophil proportion 2 0.246)20 to

estimate FKBP51 expression in a sputum eosinophil, whereas 0.01

was used to estimate FKBP51 expression in a non-eosinophil cell.

FEV1 (% predicted) was significantly negatively correlated with

eosinophil proportions in blood (r =20.47, p = 0.008) (Fig. 3a) and

sputum (r =20.49, p= 0.006) (Fig. 3b), and was positively

correlated with FKBP51 expression (r = 0.60, p = 0.0004) (Fig. 3c).

The significant correlation between FKBP51 expression and FEV1

(% predicted) remained after the left most outlier in Fig. 3c was

excluded from the analysis (r = 0.44, p= 0.015). No significant

associations were seen between FKBP51 expression and sputum

neutrophil or lymphocyte proportions or other clinical indices

including sex, age, smoking history, disease duration, and atopic

status (data not shown). Epithelial cell counts were too low for

analysis (0.360.5%).

A total of 20 steroid-naı̈ve asthmatic patients were followed up

at our hospital. They underwent a 2nd pulmonary function test

11.463.8 months later when they were on minimum ICS doses to

maintain control (3996241 mg daily equivalent to fluticasone

propionate). Changes in FEV1 (24.7673.7%) from baseline to the

2nd measurement were significantly positively correlated with

baseline eosinophil proportions in blood (r = 0.74, p,0.0001)

(Fig. 4a) and sputum (r = 0.76, p,0.0001) (Fig. 4b), and were

negatively correlated with FKBP51 expression (r =20.73,

p,0.0001) (Fig. 4c). We did not observe any differences in sex,

Figure 5. Representative images of immunostaining of sputum cells from asthmatic patients. Case 1 (68-year-old male) and case 2 (72-
year-old female) were steroid-naı̈ve patients. Case 3 (79-year-old male) and case 4 (55-year-old female) were patients with severe persistent asthma
on high-dose inhaled corticosteroid. Column A: staining with anti-FKBP51 antibody, column B: merged image of staining with anti-major basic
protein antibody (MBP) and anti-FKBP51 antibody. Red indicates MBP, and green indicates FKBP51.
doi:10.1371/journal.pone.0065284.g005

Eosinophilic Inflammation and FKBP51 in Asthma
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age, baseline FEV1 (% predicted), eosinophil proportions in blood

and sputum, or FKBP51 mRNA levels between the 20 patients and

the 11 patients who were lost to follow-up.

Using immunocytochemistry, we observed that FKBP51

expression was qualitatively weaker in sputum eosinophils than

in sputum neutrophils and mononuclear cells in steroid-naı̈ve

asthmatic patients (Fig. 5, cases 1,2).

FKBP51 Expression in Induced Sputum Cells in Asthmatic
Patients on ICS
In asthmatic patients on ICS, the level of FKBP51 expression in

patients with severe persistent asthma (n= 22) was significantly

higher than that in patients with mild to moderate persistent

asthma (n = 6) (p = 0.033) (Fig. 1). ICS doses were not significantly

positively correlated with FKBP51 expression (r = 0.28, p= 0.15)

(n = 28).

In contrast to steroid-naı̈ve patients with asthma, no significant

associations were observed between FKBP51 expression and

eosinophil proportions in blood (r = 0.27, p = 0.17) and sputum

(r = 0.28, p = 0.15) or FeNO levels (r = 0.23, p= 0.23) in stable

asthmatic patients on ICS. Associations were also not observed

between FKBP51 expression and sputum neutrophil or lymphocyte

proportions, FEV1 (% predicted), or other clinical indices (data not

shown). Epithelial cell counts were too low for analysis

(0.460.7%).

In asthmatic patients on ICS, immunostaining for FKBP51 in

sputum eosinophils, particularly in the nucleus, was comparable to

or stronger than that in neutrophils and mononuclear cells in

severe persistent asthmatic patients on ICS (Fig. 5, cases 3, 4).

FKBP51 mRNA and Protein Expression in Purified Blood
Eosinophils and Non-eosinophils
Eosinophils, neutrophils, and mononuclear cells were purified

from the peripheral blood of 11 healthy controls (6 males and 5

females, 34.764.3 years old). The FKBP51 mRNA levels in

purified mononuclear cells were significantly higher than those in

purified eosinophils, but not different from those in purified

neutrophils. When neutrophils and mononuclear cells were

analyzed together as non-eosinophils, FKBP51 mRNA levels in

non-eosinophils were 6.0613.8 fold higher than those in

eosinophils (p = 0.026).

Immunostaining for FKBP51 in purified eosinophils was also

weaker than that in neutrophils or mononuclear cells (Fig. 6).

Discussion

To the best of our knowledge, this is the first study that clarifies

the associations between the level of FKBP51 mRNA expression in

induced sputum cells and clinical indices in patients with asthma,

in particular, patients with eosinophilic inflammation. We showed

Figure 6. Representative images of immunostaining of purified blood eosinophils and non-eosinophils from healthy controls. Case
1 (46-year-old female), case 2 (36-year-old female), case 3 (35-year-old male). Column A: staining with anti-FKBP51 antibody, column B: merged image
of staining with anti-major basic protein antibody (MBP) and anti-FKBP51 antibody. Red indicates MBP, and green indicates FKBP51.
doi:10.1371/journal.pone.0065284.g006

Eosinophilic Inflammation and FKBP51 in Asthma
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that the level of FKBP51 expression in induced sputum cells 1) was

significantly inversely correlated with eosinophilic inflammation

and positively correlated with improvement in FEV1 with ICS

treatment in steroid-naı̈ve patients with asthma and 2) became

progressively higher from steroid-naı̈ve asthmatic patients, to mild

to moderate persistent asthmatic patients on ICS, and then to

severe persistent asthmatic patients on ICS. No correlation of

eosinophilic inflammation to FKBP51 expression in induced

sputum cells was observed in patients on ICS.

FKBP51 is a co-chaperone of GR. It was originally discovered

as a member of the progesterone receptor complex [21] and was

then described in 1999 as playing a major role in steroid resistance

in squirrel monkeys with high circulating levels of GC [22,23]. In

previous studies using cultured squirrel monkey lymphocytes and

human lymphocytes, FKBP51 mRNA was induced by GC [24],

and its overexpression was thought to inhibit GRa signaling by

reducing the binding affinity of GC to GRa [22,25], impairing

nuclear translocation of GRa [26] and promoting nuclear

translocation of GRb [27].

In steroid-naı̈ve asthmatic patients, the level of FKBP51

expression in induced sputum cells was inversely correlated with

the proportions of blood and sputum eosinophils, suggesting that

the level of FKBP51 expression in eosinophilic inflammation was

lower than that in non-eosinophilic inflammation under steroid-

naı̈ve conditions. Lower FKBP51 expression in eosinophilic airway

inflammation may be advantageous for GC signaling via GRa and

may accelerate eosinophil apoptosis [2,28]. In an earlier report,

lower baseline FEV1 in patients with eosinophilic inflammation

was a strong predictor of GC responsiveness [4]. In our study,

eosinophilic inflammation and lower FKBP51 expression were

associated with lower baseline FEV1 (% predicted) and greater

improvement in FEV1 after ICS treatment. Collectively, lower

FKBP51 may be one of the mechanisms underlying the

relationship between eosinophilia with lower baseline FEV1 and

GC responsiveness in steroid-naı̈ve asthmatic patients.

The current findings imply that the level of FKBP51 expression

in sputum eosinophils may be lower than that in sputum

neutrophils and mononuclear cells. Indeed, immunostaining of

sputum cells revealed a weaker FKBP51 expression in eosinophils

than that in neutrophils and mononuclear cells in steroid-naı̈ve

asthmatic patients. To confirm these findings, we purified

eosinophils from neutrophils and mononuclear cells using blood

samples obtained from healthy controls because purification of

sputum eosinophils by separation from non-eosinophils was

technically difficult. Using purified blood cells, we first observed

that FKBP51 expression in eosinophils was significantly lower than

that in non-eosinophils. Moreover, the ratio of FKBP51 expression

in eosinophils to FKBP51 expression in non-eosinophils in blood

was comparable to the estimated ratio in sputum cells. Taken

altogether, the findings in blood cells may support the findings that

lower FKBP51 expression in sputum cells reflects eosinophilic

inflammation in steroid-naı̈ve patients with asthma. Nonetheless,

for the differences in FKBP51 expression levels between sputum

cells from steroid naı̈ve patients and those from patients on ICS,

which is mentioned below, we should consider the possibility that

these differences may reflect a mean change between the patient

groups studied and not simply reflect changes at the cellular level

because we did not purify sputum cell populations in this study.

In contrast to the steroid-naı̈ve group, negative associations

between FKBP51 expression and eosinophilic inflammation were

not observed in patients with asthma who were treated with ICS.

The level of FKBP51 expression in severe persistent asthmatics on

ICS was significantly higher than that in mild to moderate

persistent asthmatics on ICS and in steroid-naı̈ve patients. The

highest expression of FKBP51 in our patients with severe persistent

asthma on ICS is consistent with the findings in earlier reports that

high expression of FKBP51 in steroid-naı̈ve conditions is associated

with insensitivity to GC treatment [9,10] and reduced GC-

mediated inhibition of interleukin-13 signaling [7]. Meanwhile, the

treatment conditions in our study and in earlier studies were

different, and the high level of FKBP51 in severe persistent

asthmatic patients on ICS in our study is thought to be mostly

induced by high doses of ICS. Despite this, overexpression of

FKBP51 may be involved in the pathogenesis of severe persistent

asthmatic patients, including steroid insensitivity.

Our study has several limitations. First, we did not examine the

level of FKBP51 expression and its function in purified eosinophils

and other cells in sputum. This was because sputum eosinophil

samples (8.9617.0%) (n = 59) were contaminated with other cell

types; neutrophils (63.3622.6%), mononuclear cells

(25.8620.3%), lymphocytes (1.861.6%), and epithelial cells

(0.460.6%), and purification of sputum eosinophils by separation

from non-eosinophils was technically difficult. Instead, we

performed double immunostaining for sputum cells and examined

FKBP51 expression in blood eosinophils and neutrophils or

mononuclear cells. Second, FKBP51 expression levels in severe

persistent asthmatics in the steroid-naı̈ve condition are unknown

because reducing ICS to examine changes in FKBP51 expression

in severe persistent asthmatics is ethically difficult. A longitudinal

study with a larger sample size is needed to determine the FKBP51

expression levels in severe persistent asthmatics in the steroid-naı̈ve

condition. In addition, we need to examine the actual FKBP51

function in response to GC, including the acceleration of nuclear

translocation of GRb in sputum cells. This may be achieved by

knocking down FKBP51 expression using siRNA in sputum cells

such as sputum-derived macrophages [29]. One strong point of

our study is that we validated the quality of the RNA that was

extracted from induced sputum cells. Immediate processing of

sputum samples (within 2 hours) may have resulted in the

satisfactory results in RNA quality.

In conclusion, we demonstrated for the first time that lower

FKBP51 expression in induced sputum cells may reflect eosino-

philic inflammation and may underlie the mechanism of GC

sensitivity in eosinophilic inflammation in the steroid-naı̈ve

condition. Longitudinal studies are necessary to further clarify

the clinical significance of overexpression of FKBP51 in patients on

steroids.
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