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Driver performance is crucial for road safety. There is a relationship between
performance and stress such that too high or too low stress levels (usually characterized
by stressful or careless driving, respectively) impair driving quality. Therefore, monitoring
stress levels can improve the overall performance of drivers by providing either an alert
or intervention when stress levels are sub-optimal. Commonly used stress measures
suffer from several shortcomings, such as time delays in indication and invasiveness
of sensors. Grip force is a relatively new measure that shows promising results in
measuring stress during psychomotor tasks. In driving, grip force sensor is non-invasive
and transparent to the end user as drivers must continuously grip the steering wheel.
The aim of the current research is to examine whether grip force can be used as a
useful measure of stress in driving tasks. Twenty-one participants took part in a field
experiment in which they were required to brake the vehicle in various intensities. The
effects of the braking intensity on grip force, heart rate, and heart rate variability were
analyzed. The results indicate a significant correlation between these three parameters.
These results provide initial evidence that grip force can be used to measure stress in
driving tasks. These findings may have several applications in the field of stress and
driving research as well as in the vehicle safety domain.

Keywords: grip force, stress, steering wheel, driving, heart rate variability, heart rate, psychomotor tasks,
physiologic indices

INTRODUCTION

“Will I have to learn how to drive?” asked the 10 year-old daughter of one of the authors recently.
Although it is a common belief that autonomous cars will take over in the next few years, the more
probable answer is that she would have to learn how to drive unless she is willing to rely solely on
public transportation. According to Litman (2019), it is not until the 2050s that fully autonomous
cars, in which no human involvement is required (known as level 5 in the autonomous driving scale
defined by the Society of Automotive Engineers International), will be commonly used. Until such
time, driver performance will remain critical in road safety.

Road accident investigation (Hendricks et al., 2001) and observational studies (Dingus et al.,
2016) indicate that about 90% of all road accidents result from human error. To improve road
safety, it is essential to recognize the factors affecting driver performance, specifically, factors that
can be moderated to improve driver performance and road safety. This paper focuses on one such
factor—temporal driver stress.
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Stress is defined as “. . .a real or interpreted threat to the
physiological or psychological integrity of an individual that
results in physiological and/or behavioral responses” (McEwen,
2000). According to the transactional model, stress is the
outcome of appraisals of demands and personal competence,
together with a coping strategy that mediates between external
demands (Lazarus and Folkman, 1984). Appraisal processes
generate various outcomes or stress symptoms: physiological,
emotional, and behavioral (Matthews, 2001). McGrath (1976)
stated that stress results from an interaction between three
elements: perceived demand, perceived ability to cope, and
perceived importance of coping with the demand.

The concept of “stress” is often used as a synonym to
the “mental workload” concept (Staal, 2004). Accordingly, the
mental workload is also referred to as a transactional concept
since it represents an interaction between mental capacities and
task demands (Dehais et al., 2020). Furthermore, some stress
definitions hold that stress represents a higher mental workload
(Brookhuis and De Waard, 2010; Hou et al., 2015).

An additional definition by Mulder and Moray (1979) suggests
that mental workload is “. . .an inferred construct that mediates
between task difficulty, operator skill, and observed performance”
(Mulder and Moray, 1979; p. 443). Thus, based on Mulder
and Moray’s (1979) definition of mental workload and the
mentioned definition of stress by McGrath (1976), the main
difference between mental workload and stress stems from the
perceived ability to cope with the demands, namely, unlike
mental workload (Mulder and Moray, 1979), stress is caused by
the perceived consequences of failing to cope with the demands
(McGrath, 1976).

Indeed the confusion between the terms “workload” and
“stress” is an entangled issue, as these terms are not yet adequately
defined nor unambiguously differentiated in the literature.
Furthermore, the manifestations through the sympathetic
nervous system of stress and workload are similar and may be
indistinguishable (Alsuraykh et al., 2019). This confusion will
not be resolved within the framework of the present study, and
henceforth we shall use only the term “stress” for simplicity.

One of the common descriptions of the relationship between
performance and stress is based on findings made more than
a century ago by Yerkes and Dodson (1908), later described
as an “inverted U-shaped curve.” According to the inverted
U-shaped curve, the upper and lower levels of stress yield
unsatisfactory performance, while the mid-level produces the
best performance (Hancock, 1989; Hancock and Szalma, 2008).
Concerning driving, higher stress levels are harmful to driver
performance (Qu et al., 2016). At the other end of the scale,
very low stress, termed by Hancock and Szalma (2008) as
“under-stimulation,” was found to impair driver performance
(Joosen et al., 2017).

The construct of stress is divided into chronic and acute
stress (Segerstrom and Miller, 2004). Chronic stress refers
to a continuous state beyond a specific driving situation.
Acute stress refers to a single event of short duration or a
“micro-event” (Meyer et al., 2010). In the context of driving,
short-duration events that may cause stress are unexpected
events that, in turn, require sudden and unplanned reactions

(Davies and Underwood, 2000). Stress-inducing driving events
require two main maneuvers from the driver: manipulating the
steering wheel and braking. Studies on driver stress have used
manipulations such as driving through a labyrinth or slalom to
force the driver to manipulate the steering wheel (Zontone et al.,
2020) and pedestrians or other objects erupting into the road to
force the driver to brake intensely (Daviaux et al., 2020).

Acute stress during driving causes a high mental workload
(Wiberg et al., 2015) and adverse effects (Frasson et al., 2014)
that may decrease driver performance (Brookhuis and De
Waard, 2010; Rastgoo et al., 2019). Adding automation would
not necessarily provide drivers with a less effortful working
environment (Botzer et al., 2016). However, detecting acute
stress during driving may allow various interventions that would
reduce potential risks. An example of such an application is
stress-adaptive car systems that modify the parameters of in-
vehicle driver-aiding systems based on the driver’s stress levels
(Collet and Musicant, 2019). Another application is in-car just-
in-time stress management interventions (e.g., mild temperatures
and music, bio-feedback interfaces, and chatbots) administered
when the stress levels are too high (Balters et al., 2019).

Acute stress is manifested physiologically by the sympathetic
nervous system, which stimulates the body’s “fight or flight”
response. This response is antagonistic to the parasympathetic
nervous system, which reduces stress (Contrada and Baum,
2011). These reactions can be measured in many ways, such as
maximal heart rate (HR) (Kudielka et al., 2004), power spectra in
specific frequency bands of the heart rate variability (HRV) signal
(Allen et al., 2014), galvanic skin response (GSR) (Al-Fudail and
Mellar, 2008), eye-related measures (Matthews et al., 2015), and
cortisol levels (Yamaguchi et al., 2006).

In HRV analysis, the cardiac signal is divided into three
components: VLF (very low frequency, 0–0.04 Hz), LF (low
frequency, 0.04–0.15 Hz), and HF (high frequency, 0.15–
0.4 Hz) (Malik, 1996). The LF measure reflects the sympathetic
system (and therefore is related to stress), while the HF
measure reflects the parasympathetic system (Sztajzel, 2004). The
LF/HF ratio indicates the balance between the sympathetic and
parasympathetic divisions of the autonomic nervous system and
is used as a measure of stress as well (Kristal-Boneh et al., 1995;
McCraty et al., 1995).

The measures mentioned above suffer from several practical
shortcomings. Cortisol level analysis is not suitable during task
performance since it is not easily measured continuously. GSR,
HR, and HRV measurements may be inconvenient for use
in realistic driving scenarios (Healey and Picard, 2005) and
may even be considered obtrusive (Dinges et al., 2005). These
measures also suffer from delays in the measurement (the time
gap between the stressful event and the observed response). GSR’s
delays are between 2 and 11 s long (Kucera et al., 2004; Dawson
et al., 2007; Bruun, 2018), and valid analysis of changes in HRV
may require a continuous signal of 4–5 min in duration (Nickel
and Nachreiner, 2003). Cortisol measurement reacts to stressors
with a delay of several minutes, sometimes up to half an hour
(Kirschbaum and Hellhammer, 1994).

Eye-related measures, such as pupil dilation (Palinko et al.,
2010), fixation duration (Matthews et al., 2015), saccade rate,
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and gaze shifts (Tomer et al., 2018), as well as saccadic range
(May et al., 1990), were reported as indices of mental workload.
There is limited evidence for ocular measures as stress indicators,
and most findings are concerning pupil dilation (Pedrotti et al.,
2014). Though a stressor’s administration leads to pupil dilation,
the pupil’s size is susceptible to light intensity and requires
an illumination-controlled environment—not practical for non-
lab applications (Pedrotti et al., 2014). While eye closure level
is useful in measuring drowsiness (Grimberg et al., 2020), it
is also not useful for stress measurement. Finally, GSR and
HRV do not always correlate strongly with stress, neither
induced (e.g., Rohleder et al., 2006; Zhai and Barreto, 2006) nor
measured by well-established measures, such as cortisol level
(e.g., Healey and Picard, 2005).

Therefore, it may be useful to develop additional stress
measures that provide solutions to the issues discussed earlier.
One such possible measure is grip force, found to be capable of
measuring stress in a prompt and non-invasive manner.

Continuous and repeated stress measurements using non-
invasive methods have been of great interest in recent years.
Hernandez et al. (2014) measured the amount of force applied to
a computer keyboard and a mouse. Although not suitable for use
in driving tasks, it shows that hand muscle tonus measurement
has the potential to be an indication of stress. Wahlström et al.
(2002) examined the effect of stressors (e.g., time pressure and
verbal provocation) on various factors, including the grip force
upon a computer mouse. Grip force increased when stressors
were used. However, this effect was attributed both to stress and
the mouse operation’s speed. In another research that used grip
force on a computer mouse, Liao et al. (2006) found greater grip
force in response to higher time pressure. It should be noted that
these studies manipulated the mental workload rather than the
stress, as no direct implications for low-performance outcomes
were involved. These two studies also used static tasks (e.g., math
problems and typing tasks), making it difficult to extend their
findings to other contexts such as driving tasks.

Wagner et al. (2015) examined the feasibility of grip force
as a measure of stress in tracking tasks. Grip force was
higher in the presence of stress. This study provides initial
evidence of distinguishing between stressful and non-stressful
conditions during physical tracking tasks by measuring the grip
force. Recently, these findings were successfully reconstructed
(Botzer et al., 2020). Mühlbacher-Karrer et al. (2017) used the
measurement of a driver’s grip force on a steering wheel as part of
a stress estimation system. However, the grip force’s contribution
to the stress level calculation was only 10%. Another limitation of
this study is that it was conducted only in a simulator and not in
actual driving, ignoring the effect of other factors on grip force
other than stress (e.g., vehicle accelerations). Additionally, the
mere driving an actual car in an experiment is known to induce
a state of stress (Balters et al., 2019), as the consequences of one’s
performance are tangible, unlike participating in an experiment
conducted in a simulator.

We aim to study the relationship between grip force and other
more common indices of stress, namely, physiological indices
and performance indices during short-duration driving events.
The purpose of the study, hopefully its main contribution, is

to provide initial empirical evidence to grip force as an index
of stress in driving tasks. To this end, one should define the
appropriate driving events that elicit acute stress. In previous
research, forced changes in driving behavior were found to
cause stress (Ross and Burnett, 2001; Lee and Winston, 2016;
Saxena, 2017). Such changes may result from the road conditions
and unexpected factors that force emergency maneuvers (i.e.,
a braking sign or a figure bursting into the road). Specifically,
stopping in response to a STOP sign during driving and the
necessity to brake have been found to induce stress in an
experimental context (Min et al., 2002; Collet et al., 2014;
Prasolenko et al., 2017; Sugiono et al., 2019).

Thus, in this study, we used diverse heart rate measurements
to show that braking events lead to higher stress as manifested
in psychophysiological changes of heart measurements. By
manipulating stress-inducing driving events and measuring their
effect on the heart and also grip force measurements, we
aim to verify the use of grip force as a valid measure of
stress during driving.

In the current research, grip force and heart rate measures
(HRV and HR) were recorded while driving and braking in
various intensities (in response to a STOP sign), as described
in “Experimental Setup and Methods.” We hypothesized that
intense braking during driving affects grip force and elicits
correlations between grip force, HRV, and HR measures. Thus,
grip force data were analyzed as a function of braking intensity,
and correlations among grip force and heart rate measures (HRV
and HR) were calculated to validate the grip force measure against
an accepted measure of stress (see section “Results”). HRV and
HR data were also analyzed as a function of braking intensity,
serving as a manipulation check.

EXPERIMENTAL SETUP AND METHODS

Participants
Twenty-one participants took part in this study. Due to technical
issues (failure in recording the data of one participant), we used
the data from 20 participants. All participants were bachelor
course students. All participants were male, between the ages of
24 and 34 (average 28.45, SD 2.18), and had a private car driver’s
license for at least 4 years.

Before the experiment, the participants underwent a safety
briefing, including a description of the experimental task, and
completed an informed consent statement. A safety supervisor,
positioned in the front passenger seat, was responsible for
maintaining safety during the experiment.

Apparatus
The experiment was conducted using an instrumented Kia Nero
(hereafter, the “Mobile-Lab”; Figure 1). The Mobile-Lab1 is
equipped with sensors for monitoring the vehicle and road
environment, including inertial measurement units (Lidar, GPS
antennas, and several cameras), and sensors for monitoring
indices of the driver using the Mindware Mobile Impedance

1http://www.ariel.ac.il/wp/mobile-lab/
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FIGURE 1 | The Mobile Lab, equipped with GPS and sensors, Mindware and grip force sensors, as well as additional equipment that was not used in the current
research.

FIGURE 2 | The general layout of the experimental driving session.
Experimental manipulations: mandatory speed sign (one of two speeds: 50 or
60 km/h) and STOP sign (at various distances: 15, 20, 25, 30, 35, or 40 m).
Each participant performed the driving sessions under all combinations of
speeds and braking distances at random order.

Cardiograph (heart activity measurement system Model 50–
2303-00, 2014, with a sampling rate of 500 Hz and 24-bit
ADC digitization). Cardiac data were recorded from electrodes
affixed to the participant’s chest. A grip force self-developed
measurement system was used (utilizing a force-sensitive resistor
sensor, sampled by an Arduino UNO R3 board). Both systems
were equipped with three-axis accelerometers.

Procedure
The participants performed 12 experimental driving sessions.
Each session involved driving along a straight path of
approximately 200 m at one of two mandatory speeds (50 or
60 km/h) and braking at varied mandatory distances (15, 20,
25, 30, 35, or 40 m), as shown in Figure 2. Each participant
performed the driving sessions under all combinations of
speed and braking distances (two speeds × six distances = 12
conditions) in random order. Each participant performed two
training sessions of about 2 min (during which they got

acquainted with the experimental path) and 12 experimental
driving sessions (one for each condition), which lasted nearly
20 min overall. After each experimental driving session, the
participant was instructed to leave the vehicle stationary for 15 s.

Data Preparation and Analysis
Procedures
To analyze the data from both acquisition systems used
(Mindware and the self-developed grip force measurement
system), first we synchronized the data (see section “Data
Synchronization”). After the data synchronization, we used the
acceleration data to identify the peak deceleration for each
driving session. Each session was characterized by a static phase
(of at least 15 s), an acceleration phase, and a deceleration
phase (as demonstrated in Figures 3, 4), in contrast to other
acceleration data (e.g., data from the training sessions) which
were less organized. Later, HRV and HR heart rate measures and
grip force measures were calculated (see “Heart Rate Measures
Calculation” and “Grip Force Data Preparation and Calculation”)
and analyzed (see section “Data Analysis”). Figure 5 summarizes
the flow of these processes.

Data Synchronization
Cardiac activity data and grip force data were synchronized
post factum, according to the accelerometers’ data (from both
measuring systems), using a dynamic time wrapping (DTW)
algorithm. Both data acquisition systems (Mindware for HRV
data and the self-developed grip force measurement system)
were equipped with three-axis accelerometers (X, Y, and Z),
which were fixed to the vehicle’s chassis. Acceleration data were
recorded by each system in a synchronized manner with the
physiological data (HRV and HR data at the Mindware system
and grip force data at the grip force measurement system).

Frontiers in Psychology | www.frontiersin.org 4 June 2021 | Volume 12 | Article 617889

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-617889 June 2, 2021 Time: 17:25 # 5

Sahar et al. Grip Force as Stress Measure

FIGURE 3 | Synchronized acceleration vectors of both accelerometers (of the Mindware system—in black—and the self-developed grip force measurement
system—in red) in the direction of the vehicle’s travel, during three successive experimental driving sessions, of a single participant.

First, the grip force system’s sampling rate was uneven and
ranged between 80 and 120 ms (8–12 Hz). Since a pre-condition
of the DTW procedure is that “the data should be sampled at
equidistant points in time” (Senin, 2008), a standard method
to deal with this requirement is resampling the data as has
been done in the current study. The resampled grip force
data had a 10 Hz sampling rate. The Mindware system had a
sampling rate of 500 Hz.

Next, for each system separately, a unified vector of the
three axes was calculated (√X2+Y2+Z2 ), using a 1-s sliding
window. Finally, a DTW algorithm was used to synchronize
these acceleration vectors from both systems. A similar
synchronization method has been used by Mantilla et al. (2017)
to detect temporal synchronization. DTW was proven to be a
robust distance measure for time series, enabling the matching
of similar plots even if they are out of phase in the time axis
(Keogh and Ratanamahatana, 2005).

Heart Rate Measures Calculation
To properly calculate the HRV LF measure and LF/HF ratio, a
minimum sliding window size of 30 s is required (De Rivecourt
et al., 2008; Wang et al., 2009). Typically, an HRV window size
is between 20 s and several minutes. For example, Mulder et al.
(2009) used a 300-s window, whereas Healey and Picard (2005)
used 100- and 300-s windows. It should be noted that the decision
about the window size is often arbitrary.

A small window size of 30 s is sufficient if combined with a
short-time Fourier transform (Li et al., 2019). Therefore, in the
current research, a sliding window with a window size of 30 s
was implemented to the cardiac data for computing the HRV
LF and HF measures and the LF/HF ratio as well as for heart
rate. The center of the window was determined according to the
braking event’s maximal deceleration. Since there were pauses
of 15 s after each braking event (as described in “Procedure”),

there could not have been any other experimental effect on the
physiological signals during the entire window size other than the
effect of the forced braking event itself. In addition, to account
for the chi-square distribution of HRV and heart rate values
(Van Roon et al., 2004), a natural log transformation was applied
to these measures.

Grip Force Data Preparation and Calculation
Grip force data under the threshold of 5 N (newton) was
considered mostly white noise due to its proximity to the lower
boundary of the grip force sensitivity. Accordingly, grip force
data below 5 N was excluded. Grip force data was collected and
resampled at a 10 Hz rate (as detailed in “Data Synchronization”).
Grip force measures were calculated to explore various aspects
of grip force in relation to the other measures. The grip
force measures calculated were mean, maximum (max), and
standard deviation (sd).

These grip force measures were calculated using a 2-s time
window, centered around each braking event’s peak deceleration.
Due to this study’s preliminary nature, there are no widely
accepted guidelines to rely on for grip force window size in
stress measurement. In defining the time window, we referred
to the preliminary findings from an ongoing study regarding
this issue, which shows an initial inclination toward the use of
a narrow time window of fewer than 5 s in calculating grip force
as a measurement of stress (Botzer et al., 2020). Additionally, we
based this decision on the indication received from an analysis
detailed and illustrated in Appendix A.

Based on psychophysical and physiological reports and stress
models (Liu and Ulrich, 2014), exponential logarithmic or
sigmoid transformation functions, rather than linear functions,
are expected. For example, electromyography is reported to
have a logarithmic transfer function (Rezazadeh et al., 2012).
Therefore, a natural log transformation was applied to the grip
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FIGURE 4 | An example of a braking event as expressed by the various measures recorded. A single braking event of participant number 1. The X-axis represents
time (s), plots (from top to bottom): acceleration (g), grip force (N), raw ECG signal (mV), HR (BPM), HRV—LF (ms2), HRV—HF (ms2), and HRV—LF/HF ratio.

force calculated measures since the higher end of grip force is
limited by the maximal grip strength (for each individual).

Data Analysis
The linear mixed model (LMM) was selected to analyze the
effects of braking intensity on the various physiological measures,
primarily due to its suitability to repeated-measures designs (Peat
and Barton, 2014). In this method, within-subject correlations
are modeled using the covariance structure, built on the variance
around the outcome measurement at each time point and on the
correlations between measurements taken at different times from
the same participant (Peat and Barton, 2014).

A meta-analysis method was used to analyze the correlation
of grip force measures with HR and HRV measures. The
correlations between these measures for each participant
served as the meta-analysis input. This procedure enabled the
consideration of inter-personal variance (for further description,
see “Results”).

RESULTS

To examine our hypothesis that compelled braking during
driving elicits correlating measured patterns of grip force and
heart rate, we first explored the braking events’ effects on grip
force. All three LMMs were fitted to the data with the assumption
of a linear relationship in order to study the nature of the
relationship between the three grip force measures (i.e., Ln
transformation of mean, max, and sd of grip force) and the
D parameter for maximal deceleration (i.e., the intensity of
braking events). Maximal deceleration (D) was included in the
model as the predictor and grip force measures as the predicted
variables (see rows 1–3 in Table 1 for a formal description of
these three-mixed effect models and Figures 6A–C for their
visual depiction).

Significant main effects were found for maximal deceleration
on all three grip force transformations (p < 0.001; see rows 1–3 in
Table 1). Based on the models’ coefficients (rows 1–3 in Table 1
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FIGURE 5 | Data preparation and analysis procedures: a workflow description of the data preparation procedures, data synchronization procedure, and the data
analyses used.

and Figures 6A–C) and in accordance with our hypothesis,
the findings indicate that higher deceleration (braking intensity)
predicted greater grip force (i.e., mean and maximum grip force)
and larger changes in grip force (i.e., grip force sd).

An additional four-LMM analysis was performed to
investigate whether braking events elicit stress as manifested
by HRV and HR measures (the models are described in rows
4–7 of Table 1). The four additional LMMs include the D
parameter for maximal deceleration (i.e., braking intensity)

as the predictor and Ln-transformed HRV (LF, HF, and
LF/HF ratio) and HR measures as predicted variables (see
rows 4–7 in Table 1 for a formal description of these three
mixed-effect models).

The additional LMM analysis showed a main effect for
maximal deceleration on heart rate (p < 0.001; row 6 in Table 1
and Figure 6D), and a moderate trend toward significance was
also found on HRV LF/HF ratio (p = 0.069; row 4 in Table 1
and Figure 6E). The LMMs for maximal deceleration on HRV

TABLE 1 | Summary of linear mixed model analyses for various models.

Model β0 (SE) β1 (SE) F P Adj. R2

Grip force

Ln(meanGF)=β0+β1(D)+bi+ε 6.527 (0.044) 0.244 (0.061) 16.4 0.0001*** 0.465

Ln(maxGF)=β0+β1(D)+bi+ε 6.512 (0.042) 0.318 (0.061) 26.54 < 0.0001*** 0.375

Ln(sdGF)=β0+β1(D)+bi+ε −6.724 (1.182) 10.401 (1.896) 30.963 < 0.0001*** 0.209

HR and HRV

Ln(LF/HF)=β0+β1(D)+bi+ε 1.333 (0.235) 0.21 (0.37) 3.33308 0.0693· 0.19

Ln(LF)=β0+β1(D)+bi+ε 5.852 (0.257) −0.15 (0.354) 1.2628 0.2624 0.453

Ln(HR)=β0+β1(D)+bi+ε 4.438 (0.038) 0.097 (0.025) 41.89 < 0.0001*** 0.882

Ln(HF)=β0+β1(D)+bi+ε 4.546 (0.264) −0.262 (0.331)a 0.6404 0.4244 0.51

mean GF, mean grip force; maxGF, maximum grip force; sdGF, standard deviation of the grip force; LF, HF, and LF/HF, heart rate variability measures; HR, heart rate, D,
maximal deceleration (−g) during the braking event; bi , random effect parameter for driver i; ε, error term. aHRV HF’s negative value represents the inhibitory pattern of the
parasympathetic system during stressful situations. It is assumed that bi ∼ N(0,σb). Significance codes: 0 ≤ “***” < 0.001 < “**” < 0.01 < “*” < 0.05 < “.” < 0.1 < “ ” ≤ 1.
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FIGURE 6 | The plots illustrate the significant LMM models described in Table 1. Higher x-axis values (-g) represent a higher braking intensity in this figure. (A–C)
Ln-transformed grip force [Ln(N)], (A) mean grip force, (B) maximal grip force, and (C) standard deviation of grip force, as a function of braking intensity (–g).
(D) Ln-transformed HR [Ln(BPM)] as a function of braking intensity (–g). (E) Ln-transformed HRV LF/HF as a function of braking intensity (–g). Gray dots represent
observations. Black dots represent the mean of each binned group of observations (according to deceleration), with 95% confidence interval. The blue line
represents smoothed conditional means using lm smoothing.
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LF and HF were not significant (p = 0.262 and p = 0.424,
respectively). Based on the additional models’ coefficients for
maximal deceleration on HRV LF/HF ratio and HR (rows 4 and
6 in Table 1 and Figures 6D,E) and in accordance with the
assertion presented in the introduction (i.e., that braking events
induce stress), higher declaration (braking intensity) predicted
greater HRV LF/HF ratio and HR.

Our hypothesis addressed the association between grip force
and HRV and HR as prevalent measures of stress. Specifically, the
hypothesis aimed to serve as an additional association between
grip force and stress. To test this hypothesis, Pearson correlations
were calculated separately for each participant, followed by a
meta-analysis procedure. This integration of the two procedures
(i.e., separate correlations followed by a meta-analysis) was
designed to include the participants as a random effect, partly
similar to using LMM. Separate correlations were conducted
between heart measures (HRV and HR) and the grip force’s
central tendency indices (i.e., mean and maximum grip force) as
mentioned above.

The meta-analysis procedure was applied for the separate
correlations, using the “meta” R package. The meta-analyses
examined all possible correlations between each heart measure
and each grip force measure. The effect sizes were transformed
into standard values using Fisher’s r to z transformation
(Rosenthal, 1991). The z-transformed score has a standard error
of 1/√

(n− 3)
, where n is the number of braking events for each

participant. The inverse of this error was used as a weight for
each individual z-transformed score so that participants with
smaller standard errors were given more emphasis. After this
weighting, all participants’ values were aggregated by averaging
their z-transformed scores. Rosenthal (1991) suggests this as
a conservative procedure. Finally, z-transformed scores were
translated back to r values. The meta-analysis was applied to
the grip force’s central tendency indices and heart rate measures
(HRV LF, HRV HF, HRV LF/HF ratio, and HR). Additionally,
natural log transformation was used for all heart rate and
grip force measures. Table 2 contains the descriptions of the
correlations and the values of the meta-analysis’ coefficients.

Six of the eight correlations were significant, and the
correlations’ direction was consistent with our hypothesis (i.e.,
significant positive correlations for grip force with HRV LF/HF
ratio and with HR; significant negative correlations for grip force
with HRV HF negative values represent the inhibitory pattern
of the parasympathetic system during stressful situations). The
direction of the correlation between mean grip force and HRV
LF was not consistent with the hypothesis, and the correlation
between max grip force and HRV LF was not significant
(p = 0.892). Although four of the six significant correlations were
highly significant (p < 0.001), their effect size was relatively small
(i.e., smaller than 0.3, Cohen, 1992).

DISCUSSION

This study’s main aim was to examine the feasibility of detecting
driver stress by grip force measurement in actual driving

scenarios. Accordingly, the study’s main goal of indicating that
grip force can serve as a measure of stress in driving tasks was
mostly achieved.

The assertion that braking as a response to a STOP sign elicits
stress has a vast support (e.g., Min et al., 2002; Collet et al., 2014;
Prasolenko et al., 2017; Sugiono et al., 2019). Accordingly,
the LMM analyses conducted in the current study revealed
that, during braking as a response to a STOP sign, maximal
deceleration had a highly significant effect on the HR measure.
In addition, a moderate trend toward significance was found
regarding maximal deceleration’s effect on HRV LF/HF ratio
measure. Since these measures (HRV LF/HF ratio and HR) are
referred to as stress measures (Kristal-Boneh et al., 1995; McCraty
et al., 1995; Sztajzel, 2004; Allen et al., 2014), this finding offers
additional support for braking as a stress-inducing driving event.

Braking intensity had a highly significant effect on all grip
force measures. This finding, combined with the re-confirmed
assertion that braking events induce stress, leads to a possible
deduction that grip force constitutes an indication of stress.
However, unlike HR and HRV, grip force may also be affected
during braking by the task itself. Therefore, another possible
explanation for consideration is that, during braking events, grip
force may have been affected by the braking task solely or by a
joint effect of stress and the braking task.

The analyses also showed correlations of HRV HF and LF/HF
ratio with grip force’s transformations. The correlations of HRV
HF with grip force’s transformations had a negative direction,
consistent with the parasympathetic system’s inhibitory pattern
during stressful situations (Hall et al., 2004; Hjortskov et al., 2004;
Vuksanović and Gal, 2007). The correlations of HRV LF/HF
ratio with grip force’s transformations had a positive direction
as can be expected since HRV LF/HF ratio is known to increase
during stressful situations. These findings may serve as further
modest validation of grip force as a measure of stress. It should
be noted that these correlations were weak. However, this may
result from the different acquisition systems used (Milstein and
Gordon, 2020). Additionally, weak correlations among different
physiological measures of mental states are not an unfamiliar
phenomenon (Contrada and Baum, 2011).

In this study, the participants had to brake in response to
a STOP sign, which is known to induce stress, a response
that was also found here as expressed by the effect of
braking intensity on HR and on HRV LF/HF ratio. Grip
force’s magnitude was also affected by the intensity of these
braking events, a finding that lends partial support to our
hypothesis that grip force is an indication of stress during
driving events. This hypothesis received further support by
the correlations of grip force and HR and HRV measures.
Therefore, it is feasible that grip force can be used as a
measure of stress in braking events during actual driving. These
findings may contribute to further investigations needed to
establish this relatively new measure of stress, specifically in
driving contexts.

As found in the current study, a stressor’s physiological
response during driving can be detected using grip force upon a
steering wheel, even with a small time window of 2 s. Compared
to other more established measures of stress, such as HRV, which
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TABLE 2 | Summary of meta-analyses of correlations, for all k = 20.

Measures in correlation Pearson’s r Fisher’s z p 95% CI

1. Ln(meanGF)–Ln(LF/HF) 0.1108 7.66 < 0.0001*** [0.0826, 0.1388]

2. Ln(maxGF)–Ln(LF/HF) 0.0622 4.29 < 0.0001*** [0.0338, 0.0905]

3. Ln(meanGF)—Ln(LF) −0.0513 −3.53 0.0004*** [−0.0796, −0.0229]

4. Ln(maxGF)–Ln(LF) −0.002 −0.14 0.8921 [−0.0304, 0.0265]

5. Ln(meanGF)–Ln(HR) 0.0293 2.02 0.0436* [0.0008, 0.0577]

6. Ln(maxGF)–Ln(HR) 0.0395 2.72 0.0065** [0.0110, 0.0679]

HRV HF negative values represent the inhibitory pattern of the parasympathetic system during stressful situations

7. Ln(meanGF)–Ln(HF) −0.1631 −11.33 < 0.0001*** [−0.1907, −0.1353]

8. Ln(maxGF)–Ln(HF) −0.09 −6.21 < 0.0001*** [−0.1181, −0.0617]

meanGF, mean grip force; maxGF, maximum grip force; sdGF, standard deviation of the grip force; LF, HF, and LF/HF, heart rate variability measures; HR, heart rate.
Significance codes: 0 ≤ “***” < 0.001 < “**” < 0.01 < “*” < 0.05 < “.” < 0.1 < “ ” ≤ 1.

require much larger time windows, grip force’s narrow window
can enable a “real-time” assessment of the effect of stressful
situations on the driver.

According to the summation of the current research findings,
grip force may be considered as one of the measures of stress
in mobile environments such as vehicles. By measuring the
driver’s stress level in “real time,” various interventions can be
employed to prevent calamities from occurring due to inferior
human performance under stressful conditions. The usage of
non-invasive measures of stress that do not interfere with the
user’s experience allows access to the information in the realistic
environment of vehicles despite the limitations inherent in it.

Measuring stress in a vehicle is beneficial not only for
human-controlled cars but also for self-driving vehicles. It is
clear that, in such scenarios, the grip force measurement will
not be on the steering wheel but at different grip points in
the vehicle or on mobile devices held by the passengers, such
as smartphones and tablets. Information about the passengers’
stress levels may aid the vehicle’s control system to adjust its
conduct to minimize stress and thus achieve a better user
experience. Moreover, by measuring grip force exerted on a
surface of a non-operation means, stress measurement may
reflect a purer indication of stress, without possible influences of
task-conducting-related grip force.

The current research has some limitations. First, due to the
difficulty to differentiate stress from related terms (Alsuraykh
et al., 2019), it should be mentioned that the manipulation used
in the current study (i.e., a STOP sign as a mandatory stopping
position) may not have been experienced solely as stress by
the participants. Second, this study examined a limited range
of potential stress-eliciting driving events. Additional driving
events such as lane crossing, overtaking, or driving in heavy
traffic should also be evaluated in a similar manner to gain
more comprehensive insights regarding the potential of driving
incidents being used as stressors. This may also help clarify
whether grip force was a result of stress elicited during braking.

The third limitation is the use of a homogeneous population,
constituted of male students only, with a limited range of ages.
This uniform sample limits this research’s external validity, and
further research should be conducted using more heterogenic
samples. Finally, the “noisy” signal of the measured grip force (as

illustrated in Figure 4) may interfere with the analysis of the state
of the driver. Therefore, other data processing methods (e.g., fast
Fourier transform) should be considered if real-time assessment
is required (Zak et al., 2020).

CONCLUSION

The current research’s primary purpose and contribution are
to provide initial empirical evidence on the extent to which
grip force may serve as an additional index of stress in driving
tasks and its validation using HR and HRV measures. Heart
measures were affected by braking, a finding which is consistent
with the findings of previous studies and which establishes the
assertion that braking events induce stress. Variations in grip
force as an outcome of these stress-inducing braking events
support its suitability for stress measurement in driving scenarios.
The correlation of grip force and heart measures strengthens
the statement that, similar to heart measures, grip force is an
appropriate measure of stress.

The ability to identify a specific change in stress during a
driving scenario using a non-invasive measurement tool which
is transparent to the end user has the potential of introducing
in-car just-in-time stress management interventions. It may also
help develop a stress-adaptive car system that may adjust its
conduct according to the driver’s current level of stress. Future
investigations may aid in describing the relationship of grip force
and stress in driving as well as in other tasks.
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APPENDIX A—DEFINING GRIP FORCE’S TIME WINDOW

To define the proper time window in the calculation of the grip force measures, we explored the following time windows: 2, 5, 10, 20,
and 30 s. We have conducted the meta-analysis procedure described before (as detailed in the “Data Analysis” and “Results” sections)
for each of these time windows.

For each combination of the three Ln-transformed grip force transformations (mean, maximum, and standard deviation) and
the four Ln-transformed heart rate measures (HRV LF, HRV HF, HRV LF/HF ratio, and HR), we have calculated the Pearson
correlation coefficients.

The following plot (see Figure A1) represents the confidence intervals of the Pearson correlation coefficients for each of
these time windows.

As indicated in the plot, for the 2-s time window, the lower end of the confidence interval is larger than zero. From this, it seems
that the choice of the 2-s time window is reasonable.

FIGURE A1 | Confidence intervals of the Pearson correlation coefficient (r) for meta-analyses of Ln-transformed grip force’s measures (mean, maximum, and
standard deviation) with Ln-transformed heart rate measures (HRV LF, HRV HF, HRV LF/HF ratio, and heart rate) for each grip force’s time window (2, 5,
10, 20, and 30 s).
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