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Introduction
Previous base composition investigations using codon positions 
showed that the frequency of purine is higher in the first than 
in the second and third codon positions.1–6 Because this bias 
demonstrates statistical regularity across codons, it is called 
the purine bias.4 The purine bias is a primary determinant of 
coding sequences (CDSs) and is universal to the biosphere. It 
was first described under the acronym RNY and dubbed the 
“ancestral codon” by Shepherd.1

The characterization of the purine bias in CDSs is 
important because it is the only sufficiently robust signal for 
assisting in gene searches and annotations within genome inves-
tigations. Three variables are necessary to describe a CDS as 
follows: the stop codon frequency, the purine bias, and the gene 
expression level.6 This is why gene tagging of transcriptome 
sequences is easier than direct tagging of genome sequences.6 
Exons can be easily detected via homology searches by using 
coding open reading frames (ORFs) identified in transcriptome 
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sequences and comparing the results to genome sequences. 
Introns are often discovered as a consequence of exon searches 
using EST homologies.7,8 Similarly, the likelihood of detect-
ing the promoter region increases when it is close to a CDS.9 
In addition, because the base composition of introns and inter-
genic sequences is correlated to those of CDSs,10 one can con-
clude that the mechanism acting on the base composition of 
CDSs as a consequence of their evolution also affects the base 
composition of other genome structures functionally linked to 
CDSs.11 Because genome organization appears to be a conse-
quence of CDS evolution and because purine bias is conserved 
across the whole biosphere, it is natural to conclude that purine 
bias is among the main determinants of genome structure and 
evolution. A consequence of this observation is that purine bias 
results from a process that is maintained from the very begin-
ning of cellular life on earth. Because purine bias is not observed 
in introns, one may exclude any polymerase involvement in its 
genesis. As a consequence, purine bias may result in some speci-
ficity related to ribosome machinery or some functional con-
straints at the protein level.

The ribosome machinery is a huge (2.5 MDa) enzymatic 
ribonucleoprotein complex that uses mRNA as a template 
and aminoacyl-transfer RNAs (aminoacyl-tRNAs) as sub-
strates for catalyzing protein synthesis. Prokaryotic ribosomes 
consist of a large (50S) and a small (30S) subunit, which 
together make up the 70S particle; when considered together, 
their eukaryotic counterparts are the 60S and 40S subunits 
or the 80S ribosome. The 50S subunit consists of 23S RNA,  
5S RNA, and approximately 30 proteins; the 30S subunit con-
sists of 16S RNA and approximately 20 proteins. The interface 
between the 30S and 50S subunits consists mainly of RNA. 
The mRNA binds in a cleft of the 30S subunit, where its 
codons interact with the tRNA anticodons.

There are three binding sites in the 50S subunit for tRNA, 
that is, the A-site that binds the incoming aminoacyl-tRNA, 
the P-site that attaches the peptidyl-tRNA to the nascent 
polypeptide chain, and the E-site to which the deacylated 
P-site tRNA moves after peptide-bond formation before its 
ejection from ribosome.12–14 Among the factors that affect 
ribosome performance in bacteria is the efficiency—accuracy 
trade-off in mRNA translation in which the overall codon 
reading accuracy competes with the growth rate. As a result, 
mutants with hyper-accurate and error-prone ribosomes 
grow more slowly than wild type. The second codon position 
seems to be more tightly controlled than the other two codon 
positions for the same type of mismatch, which is expected 
from the fact that the second codon position plays the most 
important role in determining the chemical properties of 
incorporated amino acids.15 The 30S ribosomal subunit has 
a decoding center where it “inspects” the codon—anticodon 
pairing in much the same way that an enzyme senses the 
precise pairing of its substrate.16 Aminoacyl-tRNA (which is 
made up of the tRNA and its cognate amino acid) is initially 
brought into the ribosome in a complex with EF-Tu and 

GTP. Incorrect tRNAs can dissociate before and after they 
are released by EF-Tu, with the overall selectivity being just 
as high as the product of both selection steps.17 The experi-
mental evidence for proofreading was revealed with the find-
ing that near-cognate tRNAs (which contain a single subtle 
mismatch between the codon and anticodon) require more 
hydrolyzed GTPs per amino acid to be incorporated rela-
tive to the cognate case. Pre-steady-state kinetic experiments 
that dissected the various steps in tRNA selection showed 
that the forward rates of GTPase activation and accommo-
dation (movement of tRNA into the peptidyl transferase 
center) were dramatically higher for the cognate than for 
the near-cognate tRNA. This finding suggested that cog-
nate tRNA more efficiently induced conformational changes 
into a productive form that accelerated GTPase activation 
or accommodation in the ribosome.13 In particular, these 
conformational changes involve three universally conserved 
bases (A1492, A1493, and G530  in the case of Escherichia 
coli) for 16S rRNA. These bases lined the minor groove of 
the codon—anticodon helix in such a way that the geometry 
of base pairs is sensed at the first two positions, but not at 
the wobble position, providing a structural rationale for the 
wobble hypothesis.18 In their new conformations, A1493 and 
A1492  interact with the first and second base pairs of the 
codon—anticodon helix, respectively, whereas G530  inter-
acts with both the second anticodon position and the third 
codon position. Because of these induced changes, the first 
two base pairs of the codon—anticodon helix are closely 
monitored by the ribosome in a way in which it would be 
possible to discriminate between Watson and Crick base 
pairings and mismatches, whereas the environment at the 
“wobble” position appears to be suited for accommodating 
other base-pairing geometries. In addition to having proper 
codon—anticodon base pairing, there are a number of cases 
in which tRNA decoding requires the specific modification 
of bases in the anticodon loop.19

Considering the functional constraints on proteins, 
the physicochemical properties associated with protein 
structures have been shown to be strongly dependent on 
the amino acid composition and particularly on amino acid 
alternation according to their hydropathy.20–24 The alterna-
tion of hydropathy values along protein sequences is cor-
related with specific choices in the second codon position 
in corresponding CDSs,21,25 which means that the codon 
structure reflects the physicochemical properties of protein 
secondary structures. Actually, it has been proposed that 
the genetic code originated from the interactions between 
codons or anticodons and amino acids, which themselves 
depend on the physicochemical properties of amino acids 
and anticodons.25 In addition, the hydrophilic amino acids 
tend to be rich in A in the second codon position (A2) and 
the hydrophobic amino acids tend to be rich in T in the 
second codon position (T2),26 which is expected to influence 
the protein folding pattern.24
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Among the hypotheses that were proposed to explain 
CDS nucleotide periodicity, there are (i) rDNA periodicity,27 
(ii) codon—anticodon stability,28 (iii) selection for translation 
efficiency,29,30 and (iv) protein secondary structures.21,24,25

Here, we use a statistical description of secondary pro-
tein structures in relation to codon composition to show that 
the correct assumption is that the RNY pattern, as it occurs 
in CDSs, is the consequence of periodicity introduced by the 
constructive contribution of hydropathy alternation to second-
ary protein structure within proteins, the molecular weight 
(MW) of secondary structures, and the energy cost of amino 
acid synthesis. The purine bias conservation throughout the 
biosphere suggests that a negative selection (purifying) mech-
anism is exerted over ribosomal machinery thermodynam-
ics to maintain its function despite the codon and anticodon 
mutation rate.

Materials and Methods
Before any further development, let us note that (i) the regres-
sion lines of this study are orthogonal and were calculated in 
agreement with Jolicoeur,31 (ii) the amino acid hydropathy 
was calculated according to the scale of Kyte and Doolittle,32 
(iii) the energy cost of amino acid synthesis was calculated 
according to Akashi and Godjobori,33 and (iv) Student’s t and 
Wilcoxon signed-rank tests were applied using the R package 
(3.0.2) to evaluate the statistical consistency of the differences 
of amino acid frequencies between pairs of protein second-
ary structures. Because of the multiple comparisons (n = 60) 
involved in such inference, we applied the Bonferroni correc-
tion ie, we divided the level of significance (P-value) by n to 
ensure a more realistic level of significance for challenging the 
null hypothesis.

Sequence dataset. The dataset used in this work consisted 
of a set of 10,731 CDSs from non-redundant proteins for which 
the three-dimensional (3D) structures have been experimen-
tally determined. This set of proteins was selected from RCSB 
Protein Data Bank (PDB, release 3.2).34 For each PDB entry, 
we used UniProtKB (release 14.0) to map the correspond-
ing EMBL or GenBank identifier (ID) to retrieve the corre-
sponding DNA sequence. However, the relationship between 
the structures reported in PDB and their corresponding DNA 
sequence is not straightforward for many cases. This situation 
is explained by a number of factors; for instance, many protein 
structures were either determined before or independent of 
their corresponding DNA sequences, implying a retrospective 
search among many alternative candidate genes that encode 
very similar proteins. In many cases, the ID reported by Uni-
ProtKB corresponded to an entire genome, forcing a careful 
ID list inspection to extract the CDS that matched the correct 
amino acid sequence reported in the PDB entry.

Removing redundancy from sequence dataset. PDB 
contains many entries that correspond to the same or very 
similar proteins. For instance, in some cases one entry con-
tains only a fragment of a protein and another entry contains 

the complete version of the same protein. However, the most 
common source of redundancy comes from the presence of 
homologous protein structures from closely related species. 
The first step in the preparation of our data set consisted of 
identifying this redundancy and choosing an item from each 
group containing the many redundant entries from the best 
and most informative (normally the longest) candidate. To 
this end, we first built the sequence homolog clusters and 
closely related proteins by using BLASTClust35 with an iden-
tity threshold of 90%, which means that two sequences with 
more than 90% amino acid identities were assigned to the 
same cluster. Following this procedure, we obtained 18,827 
clusters from an initial dataset of 143,373 entries (downloaded 
from http://www.rcsb.org/pdb/files/ss.tx). From each one of 
these clusters, we kept the longest sequence.

Mapping secondary structures to DNA sequences. 
This process was conducted in two steps. The first one con-
sisted of identifying the DNA sequence that most likely 
encoded the protein structure reported in PDB. To do this, 
we used the cross-reference database developed by Martin36 
that relates each PDB entry with one or more protein 
sequences from UniProtKB. In turn, each UniProtKB entry 
has links to the DNA repositories of GenBank (Release 
175) or EMBL (Release 100). We discarded the CDSs that 
could not be retrieved through their GenBank ID. In most 
cases, the DNA sequence retrieved from a DNA repository 
matched the expected CDS, but in some cases, the GenBank 
(or EMBL) ID given by UniProtKB corresponded to a whole 
genome or to an entire chromosome. In such cases, all CDSs 
had to be extracted from their corresponding genomic DNA 
sequences and compared to the amino acid sequence from the 
PDB entry of interest to determine which sequence encoded 
the desired protein.

In general, additional processing was required to obtain 
an exact match between the translated CDS and the pro-
tein sequence from PDB. Often, it was necessary to trim the 
sequence of a translated CDS to obtain a DNA sequence 
that exactly matched a multiple of three for the sequence size 
corresponding to the PDB entry. Such discrepancies could 
occur when the structure of a protein reported in PDB was 
only partially available, and the information available in 
GenBank was a complete protein sequence. To reconcile this 
issue, each translated CDS was aligned to the amino acid 
sequence provided by PDB using the Smith—Waterman 
algorithm.37 Owing to these difficulties, the final dataset was 
further reduced from 18,827 clusters to 10,731 entries for 
which an unambiguous determination of the DNA sequence 
was possible.

The second mapping step consisted of assigning each 
amino acid in the PDB to its associated codon in the corre-
sponding DNA sequences. It was then easy to determine the 
codon and base frequencies for each type of secondary struc-
ture, providing that each individual amino acid in the PDB 
was assigned to a specific secondary structure category.
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Codon frequency and secondary structures. The 
nucleotide composition for each type of secondary structure, ie, 
the α-helix (H), β-sheet (E), and aperiodic (A) (the sum of turns 
and coils), was obtained from the corresponding CDS stretch 
using their respective coordinates. Thus, considering the fol-
lowing secondary structure “HHHHHHEEEEEEEHHHH-
HHHH” as an example, the corresponding CDS coordinates 
would be as follows: (1–18), (40–63) for H, and (19–39) for E. The 
final result was a table with the absolute and relative frequencies 
of each codon for the three secondary structure classes.

Results
Statistics of secondary structures. We found that, on 

average, half of the amino acids in protein sequences are dedi-
cated to encoding secondary structures with a clear 3D peri-
odic pattern, ie, α-helix (H) and β-sheet (E), and the other 
half is dedicated to structures without a clear 3D periodic pat-
tern that we called aperiodic (A), ie, turns (T) and coil (C), the 
last of which is generally considered as the whole minus H and 
E (Fig. 1). Figure 1 shows that Hs account for ∼30% (Fig. 1B) 
whereas Es account for ∼20% (Fig. 1C), on average.

The frequencies of Hs and Es compensate for one another 
with a statistical correlation of r  =  −0.75 (Fig.  2). The fact 
that the regression line is below and parallel to the diagonal 
indicates that the proportion of protein dedicated to A cannot 
be reduced below ∼30%. This finding is most likely because a 
minimum A structure size is necessary to connect stretches 
of Hs and Es and to warrant sufficient flexibility to allow 
adequate protein folding. The distribution of preferred amino 
acids differs according to these three secondary structures 
(Table 1) (see comparable results in Bellesia et al.23).

The amino acid frequency maxima differ among the three 
secondary structures ie, (i) glycine (Gly – G: GGN) with a 
maximum in As, (ii) alanine (Ala – A: GCN) and leucine (Leu 
– L: CTN, TTR), which are maximum in Hs, and (iii) valine 
(Val – V: GTN) with its maximum in Es. We also found (i) 
asparatic acid (Asp – D: GAY), proline (Pro – P: CCN), and 
serine (Ser – S: TCN, AGY) to be higher than average in As, 
(ii) glutamic acid (Glu – E: GAR) to be higher than average 
in Hs, and (iii) Leu and isoleucine (Ile – I: ATA, ATY) to be 
higher than the average in Es. To recap, Ala, Glu, Gly, Ile, 
Leu, and Val are higher than the average, and cysteine (Cys 
– C: TGY), histidine (His – H: CAY), methionine (Met – M: 
ATG), and tryptophan (Trp – W: TGG) are lower than aver-
age in proteins. The observations just outlined were strongly 
supported by the Wilcoxon and Student tests (Table S1). 
Given the sample size and the variance, only the equality of (i) 
P, S, and W in the H versus E pair and (ii) C in the A versus H 
pair could not be rejected.

Each secondary structure forms a network of statistical 
correlations among amino acids: in Hs, (i) Ala is highly cor-
related (r $ 0.7) (Table S2, black rectangles) to Leu and Val, 
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(ii) Glu is highly correlated to Lys, Leu, and Arg, and (iii) Leu 
is highly correlated to Arg, Ser, Thr, and Val. In Es, the statisti-
cal correlations are at a maximum below a threshold of r = 0.7 
ie, (i) Ala is fairly correlated to Gly, Leu, and Val, (ii) Leu is 
fairly correlated to Arg, Ser, and Val, (iii) Ser is fairly correlated 
to Thr, and (iv) Thr is fairly correlated to Val (Table S3, gray 
rectangles). In As, a large network of fair correlations was found 
with some superposition for that of Hs, but high correlations 
were distributed differently (Table S4). We found (i) Ala is 
highly correlated to Gly and Pro, (ii) Asp is highly correlated 
to Gly, Pro, and Thr, (iii) Gly is highly correlated to Pro, Thr, 
and Val, and (iv) Pro is highly correlated to Arg and Val.

Table S5 shows that purines are over-expected (∼60% of 
the cases) in the first codon position (R1) regardless of the 
secondary structure type ie, Hs, Es, or As. In contrast, in 
the second codon position, purines tend to be slightly under-
expected in the periodic secondary structures (especially in 
Es), but not in the As structures, denoting a weak contribution 
of protein periodic structures to purine bias. Purines also tend 

to be slightly under-expected in the third codon position of E 
as well as in A structures, but not for Hs (Table S5).

A closer look at the data in Table S5 shows that purines 
(seven codons for A1 and five codons for G1) are more frequent 
in the first codon position than pyrimidines (six codons for T1 
and five codons for C1), which is obvious from the fact that 
three codons from T1 are used as stop codons (not including the 
coding information). Similarly, the stop codon removes purine 
availability for the second and third codon positions. The A1, 
G1, C1, and T1 codons are approximately equifrequent in the 
H, E, and A structures. However, the average codon frequen-
cies followed the series G1 . A1 . C1 . T1 according to 
purines and pyrimidines, which is unexpected from a model 
of random base distribution because there are more codons for 
A1 (7) and T1 (6) than for G1 (5) and C1 (5). To summarize, 
purines (R1) occur 1.5 times more often than pyrimidines (Y1) 
in the first codon position. The most striking feature associated 
with the G bias (Ggg) is a two-fold Ala, Val, and Gly prefer-
ence according to Hs, Es, and As, respectively (Table S6).

Table 1. Relative frequency of amino acids per periodic (H and E) and aperiodic (A) structures in the non-redundant protein sequences of RCSB 
PDB (n = 10,731).

Secondary structures weighted average**

A σA* H σH E σE

Amino Ala 6.6786 3.5245 11.663 6.212 6.202 4.248 8.327

acids Cys 1.1409 1.5373 1.131 2.076 1.715 2.809 1.252

Asp 7.8367 3.0521 4.905 3.570 3.158 2.908 5.875

Glu 6.5326 3.2028 9.636 5.053 4.631 3.606 7.238

Phe 3.1538 1.9125 3.979 3.143 5.758 4.089 3.963

Gly 11.2558 4.1526 3.169 2.880 4.661 3.590 7.106

His 2.4541 1.8310 2.002 2.352 2.254 2.621 2.256

Ile 3.5544 2.1797 6.155 3.895 10.858 6.200 5.925

Lys 6.1480 3.5748 6.917 4.764 4.524 3.882 6.092

Leu 6.5723 2.8664 12.119 5.201 10.861 5.793 9.371

Met 2.1670 1.5636 2.601 2.407 2.244 2.578 2.334

Asn 5.5943 3.1643 3.068 3.006 2.368 2.667 4.065

Pro 7.4044 3.1455 1.990 2.266 1.964 2.579 4.421

Gln 3.4341 2.3412 4.694 3.721 2.532 2.894 3.695

Arg 4.7410 2.7526 6.152 4.097 4.539 4.013 5.194

Ser 7.3655 3.3386 4.534 3.628 4.537 3.756 5.809

Thr 5.6935 2.6232 4.156 3.310 6.194 4.452 5.255

Val 4.5769 2.3172 6.415 3.826 14.59 6.829 7.223

Trp 0.9858 1.1169 1.428 2.029 1.595 2.249 1.262

Tyr 2.7103 1.8717 3.287 2.922 4.818 4.118 3.334

Sum 100.0 100.0 100.0 100.0

Mean 5.0 5.0 5.0 5.0

Notes: *σ is for the standard deviation. **Weighted average is (0.45 × A) + (0.35 × H) + (0.2 × E). The white rectangles identify the values below 3.0; the gray 
rectangles identify the values above 7.0, and the black rectangles identify the values above 11.0.
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The statistics of basic physicochemical properties in amino 
acids given at Table S6 shows that again similar rates are found 
among structures for a given parameter, but the weighted averages 
may change significantly according to whether the first codon 
base is a purine or a pyrimidine (Tables S7–S9). The weighted 
average MW of amino acids increases regularly between 110 
and 160 (Fig. 3A) according to the series G1 , A1 ,C1 ,T1 
of codons as well as its correlated parameters for (i) the num-
ber of chemical bonds in their lateral chain (Fig. 3B and Table 
S5, “Bnd” with r = 0.91, P , 0.0001) and (ii) the experimental 
energy cost of amino acid synthesis (Fig. 3C, Table S6, “Ak” 
with r = 0.80, P , 0.0001). The larger cost associated with the 
amino acid synthesis in Y1 relative to R1 is also because of the 
inclusion of rings in their lateral chain (Table S6, “Cycl”). The 
inclusion of heteroatoms such as oxygen (O), nitrogen (N), or 
sulfur (S) in their lateral chain does not result in a difference 
between R1 and Y1 (Table S5, “NOS”).

The largest amino acid frequencies in Table S6 are associ-
ated with Ala, Val, and Gly (all G1 codons), which confirms 
the links between the G1 . G2 rule and the high frequencies 
of low complexity amino acids in As, Hs, and Es. The amino 
acids encoded by G1 codons tend to be hydrophobic in Es, 
neutral in Hs, and slightly hydrophilic in As, on a weighted 
average basis. The same trend, but slightly in favor of hydro-
philicity, was found for A1. In the C1 and T1 codons, the 
associated amino acids are hydrophilic and hydrophobic, 
respectively, in the three secondary structures, on a weighted 
average basis (Fig. 3D); however, the amino acid hydropathy 
trends reported according to the nucleotide composition in the 
first codon position are just weak.

We also found that the amino acids with the lowest 
MWs (or the smallest lateral chains) are also the most frequent 
(Fig. 4A), which is expected because these amino acids are less 
costly to synthesize, in terms of energy. This statistical correla-
tion between amino acid frequency and protein MW is con-
sistent in A (r = −0.626) structures (Fig. 4B), but vanishes in 
H (r = −0.236) and E (r = −0.272) structures (Fig. 4C and D) 

where the statistical correlations are not significant, even when 
a similar trend is still observed. These results suggest that the 
larger R1 level is because of the larger frequency of amino 
acids whose codons are G1 simply because of their lower ener-
getic cost (lower lateral chain complexity).

Purine bias and protein secondary structures. Consid-
ering the relationships between protein secondary structures 
and nucleotide distribution according to the codon positions, 
Figure 5 shows that compositional constraints act on the first 
and second codon positions while the third codon position 
follows the regional trend for intergenic DNA (see Bernardi11) 
as can be deduced from its larger standard deviation. Globally, 
(i) A is at slightly under-expected frequency in the first posi-
tion, but is over-expected in the second codon position of As 
and Hs. By contrast, A is at slightly over-expected frequency 
in the first position compared to the second codon position 
in Es (Fig.  5A); (ii) G is over-expected in the first position 
(Fig. 5C) and under-expected in the second codon position in 
As, Hs, and Es; and (iii) the relationship between the first and 
third codon positions is similar for A and G (similar regres-
sion slopes) and generally in favor of the first codon position 
over the third (Fig. 5B and D) considering As, Hs, and Es. 
However, a minimum G load of ∼5% (Fig. 5D) seems to be 
necessary, which is not the case for A (Fig. 5B).

The most significant relationship between purines and 
pyrimidines occurs in the second codon position through A 
and T (Fig. 6A) because these two nucleotides are almost suf-
ficient for classification as periodic and aperiodic secondary 
protein structures. Figure 6A shows that, roughly speaking, 
in As T2 , 25%, Hs 25% ,T2 ,35%, and Es T2 . 35%. 
The sequences corresponding to periodic and aperiodic are 
distributed along an almost linear regression relationship cor-
responding to A2 = −0.55 × T2 + 48.7 (r = −0.58) in the range 
5% , T2 , 60% (mostly 40% ie, 10% , T2 , 50%). In addi-
tion, this regression line also shows that A2 + T2 is effectively 
larger than 50%, which explains why G2 , G1. Neither A2 
nor G2 provides the discrimination power of T2 because the 
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distribution of periodic and aperiodic tends to cluster together 
according to A2 versus G2 (Fig. 6B).

Taken together, the purine constraints are such that 
R1 . R2 and R1 . R3, which makes the purine bias ori-
entation change from the first to third codon positions 
(Fig.  7) regardless of the secondary structure under con-
sideration. However, periodic structures (especially Es) are 
contributing to purine bias more than aperiodic (Fig.  7A), 
which again suggests a positive contribution by the intrinsic 

periodicity in periodic secondary structures to the periodicity 
that is observed in coding DNA in the form of a purine bias 
across codons. Interestingly, the R1 versus R2 relationship 
demonstrates structuring according to the protein secondary 
structures and the second codon position, but not according 
to the first codon position with (i) A structures at R2 . 50%, 
(ii) Hs at R2 ∼ 50%, and (iii) Es at R2 ∼ 40%. In contrast to 
the structuring observed for R2 versus R1, the one of R1 ver-
sus R3 is negligible; extensive overlapping occurs among and 
according to the secondary structures (Fig. 7B), confirming 
that secondary structures are only linked to the second codon 
position, but not to the first or third. The narrow range of 
variation (∼45%) in R3 contrasts with the huge range of GC3 
variation (∼85%) (Fig. 8).

Interestingly, Figure  8  shows that As best explains 
large GC2 values and Es occupies the lowest GC2 range, 
and Hs is in the intermediary position between Es and As. 
Given that G3 is limited to a variation range #50% on 
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Secondary structures and protein physicochemical 
constraints. Considering the relationship between protein 
secondary structures and their physicochemical constraints, 
we found that the range of average surface accessibility (ASA) 
for (i) As is between ∼0.45 and ∼0.525, (ii) Hs ranges between 
∼0.425 and ∼0.480, and (iii) Es ranges between ∼0.350 and 
∼0.450 (Fig.  10A). These results are in line with a solvent 
accessibility for the secondary structures following the series 
As . Hs . Es, which simply means that E structures tend 
to be buried inside the protein as far as possible from solvent 
contact.38

Interestingly, all three structures are distributed, on 
average, on a line corresponding to MW  =  10  × hydropa-
thy + 130 (Fig. 10B). Thus, one can say that the contribution 
of A structures to the whole protein MW is lower, on aver-
age (127), and that they are more hydrophilic (−0.75) than 
the other two structures. The most hydrophobic structures are 
Es, with an average hydropathy of 0.6 and an average MW of 
132.5. H structures have an average hydropathy close to zero 
because of their hydrophobic amino acids facing the hydro-
phobic protein core and their hydrophilic amino acids facing 
the solvent.21 The average MW of ∼130 is close to that of Es 
(Fig. 10B).

In view of the general relationships shown in Figure 10B 
(confirmatory of Chiusano et al.25), the compensation trend 
between MW and hydropathy is similar among secondary 
structures. When the three structures are considered sepa-
rately, the larger the MW, the lower the hydropathy (the larger 
the level of hydrophily) and vice versa. This common relation-
ship between MW and hydropathy among the three structures 
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average, C3 is the entity that absorbs the larger variation 
in the third codon position (Fig. 9). From the scatter plot 
of Figure 9, one can see that the G3 increase starts to satu-
rate above 40%. Thus, any GC3 increase above 50% occurs 
through C3 above 40% and until a maximum of ∼70%. The 
limit at G3 = −C3 + 100 indicates GC3 = 100%. Figure 9 
also shows that G3 increases more rapidly in Hs than in Es, 
whereas the A trend is between that of Hs and Es. However, 
the A and E trends are very close and both relationships 
almost overlap.
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means that if the contribution of one structure to the whole 
protein size is low (low MW), its relative contribution to the 
average hydrophobicity of this protein will be comparatively 
larger, but the two other structures will compensate for the 
MW and hydrophobicity at the whole protein level.

The energy cost of the amino acid synthesis associated 
with Es is also the largest (Fig. 10C), which is not surprising 
because their average MW is also the largest. Hs do have a syn-
thesis energy intermediary to that of As (the lowest) and Es.

As expected from their chemistry, heteroatoms were 
found to have fewer E structures (Fig.  11A) associated 
with the hydrophobic core (Fig.  11B). As a corollary, 
heteroatom frequency is correlated to solvent structure 
access (Fig. 11B).

From Figure  10B and C, one would expect a positive 
relationship between the MW and energy cost. In fact, this 
relationship is illustrated in Figure 12A. We also found con-
sistent statistical correlations between MW and A2 (Fig. 12B) 
or G1 (Fig. 12C), which is an expected consequence of the fact 
that G1 is associated with small amino acids of low complexity 
(Fig. 3A and B). However, the statistical correlations between 
A2 and G1 were small (rA = −0.259, rH = −0.144, rE = −0.226), 
which indicates that both A2 and G1 relationships with the 
MW are largely independent.

The physicochemical relationships between the second-
ary structures and their hydropathy, ASA, and energy cost are 
all encoded by T2 (Fig. 13). The statistical correlation coef-
ficient of T2 with ASA (,0) and hydropathy (.0) is ∼0.9 and 
confirms that Es are associated with the largest T2 levels, the 
lowest access to solvent (Fig.  13A), the largest hydropathy 
(Fig. 13B), and the largest energy costs (Fig. 13C).

Relationships between secondary protein structures 
and codons. As shown above, the hydropathy and MW of sec-
ondary structures are negatively correlated. In addition, these 
factors are linked to the second codon position, which is dom-
inated by A2 versus T2 compensation (explaining the low G2 
contribution). To better understand how codons are involved 
with this relationship, we divided datasets of As, Hs, and Es 
into two sub-datasets (light and heavy) according to their 
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mean MWs. The codon contribution to the overall hydropathy 
of Es and As was compared for amino acid complexity in light 
and heavy subgroups. Because Hs are amphipathic (ambiva-
lent) with hydrophobic amino acids toward the hydrophobic 
protein core and with hydrophilic amino acids toward the sol-
vent, we analyzed the most frequent amino acids in both light 
and heavy subgroups according to their hydropathy.

Focusing on Es, we found that there is a robust statisti-
cal correlation between the number of bonds or MW and A2 
(Fig. 12B, Table 2). Thus, A2 is linked to amino acid complex-
ity. Because large complexity (high MW) is costly (Fig. 12 A), 
this may explain why the A2 codons are less frequent than 
the T2 codons despite the fact that there are seven codons 
for A2  in place of six for T2. The frequency of all amino 
acids in A2 is increasing from light to heavy MW. By con-
trast, the statistical correlations between T2 and A (r = 0.226), 
H (r = 0.023), or E (r = −0.225) structures are low and not 

relevant (data not shown). Thus, A2 codons (24.7%) explain 
the amino acid complexity for protein secondary structures. In 
comparison, T2 codons are 44.1%, Y2 are 61.2%, and R2 are 
38.8% (from Table 2, column “LH%” under E). As one would 
expect from Figure 12B, the data from Table 2 also allow us 
to draw a positive relationship between A2 and amino acid 
complexity in Es as well as in As and Hs. The amino acids 
that are most affected in terms of frequency between light 
and heavy MW (Table 2, column “H-L”) are Tyr, Ala, and 
Val. Ala and Val decrease from light to heavy MW and Tyr 
increases, which is in line with the fact that Ala and Val are 
small when Tyr is large (interestingly, Tyr is A2). The hydro-
phobicity is generally positive in 91.6% of Es (Fig. 10), so one 
may conclude from Figure 10A that Es are the major constitu-
ent of the hydrophobic core. The hydrophobicity contribution 
is made by Ala (GCN, weighted average: 1.8 × 6.03 = 10.8), 
Ile (ATY|A, weighted average: 4.5  ×  10.79  =  48.4), Met 
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(ATG, weighted average: 1.9 × 2.25 = 4.3), Leu (CTN|TTR, 
weighted average: 3.8 × 10.85 = 41.2), Val (GTN, weighted 
average: 4.2  ×  14.38  =  60.4), Cys (TGY, weighted aver-
age: 2.5  ×  1.72  =  4.3), and Phe (TTY, weighted average: 
2.8  ×  5.87  =  16.4). The series of codon contributions to Es 
hydrophobicity is therefore GTN . ATY|A . CTN|TTR 
. TTY . GCN . TGY∼ATG. As expected from Figures 6 
and 13B, this series is in line with a larger contribution from 
T2 than R2 to Es.

Aperiodic structures are hydrophilic in 99.2% of cases. 
The amino acids that are most affected in frequency between 
light and heavy MW (Table 2, column “H-L”) are Lys, Ala, 
and Gly. Ala and Val decrease from light to heavy MW and 
Lys increases, which is in line with the fact that Ala and Gly 
are small and Lys is large (interestingly, Lys is A2). The amino 
acids that contribute to hydrophilicity are Lys (AAR, weight: 
3.9  ×  6.18  =  24.1), Asn (AAY, weight: 3.5  ×  5.61  =  19.6), 
Gln (CAR, weighted average: 3.5 × 3.44 = 12.0), His (CAY, 
weighted average: 3.2  ×  2.46  =  7.9), Glu (GAR, weighted 

average: 3.5  ×  6.56  =  23.0), Asp (GAY, weighted average: 
3.5 × 7.84 = 27.4), Tyr (TAY, weighted average: 1.3 × 2.73 = 3.5), 
Thr (ACN, weighted average: 0.7 × 5.68 = 4.0), Pro (CCN, 
weighted average: 1.6  ×  7.39  =  11.8), Arg (CGN|AGR, 
weighted average: 4.5  ×  4.76  =  21.4), Ser (TCN|AGY, 
weighted average: 0.8  ×  7.35  =  5.9), Gly (GGN, weighted 
average: 0.4 × 11.18 = 4.5), and Trp (TGG, weighted average: 
0.9  ×  0.99  =  0.9). The amino acid contribution to aperiodic 
structure series in terms of hydrophilicity is GAY . AAR . 
GAR . CGN|AGR . AAY . CAR . CCN . CAY . T
CN|AGY . GGN ∼ ACN ∼ TAY . TGG. Again, as expected 
from Figures 6 and 13B, one can see that the pattern of amino 
acid contribution to hydrophilicity is dominated by A2 in A 
structures, which is in line with their hydrophilic character.

Helix structures are more difficult to analyze because 
their contribution is balanced among hydrophilicity and 
hydrophobicity (amphipathy). The division in light and heavy 
subgroups by MW roughly corresponds to an equivalent 
division by hydropathy because the average MW matches 

Table 2. Distribution of amino acids in secondary structures of proteins according to codon structure, hydropathy, and MW.

A H E

AA Cod B Hyd MW L% H% LH H-L L% H% LH H-L L% H% LH H-L

Lys AAR 5 −3.9 146.2 5.18 7.18 6.18 2.00 5.88 7.81 6.85 1.93 3.85 5.34 4.59 1.49

Asn AAY 5 −3.5 132.1 5.15 6.06 5.61 0.91 2.85 3.25 3.05 0.40 2.25 2.51 2.38 0.26

Gln CAR 6 −3.5 146.1 3.24 3.64 3.44 0.40 4.43 4.92 4.68 0.49 2.21 2.93 2.57 0.72

His CAY 9 −3.2 155.2 2.25 2.67 2.46 0.42 1.84 2.13 1.99 0.29 1.95 2.62 2.29 0.67

Glu GAR 6 −3.5 146.1 5.68 7.43 6.56 1.75 8.40 10.71 9.56 2.31 4.00 5.37 4.69 1.37

Asp GAY 5 −3.5 132.1 7.65 8.04 7.84 0.39 4.80 4.98 4.89 0.18 3.09 3.23 3.16 0.14

Tyr TAY 12 −1.3 181.2 2.18 3.28 2.73 1.10 2.42 4.01 3.21 1.59 3.45 6.52 4.98 3.06

Thr ACN 3 −0.7 119.1 6.03 5.33 5.68 −0.70 4.52 3.84 4.18 −0.67 6.54 5.74 6.14 −0.80

Pro CCN 6 −1.6 115.1 7.77 7.02 7.39 −0.75 2.19 1.82 2.00 −0.37 2.07 1.84 1.95 −0.23

Ala GCN 1 1.8 89.09 8.25 5.00 6.63 −3.25 14.98 8.99 11.98 −5.99 7.67 4.38 6.03 −3.29

Arg1 AGR| 8 −4.5 174.2 4.29 5.22 4.76 0.92 5.43 6.76 6.09 1.33 3.58 5.75 4.67 2.17

Arg2 CGN

Ser1 AGY| 2 −0.8 105.1 7.70 7.01 7.35 −0.70 4.96 4.17 4.56 −0.78 4.84 4.16 4.50 −0.69

Ser2 TCN

Gly GGN 0 −0.4 75.07 13.51 8.86 11.18 −4.65 4.12 2.33 3.23 −1.79 5.85 3.21 4.53 −2.64

Trp TGG 16 −0.9 204.2 0.80 1.18 0.99 0.38 1.02 1.75 1.38 0.73 1.04 2.28 1.66 1.24

Cys TGY 2 2.5 121.2 1.13 1.15 1.14 0.02 1.11 1.15 1.13 0.05 1.71 1.73 1.72 0.02

Ile ATY|A 4 4.5 131.2 3.23 3.90 3.56 0.67 5.96 6.35 6.15 0.39 11.43 10.15 10.79 −1.29

Met ATG 4 1.9 149.2 2.04 2.30 2.17 0.25 2.46 2.72 2.59 0.26 2.13 2.38 2.25 0.25

Leu1 CTN| 4 3.8 131.2 6.36 6.80 6.58 0.44 12.28 11.05 11.67 −1.23 10.99 10.70 10.85 −0.30

Leu2 TTR

Val GTN 3 4.2 117.1 4.85 4.29 4.57 −0.56 7.07 5.88 6.48 −1.19 16.54 12.21 14.38 −4.34

Phe TTY 11 2.8 165.20 2.70 3.64 3.17 0.94 3.28 4.56 3.92 1.28 4.78 6.97 5.87 2.19

Notes: Light gray areas are to facilitate de identification of NRN codons. Dark gray areas are for the most frequent amino acids in Hs or with largest difference (H-L) 
between L% and H% in As and Es. Black areas are for the most frequent amino acids considering all secondary structures. 
Abbreviations: AA, amino acids; Cod, codons; B, number of chemical bonds; Hyd, hydropathy score (negative for hydrophilicity and positive for hydrophobicity); 
MW, molecular weight; L%, the media of relative amino acid frequency per secondary structure from the PDB entries whose MWs are below the average MW;  
H, the media of relative amino acid frequency per secondary structure from the PDB entries whose MWs are above the average MW; LH, the average of L% and 
H%; H-L, the subtraction of L from H. 
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the average hydropathy (zero) in the case of Hs. The most 
frequent amino acids in Hs on average are as follows: Lys 
(AAR, weighted average: 3.9 × 6.85% = 26.7), Glu (GAR, 
weighted average: 3.5 × 9.56% = 33.5), Ala (GCN, weighted 
average: 1.8 ×  11.98% =  21.6), Arg (CGN/AGR, weighted 
average: 4.5  ×  6.09%  =  27.4), Ile (ATY|A, weighted  
average: 4.5 × 6.15% = 27.7), Leu (CTN|TTR, weighted aver-
age: 3.8 × 11.67% = 44.3), and Val (GTN, weighted average: 
4.2 × 6.48% = 27.2), which explains 59.2% of the total hydrop-
athy. Lys, Glu, and Arg are hydrophilic, and they contributed 
to this factor as GAR . CGN/AGR ∼ AAR. Ala, Ile, Leu, 
Val are hydrophobic, and their contribution to this factor fol-
lows the series CTN|TTR . ATY|A ∼ GTN . GCN. Thus, 
hydrophilic amino acids are biased toward A2 and exposed 
to the solvent, and hydrophobic acids are biased toward T2 
and exposed toward the hydrophobic core (Fig. 10A). Con-
sidering MW variations in hydrophilic amino acids, Arg 
decreases from light to heavy, which is expected because 
it is small, and Lys and Glu increases from light to heavy 
MWs, which is also expected because they are relatively 
large. In contrast, hydrophobic amino acids Ala, Leu, and 
Val decrease from light to heavy MWs, which is expected 
because they are small. However, Ile does not show a marked 
trend. One should also note here that Phe (hydrophobic) does 
not occur very frequently, but is relatively large and increases 
significantly from light to heavy MW. Thus, because heavy 
MWs are more hydrophilic on average, Phe has the opposite 
behavior compared to the general trend and shows that the 
balancing effect on MW by this amino acid is more impor-
tant than its hydropathy level.

The amino acids that most vary in relation to MW and 
hydrophobicity according to the secondary structure under 
consideration deserve additional comments. Interestingly, 
the general trends of GRN (Glu, Asp, and Gly) and GYN 
(Ala, Val) are hydrophilic and hydrophobic, respectively. 
As expected from their low complexity level, the frequency 
of Ala and Gly increases when the MW of a secondary 
structure diminishes or when the hydrophobicity increases. 
Thus, in the case of these amino acids the important con-
tribution seems not to be the hydropathy score, but rather 
the absence (or quasi-absence) of a lateral chain (the small 
steric size).

Interestingly, Ala and Gly also show that all codons start-
ing with G do not necessarily show the same trend because 
GAR (Glu) and GAY (Asp) increase with MW. This is con-
sistent with constraints on steric size because both amino acids 
have a rather large lateral chain (five to six chemical bonds). 
Because all A2 amino acids are hydrophilic and have a rather 
large size ($5 bonds), one may understand why the hydropa-
thy diminishes with increased MW.

In A structures, the main factor seems to be the steric 
size of the amino acid lateral chain (or its energetic cost of 
synthesis) because Gly (GGN) and Ser (AGY|TCN) are 
among the simplest amino acids and appear more frequently 

in low MW proteins and show the largest variations between 
low and high MWs.

In H structures, it is Ala (GCN) that shows the largest 
diminution from low to high MW, which is not surprising 
because this amino acid has only one chemical bond in its lat-
eral chain. Glu (GAR) has the largest increases from low to 
high MW, which is in agreement with its relatively large size 
and negative charge (−3.6).

Interestingly, the alphabetical order for first and second 
codon positions in Table 2 approximately follows the hydropa-
thy score for amino acids. The largest variations between low 
and high MWs in E structures are observed for amino acids 
Ala, Val and Tyr, which is consistent with a balance between 
steric size and hydrophobicity. In helices, the largest varia-
tion is found for Ala, which is consistent with the pattern in 
Figure 10.

Discussion
The general picture of our statistical analysis is consistent 
with previous reports. The large set of concatenated second-
ary structures from the entire non-redundant PDB data-
base analyzed here reveals a proportion of Hs, Es, and As 
(∼30%, ∼20%, ∼50%, respectively) similar to that reported by 
West and Hecht,21 ie, 31, 21, and 48%, respectively, which 
shows that the conclusions drawn by these authors should be 
applicable to the much larger protein set in our study. Simi-
lar conclusions by other authors20,22–24 dispel doubts about 
the hydrophilic and hydrophobic alternation of amino acids 
according to secondary structures as well as their conse-
quences on protein folding. The regularity introduced by the 
binary code of hydropathy alternation21 in protein sequences is 
obviously paralleled by statistical correlations between amino 
acids according to the secondary structure under consider-
ation. We chose to analyze statistical correlations from abso-
lute frequencies because statistical correlation from relative 
frequencies of amino acids in secondary structures normalized 
for size only releases low correlation coefficients (,0.3). This 
is to be expected from the fact that the variation in an amino 
acid and its correlates will follow the secondary structure size. 
In addition, the amino acids preferred in a small structure are 
not necessarily the same as those found in larger versions of 
the same structure, which explains the discrepancy between 
correlations from absolute or relative frequencies. In addition, 
it may also explain why the level of statistical correlations in 
Es are lower than in Hs or As: because Es are shorter (average 
amino acid number: 60, σ = 41) than Hs (average amino acid 
number: 91, σ = 64) and As (average amino acid number: 127, 
σ = 81). The best correlation coefficients between amino acids 
that we found with As, Hs, and Es were r(A,G,P,D,T,V,L) . 0.7, 
r(A,L,V,E,K,R,S,T)  .  0.7, and r(A,G,L,V,R,S,T)  .  0.6, respectively. 
These correlations are in agreement with previous works39 
that also shows regularities in the As structures. The statisti-
cal correlations in As are rather difficult to discuss given the 
variety of structures in this group. P in particular “tends to 
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initiate turns and to support turns in its vicinity”; it “tends to 
appear at bends’ and coils’ ends.”39 The correlations between 
E, K, and R in Hs are not surprising because these amino 
acids are charged. A, V and S would compensate for second-
ary structure MW. The correlation between G and S in Es 
are also most likely related to constraints on the MW of sec-
ondary structures. Concerning Es, the statistical correlations 
between A, L, and V are not surprising given their hydropho-
bic nature. The balance between local (originating from the 
intrinsic secondary structure propensities of the amino acids) 
and non-local effects (reflecting the sequence of amino acids 
as a whole)23 modulated by folding constraints constitutes a 
protein code24 that was already inferred to be responsible for 
the purine bias by Shepherd.1

The purine bias observed in CDSs is not trivial because 
purine and pyrimidine distribution have the same probabil-
ity of occurrence in the three codon positions according to 
the genetic code. The question is to identify the features that 
positively contribute to this bias. Any contribution from poly-
merase can be ruled out because the purine bias is not present 
in introns.5 The consequence of this finding is that the purine 
bias occurs because of a selective process induced (i) by the 
protein function40 or (ii) by ribosome machinery.41

Actually, our statistical analysis of the base composition 
according to the three codon positions and the protein sec-
ondary structures shows that the contribution of the amino 
acid synthesis, energy cost, and physicochemical constraints 
to secondary protein structures are the principal determinants. 
We showed that the purine bias results from the optimiza-
tion of protein sequences through competition between (i) the 
information encoded by nucleotides, (ii) the secondary struc-
ture of proteins, (iii) the MW and hydropathy of secondary 
structures, and (iv) the energy cost of amino acid synthesis. 
The first codon position is optimized according to the energy 
cost of amino acid synthesis and amino acid MW or complex-
ity, which are in favor of G1-rich codons. In contrast, in the 
second codon position, T2 is driven by physicochemical con-
straints on secondary structures, and A2 is driven by the MW. 
The periodicity that is needed for secondary protein structures 
induces a specific amino acid use whose consequence is a low 
purine rate in the second codon position.

It is the E structures that most contribute to the purine bias 
in the second codon position, followed by H and A structures. 
The striking positive correlation between T2 and hydropathy 
linearly matches the secondary structures and their respective 
access to solvent. In contrast, and however less strikingly, A2 
correlated to the MW of the structures. Thus, the negative cor-
relation between A2 and T2 confirms the negative correlation 
between MW and hydropathy. Hydrophilic amino acids are 
preferentially associated to A2 (all A2 codons encode hydro-
philic amino acids), and hydrophobic amino acids are prefer-
entially associated to T2 (all T2 codons encode hydrophobic 
amino acids).26 From these results, Chiusano et al.25 derived 
the general trend that “E structure has higher hydrophobicity 

values and, on the average, amino acids with higher MWs, 
whereas A structure is less hydrophobic and is composed of 
amino acids having lower MWs. H structure is intermediate, 
sharing a similar distribution with the E structure in the case 
of its MW, while it follows the behavior of the A structure 
in its hydrophobicity patterns.” The consequence of the link 
between the (i) first codon position through energy cost and 
(ii) the second codon position through the protein secondary 
structures shows that the purine bias somehow reflects physi-
cochemical constraints on protein functionality.

It has been shown that nucleotide mutations may occur 
in the anticodon; however, these mutations can be compen-
sated by matching mutations in their corresponding codon 
to maintain the amino acid association to a given codon. 
This adaptive process shows that a constant codon composi-
tion reshuffling should occur41 without a selective process to 
maintain the purine bias as it is universally observed today 
throughout the biosphere. Interestingly, according to Ogle 
et al.16 and Almlöf et al.,42 G1 may promote larger H-bond 
interactions between A1493, mRNA, and tRNA than A1 in 
the ribosomal decoding center of the 30S subunit. Actually, 
the internal selectivity for codon recognition is enhanced 
by the stereospecific component provided by the ribosome, 
mainly A1492, A1493, and G530,42,43 and the ribosome con-
tribution to the mRNA—tRNA complex stabilization by 
interacting with the minor groove of the Watson—Crick base 
pairs is general and essential for ribosome accuracy.16 Thus, 
the stability of the mRNA—tRNA complex in the ribosome 
A-site may be a selected process that promotes a specific codon 
preference in agreement with a larger R1. This hypothesis is 
in line with the observation that there is a general efficiency—
accuracy trade-off in mRNA translation, and it has therefore 
been suggested that the bacterial ribosome has evolved to an 
overall accuracy of codon reading that maximizes the growth 
rate rather than the current accuracy. The maximal accuracy 
is highest for the second codon position and lowest for the 
third.15 Factors increasing mRNA—tRNA stability in the 
A-site are expected to promote such a trade-off.44 In real-
ity, the codons believed to induce a “correct geometry” with 
their cognate tRNA according to the conformational changes 
in the three universally conserved 16S rRNA bases (A1492, 
A1493, and G530) could also correspond to the codons with 
larger R1 simply because they provide higher stability to the 
mRNA—tRNA complex in the A-site. Given the arguments 
above, the ribosome could contribute by proofreading to lower 
the energy cost of protein synthesis.

Many tRNAs can translate more than one codon, but 
with variable abilities. The codon best recognized by the anti-
codon is preferred in highly expressed genes and may be trans-
lated faster than non-optimal codons with the consequence 
that ribosomes move faster along a mRNA molecule contain-
ing more optimal codons. The difference in optimal codons 
among species most likely reflects variation to the extent of 
which natural selection is effective in shaping codon usage.45 
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Following Sharp et al.,45 (i) the frequency of optimal codons in 
genes potentially under strong selection is given by the highly 
expressed genes, and alternatively, when genes are expressed 
at low levels and (ii) the codon usage of the genome as a whole 
is an estimate of the pattern of codon usage when selection 
is weak. The application of this reasoning to the purine bias 
tells us that the codons ending in A or G are not optimal 
in a global sense when compared to those ending in C or T 
because Y3 is preferred to R3. Thus, larger G or A levels in the 
first anticodon position are expected to be the optimal situa-
tion for cell growth. Actually, C3 occurs more frequently than 
G3 in GC-rich organisms, with the consequence that G of the 
first anticodon position will be preferred. G would promote 
larger tRNA—mRNA stability because it would involve three 
hydrogen bonds (in place of two if considering a pyrimidine) 
with U3 (T3 for DNA) or C3 in the corresponding mRNA 
codon. In GC-poor organisms, A3 is less frequent than T3 
according to the purine bias. Thus, the preferred base in the 
first anticodon position is an A. Therefore, this configuration 
is expected to occur in organisms in which tRNA—mRNA 
stability is less critical. However, even in the case of a gene 
with strong selection pressure (see Sharp et al.45 for a discus-
sion of selection pressure on codon usage), the first anticodon 
position will be a C in a GC-poor context.46 However, the 
reasoning just outlined must be considered with care. It is also 
true that in the case of human, C3-rich CDSs are expected 
to use more rare codons than G3-rich ones. Actually, several 
(seven) tRNA genes for the decoding of C3 codons seem to be 
missing in the human genome.47 A similar situation occurs for 
T3 because several (six) tRNA genes for the decoding of T3 
codons seem also to be missing, which may argue in favor of 
considering the codon bias more as Rrr than RNY. Thus, in the 
human genome, Y3-rich genes are expected to use more rare 
codons with the consequence that the ribosome machinery is 
expected to pause more in these CDSs than in R3-rich ones 
because of the necessity to use cognate tRNA, and thus, their 
expression level should be lower. Therefore, Y3-rich CDSs are 
expected to be under different selective pressures compared to 
R3-rich CDSs.48 If C3-rich CDSs are effectively expressed at 
a low rate, more or less rare codons in these genes could pos-
sibly be without much consequence for cells; if this is true, it 
would justify why C3 may reach higher levels than G3 in the 
context of a compositional transition toward GC.

In addition to warm-blood vertebrates, several genomes 
from other eventually distant eukaryote families, such as 
those of rice and Chlamydomonas reinhardtii, also experienced 
a compositional transition toward GC in their evolution his-
tory.11 By contrast, others, such as Plasmodium falciparum, did 
a compositional transition toward AT. It would be interesting 
to look at the statistics of tRNA genes for the decoding of Y3 
codons in these genomes to check whether tRNA genes for 
the decoding of Y3 codons are also missing.

The ribosome is especially equipped with a proofreading 
mechanism that improves the translation accuracy according 

to the first and second codon positions that warrant acceptable 
fidelity and functionality between the versions of a protein 
and their mold, that is, the CDSs. The third position satisfies 
this need with the thermodynamic stability of the codon—
anticodon complex. Thus, one may conclude that the purine 
bias is the best compromise concerning (i) the constraints 
on the amino acid choice by secondary protein structures to 
match their global physicochemical properties and (ii) the 
optimization of tRNA—mRNA complex stability as well as 
ribosomal processing and accuracy.49 As a consequence, one 
can say that the backwards effect from protein to DNA base 
composition is the purine bias, which is also the reverse of 
the central dogma of biology ie, the coding information flows 
from DNA to protein. In other words, the purine bias is the 
imprinting in the DNA from the selective pressure on the 
functional necessities of proteins. In that sense, one can also 
say that proteins exert a selective process on the base composi-
tion of DNA at the CDS level and that this selective process 
may affect the genome organization according to the muta-
tional bias toward GC or AT and other selective processes 
according to the functional necessities of coding DNA in rela-
tion to non-coding DNA (see Bernardi11 and Kudla et al.50). 
Because proteins exert universal constraints on DNA at the 
CDS level, this finding also explains why purine bias contrib-
utes to their universal classification.4,5

The purine bias described above as Rrr or Ggg is reminis-
cent of the GNC hypothesis on the origin of the genetic code.51 
The GNC code could have originated from a four amino acid 
system encoded by GNC codons. This GNC code (G for gua-
nine, N for any of the four nucleotides, and C for cytosine) is 
able to encode GADV-proteins (G for Gly, A for Ala, D for 
aspartic acid, and V for Val) with appropriate 3D structures, 
which would be water-soluble globular proteins (hydropathy, 
α-helix, β-sheet, and β-turn) and would also have catalytic 
activities.52 According to Ikehara et al.,51 this primitive code 
would have evolved first in a code with 16 codons and 10 
amino acids, the so-called SNS (S for strong: G or C), and 
then in the RNY ancestral codon suggested by Shepherd.1 
Thus, the primitive code would have first been optimized for 
the G1 codons that encode the simplest and most frequent 
amino acids, and would have evolved further to encode amino 
acids of higher complexity and energy cost. The conservation 
of this hierarchy warrants that the assembly of modern pro-
teins is optimized for the lowest overall energy cost.

From a practical point of view, (i) the purine bias, (ii) 
MW = 10 × hydropathy + 130 relationship, (iii) the fact that 
the larger the MW, the lower the hydropathy of a structure 
(and vice versa), (iv) the statistical correlation of T2 with sol-
vent access, hydropathy, and energy cost, (v) the statistical 
correlation between A2 and MW, and (vi) the association of 
low MW with G1 will have important consequences for syn-
thetic biology and automatic screening of artificial sequences 
(synthetic genes53) for new functional properties. Accord-
ing to this view, the whole process of genetic variability and 
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purifying selection can be simulated in silico. This finding 
opens the way for in silico investigation by the following 
sequence of steps: (i) sequence genesis according to random 
process inside a functional domain whose parameters are 
purine bias, MW, hydropathy, and energy cost of amino acid 
synthesis, (ii) 3D structure determination by ab initio pro-
cess, (iii) false positive filtering through Ramachandran con-
straints,54 (iv) biosynthesis according to a biological system 
compatible for the GC level and codon bias, and (v) experi-
mental testing in biological conditions. This pipeline would 
also allow the evolutionary inference of given proteins for 
resistant drug inhibitors in agriculture and medical sciences.
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