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ABSTRACT

ProRepeat (http://prorepeat.bioinformatics.nl/) is an
integrated curated repository and analysis platform
for in-depth research on the biological characteris-
tics of amino acid tandem repeats. ProRepeat
collects repeats from all proteins included in the
UniProt knowledgebase, together with 85 com-
pletely sequenced eukaryotic proteomes contained
within the RefSeq collection. It contains
non-redundant perfect tandem repeats, approxi-
mate tandem repeats and simple, low-complexity
sequences, covering the majority of the amino acid
tandem repeat patterns found in proteins. The
ProRepeat web interface allows querying the
repeat database using repeat characteristics like
repeat unit and length, number of repetitions of
the repeat unit and position of the repeat in the
protein. Users can also search for repeats by the
characteristics of repeat containing proteins, such
as entry ID, protein description, sequence length,
gene name and taxon. ProRepeat offers powerful
analysis tools for finding biological interesting
properties of repeats, such as the strong position
bias of leucine repeats in the N-terminus of eukary-
otic protein sequences, the differences of repeat
abundance among proteomes, the functional classi-
fication of repeat containing proteins and GC
content constrains of repeats’ corresponding
codons.

INTRODUCTION

Amino acid tandem repeats, as one of the most prevalent
patterns in protein sequences, have inspired the interests
of researchers for many years in terms of their pathologic-
al, functional and evolutionary roles. According to the
patterns of units, repeats in proteins can be generally clas-
sified into several categories.

Single amino acid repeats (SAARs), also known as
homo peptides, have the simplest repeat unit. Some of
the SAARs have been extensively studied as they are
involved in numbers of human neurodegenerative
diseases, such as those with variable polyglutamines
(polyQ) and polyalanines (polyA) (1). Since they are im-
portant modulation factors on protein–protein inter-
actions (2,3), the insertions, deletions, substitutions, as
well as growing or shrinking of the repeats result in
either loss-of-function or gain of abnormal function (4,5)
by altering the conformation of protein tertiary structures.
As for other types of SAARs, leucine runs are mainly
located in the N-terminus of eukaryotic proteins, which
are presumed to be involved in the signal peptide (6).
Higher frequency of proline repeats in mammalian prote-
omes is considered to significantly contribute to network
evolution (7). In addition, histidine repeats play a crucial
role in the localization of human proteins to the nuclear
speckle compartment (8).

Amino acid tandem repeats with complex unit patterns
have also been studied frequently. Different from SAARs,
most of them are comparatively conserved in their struc-
ture. Well-known patterns include the leucine rich repeats
(LRRs) that commonly act as the structural framework
for the formation of protein–protein interactions (9), the
ankyrin repeats that contain the binding site for the huge
titin proteins that are involved in muscle ultrastructure
and elasticity (10,11), and the polyubiquitins that are
synthesized as repetitive polyproteins (12).

Although the biological significance of particular amino
acid tandem repeats have been demonstrated continually
during the past years in several model organisms, no
convincing conclusions can be drawn until now. The ar-
guments are mainly posed on several aspects: Is the role of
similar repeat patterns coherent in different proteomes
across different life kingdoms? Could the functional and
evolutionary roles of certain repeats correspond to their
particular characteristics, such as position bias, GC
content constrains and codon usage? How could the
conserved functions of particular repeats have been
evolved by natural selection? Why repeats are so
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common in protein sequences even under the scenario that
their instable characteristics are often relevant to disorder
and diseases (5,13,14)? And what are the structural and
sequence-based strategies (15,16) to prevent repeats from
possible aggregation?

The dilemma of contradicting explanations of the role
of repeats is partly because of the lack of repositories for
large-scale investigation and comparison of repeats among
the variety of proteomes across different kingdoms.
Several databases of amino acid repeat were constructed
during the recent decade. Unfortunately, some of these
databases are no longer accessible or functional anymore
such as COPASAAR (17), RepSeq (18) and
ProtRepeatDB (19). As for the remaining ones, TRIPS
gathered repeats generated from a very old version of
SwissProt (year 1999) (20), RCPdb offers the codon
usage bias data of homopeptides (SAARs) of 13 complete-
ly sequenced eukaryotic species (21), and the PolyQ
database collects the sequences of all human proteins con-
taining runs of seven or more glutamine residues (22).

To change the incompatible situation between the rapid
increase of protein sequence data and the lack of a large
scale, well-annotated protein repeat repository, we have
constructed an online database of protein repeat se-
quences (ProRepeat, http://prorepeat.bioinformatics.nl/).
ProRepeat recruits both perfect and approximate
tandem repeats from all taxa of UniProtKB (23) and
supplied by 85 complete sequenced and well annotated
eukaryotic proteomes. ProRepeat also gathers the corres-
ponding nucleotide sequences of the repeat fragments for
the purpose of codon usage analysis. The latest update of
ProRepeat is based on the datasets of UniProtKB release
2011_05 and RefSeq (24) release 40. An easy to use web
interface was designed for users to query the database, and
to perform statistical analyses on the query results. We
believe that ProRepeat provides the user community
with a useful resource for the exploration of function
and evolution of protein repeats.

REPEAT DETECTION AND DATASET GENERATION

We collect three types of repeat patterns including perfect
tandem repeats (PTRs), approximate tandem repeats
(ATRs) and simple sequences (SSs) in proteins. The
PTRs were detected using an in house developed C/C++

procedure we implemented based on the suffix tree algo-
rithm which identifies all perfect tandem repeats in a
protein sequence (25), the ATRs were detected by
XSTREAM (26) and the SSs were detected by SIMPLE
(27). Following the definition of statistically significant
repeat runs in protein sequences (28), we used cutoff
sizes of five, four, three and two of the repeat unit repeti-
tions to identify mono-amino, di-amino, tri-amino and all
other repeats, respectively.

It is possible that different algorithms identify the
repeats with the same unit and overlapped position in
the same protein. To integrate the repeats datasets
excluding the redundancy, we developed a PL/SQL pro-
cedure which distinguishes between unique and
overlapping repeats. The repeats datasets were merged

together followed by a sorting step based on the identifier
of repeat containing proteins (RCPs), repeat unit and the
position of the repeat. The repeats with the same unit and
overlapping position within the same protein were merged
into a single fragment. If the begin and end positions of
these repeats were also the same, only one of them was
retained as they were actually the same repeat identified by
different algorithms. We also classified the perfect and
approximate repeats separately and marked them within
the database, so that the user can search them
individually.
The repeat datasets were generated based on the protein

entries collected in UniProtKB release 2011_05. For the
convenience of comparative analysis, we also generated
the repeat datasets of the completely sequenced eukaryotic
proteomes based on RefSeq release 40. For the selection of
completely sequenced eukaryotic proteomes, we obtained
the list of the complete published eukaryotic organisms
from the genomes online database—GOLD (29). For
each organism, we compared the number of ORFs given
by GOLD with the number of proteins collected by
RefSeq. If the two numbers were approximately consist-
ent, i.e. the difference was <5%, we considered the
proteome collected by RefSeq as complete and retrieved
repeats from it. Thus, ProRepeat contains repeats from 85
complete sequenced eukaryotic proteomes including 14
vertebrates, 8 plants, 22 fungi, 12 insects and 29 other
organisms. The gene ontology cross references of RCPs
were generated based on GOA (30), and RefSeq annota-
tions for gene ontology. The corresponding nucleotide se-
quences of the repeats fragments were obtained via EMBL
and RefSeq cross-references within each UniProtKB and
RefSeq protein entry, respectively.

THE WEB INTERFACE

The ProRepeat database can be accessed using an intuitive
web interface. An Introduction page provides information
about the types of repeats that the database contains, the
tools that were used to create the database, and the back-
ground of functional studies of repeats. The Statistics page
lists several characteristics of the database, like the abun-
dance of different repeat types across the different life
kingdoms. The Help page offers practical examples to
help users find interesting repeats and perform online
analyses. On the Query page, users can search for
repeats in one or more species, using annotations of
RCPs including entry ID, protein description and gene
name. Users can also specify the repeat unit, unit length,
repeat sequence length, number of units and position of
repeat in the protein sequence. For the repeat unit,
ProRepeat offers two additional options. For example,
the repeat unit of two repeat fragments DEDEDEDE
and EDEDEDED could be identified as DE and ED,
and defined as isomorphic repeats. By switching on the
‘Isomorphic Unit Search’ option, users can obtain all
cyclic permutations of this repeat pattern. With the
‘ProSite Syntax Search’ option, users can specify a
regular expression as search pattern used by the ProSite
database. In addition, ProRepeat classifies the repeats as
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PTRs and ATRs defined by the similarities of repeat units.
Users can choose either ‘Perfect Tandem Repeats’,
‘Approximate Tandem Repeats’ or ‘All Repeats’ (both
PTRs and ATRs).
Users can query individual species of 85 eukaryotic

complete proteomes obtained from RefSeq through their

taxonomic names, or from broader taxonomic ranges col-
lected from the UniProt Knowledgebase. The query
results are displayed as interactive web pages in tabular
format. Columns contain information about the position
and length of the repeat, as well as the corresponding
protein. Clicking on a repeat brings up a page with the

Figure 1. The statistical analysis result of repeat properties for PTRs of all taxa in UniProt with the ‘Isomorphic Search’ option on, and the default
evidence at protein level.
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corresponding DNA sequence and the codon usage
pattern. Users can save the query results as Microsoft
Excel format, or perform a secondary search using the
query results. ProRepeat provides users with an online
tool to perform statistical analysis of the query results.
For example, the query results of PTRs from all species
in UniProt at protein existence level can be analyzed to
show various properties including the repeat abundance in
different organisms, the gene ontology annotation of the
RCPs, the position bias of repeats, the distributions of GC
content of repeat codon, the unit length and repeat
fragment length (Figure 1).

PRELIMINARY ANALYSIS OF PROTEIN REPEATS

Based on UniProtKB datasets, ProRepeat gathers �3.75
million repeat fragments contained in 2 million RCPs
from 0.1 million organisms. The distribution of repeats
over eukaryota, bacteria, archaea and viruses is shown
in Table 1. The relative repeat abundance normalized by
the number of proteins of the different kingdoms indicates
that eukaryotic proteins are four times more likely to have
tandem repeats than prokaryotic proteins, and the possi-
bility of having tandem repeats in viruses and prokaryotes
is similar. This supports the idea that large amounts of

protein repeats arose after the divergence of prokaryota
and eukaryota (31).
There is a long-standing debate about the roles of

repeats in proteins. Some early viewpoints ascribe large
amounts of SSs to ‘junk protein’ (32) as few of them
have identified stable tertiary structures (33) and are
thought to be non-functional. However, more and more
evidences show that they are not just ‘junk’ peptide se-
quences (34) and might have particular function and struc-
ture (35). Important subsets of SSs, in particular cryptic
and identical SAARs, have been reported to be actively
evolving (36–38). As a result, the evolutionary footprint
and functional implication of repeats which are being
modulated by selection could be inferred from their
properties. For example, in Drosophila and Arabidopsis,
the RCPs are mostly involved in gene regulation, signaling
and developmental processes, but significantly
under-represented in the process of DNA recombination
and DNA replication. In addition, the positional distribu-
tion of repeats in proteins of Drosophila and Arabidopsis is
also non-random (39,40).
Using ProRepeat, we made a comparison of the repeat

properties including repeat length, RCPs length, repeat
position and repeat codon usage in model organisms
across different kingdoms (Table 2). In general, glutamic
acid (E), serine (S), glutamine (Q), proline (P), alanine (A)
and leucine (L) are widely used by SAARs in all taxa,
while the pattern varies between different taxa. For
example, polyL and polyP are preferred by prokaryotes
and eukaryotes, respectively; D. melanogaster uses polyQ
more frequently than most of the other organisms; polyE
is extremely abundant in Hepatitis delta virus, and for
human immunodeficiency virus, although polyE has the
highest frequency, when adding the approximate SAARs
together arginine (R) is actually the most commonly used
amino acid (near 80%). When looking at the N-terminal
perfect SAARs, polyL is the most popular especially in
eukaryotes and bacteria, in which they play functional
roles, for instance, in signal peptides (6).

Table 2. Repeat properties in representative species

Species Most abundant SAARs(%) N/C SAARs GC1 GC2 L1 L2

HIV E(45.3), A(27.0), N(8.6) SA/INP 42.0 41.9 462 10.7
HDV E(99.6), P(0.4) Na/Na Na 41.5 113 5.2
Escherichia coli L(32.0), A(29.5), G(9.4) LAT/GAV 50.0 58.0 765 18.7
Bacillus subtilis A(23.8), L(19.8), S(19.8) LKA/KSG 43.5 48.5 481 15.0
Archaeoglobus fulgidus E(22.0), V,(18.0), L(18.0) ER/KTL 48.6 51.9 389 10.1
Methanococcus jannaschii E(25.9), K(22.2), L(11.1) ILE/KGR 31.0 31.7 412 10.8
Saccharomyces cerevisiae S(24.0), Q(18.7), N(11.7) SQN/KDQ 38.1 44.3 759 18.5
Arabidopsis thaliana S(27.2), G(12.3), P(11.5) SLE/GES 36.0 50.9 812 16.0
Caenorhabditis elegans S(14.9), T(13.8), Q(13.6) SLQ/QGS 35.0 51.7 1103 25.0
Drosophila melanogaster Q(31.9), A(15.2), S(11.3) QAS/QAS 41.0 61.3 1338 15.6
Danio rerio S(21.4), E(17.6), P(13.1) LAG/ESK 37.6 54.4 1286 37.9
Gallus gallus E(17.7), P(15.1), S(13.4) LAG/ESK 50.0 62.5 1099 20.8
Mus musculus E(19.2), P(14.6), A(11.6) LAG/EPA 41.7 60.9 1304 26.6
Homo sapiens E(16.0), P(16.0), A(14.3) LAG/ESP 40.9 63.0 1390 31.2

N/C SAARs, most abundant N- and C-terminal SAARs corresponding to 5% and 95% of RCPs length, respectively; the middle point of the repeat
fragments is defined as the position of repeats; GC1, genomic GC content; GC2, average GC content of repeat codon; L1, average length of RCPs;
L2, average length of repeat fragments.

Table 1. Repeat abundance in four kingdoms

Kingdom Repeat number Repeat
abundancea

(%)

Protein
abundanceb

(%)

Relative
abundancec

PTR ATR

Eukaryota 1 163 368 1 195 655 63.10 27.2 2.32
Bacteria 498 071 705 575 32.20 63.9 0.50
Archaea 12 584 18 631 0.85 1.8 0.47
Viruses 75 109 68 821 3.85 6.9 0.56

aPercentage of repeat numbers in four kingdoms, bPercentage of
protein numbers in four kingdoms based on UniProtKB (0.2% unclas-
sified entries are not listed), cPercentage of protein abundance divided
by percentage of repeat abundance.
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The positive correlation between GC content and genes
rich in coding repeats has also been noticed in recent years
(41–43), which suggests that the formation and evolution
of coding repeats have certain constrains of the compos-
itional specificity at the genome level. Other studies also
indicate that the length of the coding sequence is directly
proportional to higher GC content (44) as the stop codon
has a bias toward A and T, thus the shorter the sequence
the higher the AT bias (45). To investigate this, we used
ProRepeat to compute the average GC content of repeats
codon across taxa. The result shows that the average GC
content of repeat codons is much higher than the genome
GC content in nearly all species (Table 2). This is espe-
cially true in eukaryotes which have higher repeat abun-
dance than prokaryotes and viruses. On the other hand,
although the average length of RCPs is much greater than
the average length of proteins in different kingdoms, i.e.
361 AA in Eukaryotes, 267 AA in Bacteria and 247 AA in
Archaea, respectively (46), the relationship between GC
content and the length of RCPs is not very strong.

FUTURE DIRECTIONS

To cope with the fast development of genome sequencing
and annotating, we have been keeping ProRepeat updated
to the latest version of the protein databases UniProtKB
and RefSeq protein. Furthermore, as our repeat
integrating strategy merges different datasets generated
by different algorithms, we will integrate more repeat
patterns into ProRepeat detected by more algorithms in
the future.
Comparing specific repeat fragments among

orthologous RCPs is a widely used strategy to discover
their potential evolutionary and functional roles. The
former analysis across Drosophila, rodents and primates
(13,37,39,42) shows its reliability. As ProRepeat contains
data over a broad taxonomy range, it may serve as an
excellent platform to perform orthologous analysis on
repeats. To meet such requirements, we are currently
integrating ProRepeat with ProGMap—the integrated an-
notation resource for protein orthology (47) we developed
earlier. With this setup users can compare repeats among
orthologous RCPs in ProRepeat.
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