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The ubiquitous mold Aspergillus fumigatus is the major etiologic agent of invasive
aspergillosis, a life-threatening infection amongst immune compromised individuals. An
increasing body of evidence indicates that effective disposal of A. fumigatus requires the
coordinate action of both cellular and humoral components of the innate immune system.
Early recognition of the fungal pathogen, in particular, is mediated by a set of diverse
soluble pattern recognition molecules (PRMs) that act as “ancestral antibodies” inasmuch
as they are endowed with opsonic, pro-phagocytic and killing properties. Pivotal is, in this
respect, the contribution of the complement system, which functionally cooperates with
cell-borne pattern recognition receptors (PRRs) and other soluble PRMs, including
pentraxins. Indeed, complement and pentraxins form an integrated system with
crosstalk, synergism, and regulation, which stands as a paradigm of the interplay
between PRMs in the mounting and orchestration of antifungal immunity. Following
upon our past experience with the long pentraxin PTX3, a well-established immune
effector in the host response to A. fumigatus, we recently reported that this fungal
pathogen is targeted in vitro and in vivo by the short pentraxin Serum Amyloid P
component (SAP) too. Similar to PTX3, SAP promotes phagocytosis and disposal of
the fungal pathogen via complement-dependent pathways. However, the two proteins
exploit different mechanisms of complement activation and receptor-mediated
phagocytosis, which further extends complexity and integration of the complement-
pentraxin crosstalk in the immune response to A. fumigatus. Here we revisit this crosstalk
in light of the emerging roles of SAP as a novel PRM with antifungal activity.

Keywords: Aspergillus fumigatus, aspergillosis, innate immunity, pentraxins, complement
org November 2021 | Volume 12 | Article 7858831

https://www.frontiersin.org/articles/10.3389/fimmu.2021.785883/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.785883/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.785883/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.785883/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:antonio.inforzato@humanitasresearch.it
mailto:antonio.inforzato@humanitasresearch.it
mailto:andrea.doni@humanitasresearch.it
https://doi.org/10.3389/fimmu.2021.785883
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.785883
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.785883&domain=pdf&date_stamp=2021-11-18


Parente et al. Pentraxins/Complement Crosstalk in Aspergillosis
INTRODUCTION

Aspergillosis is a collective name for Aspergillus species-related
infections that clinically manifest as either non-invasive (i.e.,
allergic bronchopulmonary aspergillosis, ABPA, chronic
pulmonary aspergillosis, CPA, and aspergilloma), or invasive
diseases (1). Invasive aspergillosis (IA) is the most severe form,
with 10 million individuals at risk, more than 200,000 deaths/
year worldwide, and a mortality rate of up to 90% in the worst
scenarios (https://www.aspergillus.org.uk/). Several factors
contribute to the risk and severity of IA, including microbial
virulence, limited therapeutic pipeline and diagnostic inaccuracy,
however it is the host’s immune status that primarily determines
onset and progression of IA, with immune-compromised
individuals being the most vulnerable (2).

IA is mainly caused by Aspergillus fumigatus (AF), an obligate
aerobic filamentous fungus that spreads in the environment in the
form of quiescent airborne spores (dormant or resting conidia) (3).
Up to a few hundred spores are inhaled by humans daily, and, in
immune competent individuals, most of them are mechanically
eliminated by the ciliated and mucus-secreting cells of the epithelial
barrier of the upper airways (4). Those who skip mucociliary
clearance are promptly recognized, phagocytosed and killed by
alveolar epithelial cells (mostly, type II pneumocytes) and cellular
effectors of the innate immune system, including resident alveolar
macrophages (AMs) and dendritic cells (DCs) as well as recruited
polymorphonuclear neutrophils (5). These cells are all endowedwith
an armamentarium of pattern recognition receptors (PRRs) that
recognize a spectrum of pathogen associated molecular patterns
(PAMPs) on fungal spores, and activate mechanisms of defence (6).
Neutrophils are particularly important in this respect, indeed
iatrogenic, acquired and inherited defects in number, function or
homing of these cells are major risk factors for IA (7).

Recognition and disposal of fungal particles are also mediated by
soluble effectors of innate immunity, including complement, an
ancestral system of soluble and cell-borne pattern recognition
molecules (PRMs) (8, 9). Other PRMs are known to functionally
cooperate with complement in the handling of AF infections,
including ficolins, collectins and pentraxins. In particular, the long
pentraxin PTX3 is an established complement-dependent PRMwith
host protective functions against AF [reviewed in (10)]. We have
recently reported that the classical short pentraxin serum amyloid P
component (SAP) promotes recognition, phagocytosis and killing of
AF. However, this occurs through different complement-dependent
mechanisms (11), which highlights complexity and integration of
the innate immune reaction to fungal pathogens. Here, we discuss
the pentraxin-complement interplay in IA, with amajor focus on the
most recent evidence from in vitro studies, animal modeling, and
human genetics.
PENTRAXINS AND THEIR INTERACTION
WITH THE COMPLEMENT SYSTEM

Pentraxins are a superfamily of phylogenetically conserved
proteins with regulatory functions in inflammation (12).
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C-reactive protein (CRP) and SAP, prototypes of the short
pentraxins arm of the family, opsonize microbial pathogens
and apoptotic cells, thus acting as soluble PRMs towards
pathogen and danger associated molecular patterns, and
support their complement-mediated clearance (13). CRP
comprises 5 non-glycosylated subunits (14), whereas SAP is a
plasma glycoprotein with 5 or 10 protomers (15). Both proteins
share a peculiar quaternary structure with homo-oligomers
folding into pentameric rings stabilized by non-covalent
interactions (16).

In addition to CRP and SAP, PTX3 is a typical long pentraxin,
with a C-terminal domain homologous to the short pentraxins,
and an N-terminal region with no similarity to other proteins.
The human PTX3 is a 340 kDa glycoprotein (17) made of 8
identical protomer subunits folding into a disulphide bond-
stabilized octamer (18, 19). The amino acid sequence of PTX3
is highly conserved across species, suggesting an evolutionary
pressure to preserve its structure/function relationships (20).

Despite these structural similarities, CRP, SAP and PTX3 are
different in terms of cellular producers and molecular inducers.
CRP and SAP are mainly synthesized in the liver, in response to
IL-6 (21). CRP, whose serum concentration increases as much as
1000 times (from baseline levels of 0.8-1 mg/L) during acute
responses, is the prototypic acute phase protein in humans and
clinically used as a sensitive, though non-specific, systemic
marker of infect ion and inflammation. The serum
concentration of the murine protein however mildly increases
(up to ~17 mg/L from baseline levels of 5-9 mg/L) upon LPS
injection, which points to different mechanisms of gene
regulation in the two species (22). CRP recognizes microbes
and apoptotic cells by binding to phosphocoline (PC), and
promotes phagocytosis of the opsonized materials through
activation of the classical pathway (CP) of complement (21). In
addition, CRP restrains complement hyperactivation by binding
to factor H (fH), major inhibitor of the alternative pathway (AP)
(23). SAP is an acute phase protein in mouse [with serum
concentrations of ~500 mg/L and ~20 mg/L in homeostatic and
inflammatory conditions, respectively (11)], whereas it is
constitutively present in the human plasma (30-50 mg/L),
where it contributes to host defence via direct or indirect
(complement-dependent) opsonic mechanisms (24). Similar to
CRP, SAP binds C1q (recognition unit of the CP) and promotes
complement activation (25). While unable to bind fH, SAP
interacts with C4b-binding protein (C4BP) (25, 26), major
inhibitor of the CP pathway, indicating that, like CRP, SAP
has complement regulating properties (27).

As opposed to CRP and SAP, PTX3 is rapidly synthesized and
secreted at sites of infection/inflammation by a variety of
immune and non-immune cells in response to TLR
engagement, microbial moieties, and inflammatory cytokines
(28–30). Mature neutrophils do not transcribe the PTX3 gene,
however they store the pre-made protein in specific granules, and
promptly release it upon degranulation (31). Similar to CRP and
SAP, PTX3 binds C1q, and controls activation of the CP (17, 32).
In addition, PTX3 interacts with components of the lectin
pathway (LP), including mannose-binding lectin (MBL) (33),
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https://www.aspergillus.org.uk/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Parente et al. Pentraxins/Complement Crosstalk in Aspergillosis
ficolin-1 (34) and -2 (35), and promotes LP deposition on AF
and Candida albicans. Also, in an analogy with CRP and SAP,
PTX3 controls excessive complement activation through specific
interactions with fH (36) and C4BP (37) (see Figure 1 for an
overview of pentraxins).
PTX3 IN AF INFECTIONS

The long pentraxin PTX3 is a PRM with established roles in the
innate immune response to selected pathogens, and prognostic/
diagnostic potential as biochemical and genetic biomarker in
many systemic infections (38), including invasive pulmonary
aspergillosis (IPA) (39), and, more recently, COVID-19 (40).
Initial evidence of the involvement of PTX3 in the host resistance
to AF dates back to 2002, when it was reported that genetic
deficiency of Ptx3 enhances susceptibility to IPA in
immunocompetent mice, due to defective recognition of fungal
conidia by neutrophils, AMs, and DCs, and biased Th2 responses
Frontiers in Immunology | www.frontiersin.org 3
(41). This phenotype was reverted by administration of the
recombinant protein, and a close functional cooperation was
established between PTX3, neutrophils, and the complement
system (31, 42). These findings have been recapitulated and
extended in experimental models of iatrogenic immune
suppression (43) and primary immune deficiencies (44),
clinical conditions that predispose to IPA. Furthermore, PTX3
polymorphisms have been associated to reduced systemic levels
of the protein and increased risk of IPA in recipients of
hematopoietic stem-cell (HSC) (39, 45) and solid organ
transplants (46), chronic obstructive pulmonary disease
patients (47) and individuals with hematological malignancies
(48). Interestingly, this association is lost in conditions of severe
neutropenia (49), which further supports the functional link with
neutrophils originally foreseen in the mouse (41).

The mechanisms underlying the antifungal properties of
PTX3 have been addressed in a study by Moalli et al., where
this pentraxin was shown to opsonize AF conidia and promote
their phagocytosis and killing by human (in vitro) and mouse
FIGURE 1 | Pentraxins at a glance. Major aspects of the biology of pentraxins are presented here that are further discussed in the main text. The short pentraxins
CRP and SAP are mainly synthesized by the hepatocytes in response to IL-6 (systemic production), whereas PTX3 (prototypical long pentraxin) is locally made by a
number of myeloid and stromal cells upon stimulation with pro-inflammatory cytokines and/or microbial moieties. All pentraxins share a family distinctive signature
within the pentraxin (PTX) domain, and the long ones additionally contain an N-terminal region that is structurally unrelated to other proteins. In spite of diverse
protein structure and gene regulation, these molecules have similar biological properties (summarized in the boxes), which highlights complexity and complementarity
of this family of PRMs.
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(in vivo) neutrophils via AP, complement receptor 3 (CR3), and
Fcg receptors (FcgRs) pathways (42). This and previous
investigations (41) ruled out contributions of CP (C1q in
particular) to the pro-phagocytic activity of PTX3. Also,
ficolin-2 and PTX3 have been reported to recruit each other to
the wall of AF conidia, and promote synergic amplification of the
LP, however this mechanism is relevant in conditions of C1q and
MBL deficiency only (35). Therefore, available evidence indicates
that a functionally competent AP is required for the pro-
phagocytic and pro-killing activities of PTX3 in AF infections
[see Figure 2A and (10) for a more comprehensive review of the
interplay between PTX3 and complement in these diseases].
SAP AND MICROBIAL PATHOGENS

SAP is recognized as a component of the innate immune
response to microbial pathogens, including Gram-positive (50,
51) and Gram-negative bacteria (52) and viruses (53), and
traditionally described as an opsonin that acts through FcgRs
and complement mechanisms (54–58). However, the actual role
of SAP in clinical infections is unclear (52), likely due to
divergent gene regulation in mice and humans (16, 21, 59),
Frontiers in Immunology | www.frontiersin.org 4
and conflicting evidence from in vitro and in vivo settings (52).
For example, SAP interacts with spikes on the viral envelope of
the influenza A virus, inhibits hemagglutination, and neutralizes
virus infectivity in vitro (53, 60), however it has no clear role in
human influenza (61). Also, in spite of inhibitory effects on the
intra-erythrocytic growth of malaria parasites (62) and uptake of
Mycobacterium tuberculosis by murine AMs in vitro (63), no data
are available to support a role of SAP in malaria and tuberculosis
in vivo. Furthermore, a clear correlation between microbial
recognition, opsonic activity and microbicidal function of this
pentraxin is missing. In this regard, SAP is known to interact
with Streptococcus pneumoniae and promote its phagocytosis in
vitro and in vivo (51), however it enhances the macrophage-
dependent killing of Listeria monocytogenes, a pathogen it does
not bind (64). Also, this short pentraxin recognizes
Mycobacterium tuberculosis, and inhibits recognition and
killing of this pathogen by macrophages (63). On the same
line, its interaction with Streptococcus pyogenes, Neisseria
meningitides, and some strains of Escherichia coli results into
decreased phagocytosis and killing by macrophages and
inhibition of complement, and SAP-deficient mice have
increased survival in experimental infections with Streptococcus
pyogenes or Escherichia coli (52). Based on these and other
A

B

FIGURE 2 | Complement-dependent roles of PTX3 and SAP in the host resistance to A. fumigatus. (A) PTX3 and Ficolin-2 recruit each other onto AF conidia, and
activate the LP. As C3b and iC3b deposit (via the AP amplification loop), PTX3 promotes phagocytosis of AF via FcgRII (CD32)-dependent redistribution of CD11b
(that forms with CD18 the complement receptor 3, CR3, major receptor of iC3b) to the phagocytic cup. (B) SAP recruits C1q to AF conidia, and promotes CP
activation. This leads to enhanced disposal of the pathogen through neutrophil-dependent phagocytosis and MAC-mediated killing.
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evidence, the opsonic nature of SAP has been questioned (52),
and pharmacological depletion rather than administration of
SAP has been proposed to treat invasive infections (65).
Moreover, the regulatory mechanisms through which SAP
participates in the immune response to unligated microbial
pathogens are yet to be defined.
EMERGING ROLES OF SAP IN
ANTIFUNGAL IMMUNITY

A functional interaction of SAP with filamentous forms of
pathogenic fungi has been proposed (66), based on histology of
autoptic specimens from patients with invasive gastrointestinal
candidiasis, aspergillosis, mucormycosis, and coccidioidomycosis
(67, 68). Also, in a mouse model of chronic AF-induced allergic
asthma, administration of SAP inhibited alternative macrophage
activation, airway remodeling and inflammation (69). This occurred
via engagement of FcgRs (70), a mechanism through which SAP
controls fibrocyte differentiation in addition to alternative
macrophage polarization (71, 72).

SAP is a well-known player in amyloidosis, where it binds and
stabilizes amyloid fibrils (73). These form on the surface of
invading yeasts and fungi too (68), which suggests that SAP
might contribute to the pathogenicity of these microbes by
stabilizing amyloid deposits that interfere with immune
recognition (67). Indeed, the interaction of SAP with amyloid
fibrils on Candida albicans inhibits phagocytosis and cytokine
production in macrophages (74). However, genetic deficiency of
SAP had no effect in a mouse model of candidiasis (11).

We have recently reported that SAP is an essential element of
the host resistance to AF and other clinically relevant fungi of the
Trichocomaceae family, including A. flavus and A. terreus (11).
In a murine model of lung aspergillosis, SAP interacts with AF
conidia, and triggers complement-mediated inflammatory
responses that are essential for pathogen removal. Indeed,
SAP-deficient mice are more susceptible to the experimental
infection, due to reduced recruitment and phagocytic activity of
neutrophils, and resistance to AF is rescued in these animals by
administration of the recombinant murine protein. Also, the
recombinant human protein, currently under evaluation for
therapy of idiopathic pulmonary fibrosis (IPF) (75–77), has
therapeutic efficacy against AF in transiently myelosuppressed
mice, an experimental setting that closely mimics iatrogenic IA
in humans. More importantly, polymorphisms in the APCS gene
(coding for the SAP protein) are associated to the risk of
IPA (11).

We have shown that SAP binding to AF conidia results into
deposition of C3 and production of the anaphylatoxin C5a,
which is required for effective recruitment and phagocytic
activity of neutrophils in the infected lung (78). Consistent
with this, the plasma of Apcs-/- mice had decreased C3
activation and C5a levels when challenged with AF conidia in
vitro, and pre-opsonization with the murine protein rescued
complement activation and AF phagocytosis by neutrophils from
SAP-deficient and -competent mice. Also, in the presence of
Frontiers in Immunology | www.frontiersin.org 5
active complement, bone marrow-derived macrophages from
Apcs-/- animals had reduced production of cytokines when
exposed to AF conidia, further strengthening the point that
SAP exerts a complement-dependent pro-inflammatory role in
IA (11). Based on opsono-phagocytosis experiments with human
and mouse sera depleted of selected complement components,
we demonstrated that, when opsonized to AF, SAP promotes
activation of the CP, a major initiator of complement in AF
infections (79) (Figure 2B). As opposed to this, the pro-
phagocytic activity of PTX3 does not require C1q (and the CP)
(41, 42), likely due to the conidia-bound protein being unable to
bind C1q and/or induce the structural rearrangements that are
needed for this protein to activate the CP (80). Moreover, SAP-
mediated induction of complement culminates in the formation
on AF conidia of the membrane attack complex (MAC; C5b-C9),
and fungal killing, pointing to a complement-dependent
microbicidal effect of this pentraxin in the serum (11).

Adaptive immunity plays an important role in fungal
infections, whereby anti-AF IgG seroprevalence has been
described in geographic areas with prevalence of chronic
pulmonary aspergillosis, and anti-AF IgGs have been detected
in healthy subjects too (81). Also, neutrophils, major cellular
players in IPA, express FcgRs (78), and SAP has been proposed as
a ligand of FcgRs (70). Using antibodies to block FcgRs or IgG-
depleted plasma, we have indeed documented decreased
phagocytosis of AF by neutrophils, suggesting that the IgG/
FcgR axis is involved in fungal removal by these cells (11).
However, SAP retained its pro-phagocytic activity on
neutrophils even in conditions of FcgRs blockade or IgG
depletion, indicating that the antibody-mediated engagement
of FcgRs is dispensable for the SAP-dependent opsono-
phagocytosis of AF. Interestingly, pre-opsonization of conidia
with SAP potentiated C3 deposition even in IgG-depleted
plasma, a condition that mimics antibody deficiencies in
humans. Also, SAP amplified phagocytosis of AF by
monocytes and macrophages, in addition to neutrophils, but
failed to do so with DCs, possibly due to these cells expressing
low levels of complement receptors (82).

We have reported that single nucleotide polymorphisms in
the APCS gene of HSC donors (rs2808661 and rs3753869 SNPs)
are associated with the incidence of IPA in recipients of
allogeneic HSC transplants (11). Homozygous for the
pathological alleles are relatively rare in the general population,
however, these genotypes have a high degree of penetrance with
cumulative incidence of infection of ~50%. This suggests that
SAP is of pathogenetic relevance in human IPA, and indicates
that genetic variation in the APCS gene might be clinically
valuable, for example, to screen donors in HSC transplantation
and identify individuals at high risk of IPA. The genetic
association between SAP and IPA is quite surprising, given
that the expression of this pentraxin is traditionally confined to
the liver (72). However, local expression of SAP has been
documented in atherosclerotic (83) and fibrotic lesions (84),
and, more importantly, in silico analyses have detected APCS
mRNA in human and murine immune cells (including
neutrophils, monocytes and macrophages) in inflammatory
November 2021 | Volume 12 | Article 785883
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conditions. Also, APCS is expressed in peripheral monocytes
from COVID-19 patients (11). Interestingly, the concentration of
SAP increases in the BALF but not in the blood of IPA patients,
and lower levels of the protein have been found in the serum of
recipients of HSC from donors with the IPA-associated APCS
genotypes (11), suggesting that SAP is a local rather than
systemic player in IPA pathogenesis.

CRP has been reported to increase in the serum of IA patients
(85, 86), recognize fractions of the AF hyphal wall (87), and
promote AF phagocytosis by human neutrophils in vitro (88).
However, whether this short pentraxin is involved in the
pathogenesis of IA in vivo is unknown.
DISCUSSION

Experimental and clinical evidence indicates that the long
pentraxin PTX3 and the short pentraxin SAP are key players
in the host resistance to fungal infections, particularly those
mediated by A. fumigatus. These proteins both exert
complement-dependent pro-phagocytic and pro-killing
activities, and closely crosstalk to major cellular components of
the innate immune system, especially neutrophils. Interestingly,
they cooperate with distinct pathways of complement, and
exhibit diverse FcgRs requirements (11, 42), which points to
integrated and, possibly, complementary roles of the two
pentraxins in antifungal immunity. In this regard, PTX3 has
been shown to add on or synergizes with clinically established
antifungal drugs in several animal models of IPA (43, 89–91).
Whether this is the case for SAP too remains to be assessed,
however, based on our current mechanistic understanding, it is
envisaged that the combination of the two proteins might have
additive or synergic effects, and possibly pave the way to new
therapeutic options against drug-resistant AF strains (92).

In our model of AF infection in immunosuppressed mice the
recombinant human SAP had therapeutic efficacy at comparable
doses to those used in lung fibrosis (84) and influenza (93), which
fosters translation to prophylaxis and therapy of IPA in immune-
compromised patients (94). Also, given the fact that SAP
mediates assembly of MAC on AF and fungal killing in the
serum, this pentraxin might find therapeutic applications in
conditions of neutropenia too. The interaction of SAP with
Frontiers in Immunology | www.frontiersin.org 6
FcgRs is known to inhibit the alternative activation of
macrophages (69), which restrains tissue fibrosis in vivo (71,
84). Based on this rationale, SAP has been shown to have anti-
fibrotic activity in mouse models of chronic diseases of the
kidney (95) and lung (84), and in the prophylactic treatment
of influenza (93). More importantly, a recombinant form of
human SAP (PRM-151) has been proposed as a novel anti-
fibrotic immunomodulator in IPF patients, based on phase 2
randomized and placebo-controlled trials, with no serious
adverse reactions (75–77), which encourages clinical trials to
evaluate the efficacy of this short pentraxin, in addition to PTX3,
in the treatment of IA. In an era of COVID-19 pandemic, these
translational efforts are timely, given that a strong and
independent association has been established between IPA and
the COVID-19 disease (96, 97).
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