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Abstract: In a healthy body, homeostatic actions of osteoclasts and osteoblasts maintain the integrity
of the skeletal system. When cellular activities of osteoclasts and osteoblasts become abnormal,
pathological bone conditions, such as osteoporosis, can occur. Traditional imaging modalities, such
as radiographs, are insensitive to the early cellular changes that precede gross pathological findings,
often leading to delayed disease diagnoses and suboptimal therapeutic strategies. 18F-sodium
fluoride (18F-NaF)-positron emission tomography (PET) is an emerging imaging modality with
the potential for early diagnosis and monitoring of bone diseases through the detection of subtle
metabolic changes. Specifically, the dissociated 18F- is incorporated into hydroxyapatite, and its
uptake reflects osteoblastic activity and bone perfusion, allowing for the quantification of bone
turnover. While 18F-NaF-PET has traditionally been used to detect metastatic bone disease, recent
literature corroborates the use of 18F-NaF-PET in benign osseous conditions as well. In this review,
we discuss the cellular mechanisms of 18F-NaF-PET and examine recent findings on its clinical
application in diverse metabolic, autoimmune, and osteogenic bone disorders.

Keywords: 18F-sodium fluoride; 18F-NaF; PET; osteoporosis; Paget’s disease; hyperparathyroidism;
ankylosing spondylitis; rheumatoid arthritis; osteosarcoma

1. Introduction

Bone is a dynamic tissue that is constantly remodeled by the actions of bone-resorbing
osteoclasts and bone-forming osteoblasts. Formation of new bone by osteoblasts follows
the resorption of older bone by osteoclasts in a process called bone turnover [1]. Osteoclasts
are the primary bone-resorbing cells of the body from the hemopoietic stem cell lineage,
degrading the bone by attaching itself to the bone matrix, establishing an acidic microen-
vironment called the sealing zone, and secreting various proteases, such as cathepsin K,
that degrade matrix proteins [2]. Meanwhile, osteoblasts are primary bone-forming cells
of mesenchymal stem cell origin. The mature osteoblast, which is characterized by the
expression of osteocalcin and alkaline phosphatase, builds bone by depositing a collagen
type I-rich matrix that serves as a template for hydroxyapatite mineralization [3].

Abnormal bone formation and degradation are the underlying mechanisms behind
many pathological bone conditions. When bone resorption becomes excessive as a result of
physiological aging or hormonal imbalances, metabolic bone disease, such as osteoporosis,
can occur [4]. On the other hand, overactivated osteogenic cells from genetic mutations or
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cancer, such as osteosarcoma, can ossify tissues outside of the normal skeletal system [5].
Autoimmune conditions can involve both excessive resorption and formation, which can
result in spine fusion often seen in ankylosing spondylitis [6]. Regardless of the mechanism,
symptoms and pathological manifestations of these conditions are often preceded by
molecular alterations not adequately measured by traditional imaging techniques, such as
radiographs or dual-energy X-ray absorptiometry (DXA) [7]. Therefore, development of
imaging modalities sensitive to these microscopic changes could potentially revolutionize
the early clinical management of conditions involving abnormal bone metabolism.

18F-Sodium fluoride (18F-NaF)-positron emission tomography (PET)/computed to-
mography (CT) is an emerging imaging modality with great promise for the early diagnosis,
treatment, and monitoring of bone disorders. 18F-NaF labeled with fluorine-18 is a radioac-
tive tracer that specifically reflects blood flow to the bone and osteoblastic activity in either
osseous or soft tissue [8]. Historically, technetium-99m (99mTc)-labeled phosphate-based
bone tracers were widely adopted instead of 18F-NaF for skeletal imaging and scintigraphy
because they were better optimized for gamma cameras and had longer half-lives that
allowed for easier storage and delivery. However, 18F-NaF has experienced a renaissance as
a result of advancements in modern PET scanners that better capture its incidence photons,
the wide availability of PET/CT systems from the popularity of 18F-fluorodeoxyglucose
(18F-FDG) in oncological practices, a shortage of 99mTc, and the development of an efficient
method of production involving a single-step reaction in a cyclotron [9,10]. Furthermore,
18F-NaF offers several advantages over 99mTc-labeled agents. With comparable radiation
exposure, 18F-NaF has lower binding to protein and has rapid uptake and clearance in the
plasma that allows the acquisition of images with low background-to-bone ratios obtainable
within 60 to 90 min after tracer administration [11]. Often, whole-body 18F-NaF-PET scans
are acquired, allowing the detection of 18F-NaF-avid lesions throughout the body [12]. The
time between 18F-NaF administration and PET acquisition has been shown to be a negligent
factor in analyzing vascular 18F-NaF uptake [13]. Combining 18F-NaF-PET with CT has
the advantage of providing a means of attenuation correction and anatomical correlation,
thereby increasing the sensitivity and specificity in the diagnosis of skeletal disorders and
osseous lesions. Meanwhile, combining 18F-NaF-PET with MRI allows the simultaneous
detection of sites with abnormal 18F-NaF uptake and structural changes involving cartilage,
bone marrow, and soft tissue, such as inflammation and bone marrow edema [14].

One of the main methods of quantifying 18F-NaF uptake and bone turnover with 18F-
NaF-PET/CT is calculating the standardized uptake value (SUV), which reflects 18F-NaF
concentration (kBq/mL) in a particular region of interest (ROI) at a single static scan nor-
malized by body weight (kg) and injection activity (MBq) [15]. Another method described
by Hawkins et al. measures plasma clearance of 18F-NaF to bone mineral expressed as Ki,
in which the arterial input function is calculated using a 60-min dynamic scan and arterial
or venous blood sampling [16]. Specifically, the Hawkins method uses a nonlinear regres-
sion method composed of three compartments including plasma, bone extracellular fluid,
and bone mineral and four various rate constants describing the movement of 18F-NaF
through the compartments to calculate the net uptake or clearance of 18F-NaF from plasma
to the bone. However, due to the difficulty of 60-min imaging and the invasiveness of
blood sampling, calculating uptake rather than plasma clearance is preferable in clinical
settings [17].

18F-NaF-PET has been primarily used in the context of metastatic bone diseases, such
as prostate cancer; however, this effort has been misguided by a focus on imaging the
osseous reaction to skeletal metastases rather than on imaging the cancer cells themselves,
which can be accomplished with tumor-specific PET tracers. The specificity of 18F-NaF-PET
for osteoblastic activity and bone perfusion makes it suitable and ideal for diagnosing and
monitoring diverse pathological osseous conditions with abnormal bone turnover and
osteoblastic activity (Figure 1) [18–20]. In this review, we explore the molecular and cellular
basis of 18F-NaF-PET for detecting site-specific bone turnover and examine the recent
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application of 18F-NaF-PET as a diagnostic modality for pathological osseous conditions,
including metabolic, autoimmune, and osteogenic bone disorders.
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Figure 1. Schematic graph and representation of changes in bone disease with aging in osteoporosis.
Molecular changes that favor bone resorption over bone formation such as decreased estrogen,
increased RANKL/OPG ratio, and increased inflammatory cytokines such as TNF-α, IL-1, and IL-6
precede structural changes in the bone. Structural changes associated with osteoporotic bone include
decreased cortical thickness, increased trabecular spacing, and decreased bone mass density.

2. Cellular Basis of Detecting Altered Bone Lesions Using 18F-NaF-PET
2.1. Osteoblastic Activity

Pathologically altered osteoblastic activity is most straightforwardly captured by 18F-
NaF-PET, which detects incident photons resulting from positron emission of radioactive
fluoride ions that have become incorporated into the hydroxyapatite surface of newly
formed bone [21]. Osteoblasts are the main bone-building cells arising from the mes-
enchymal stem cell lineages. Proliferation and differentiation of osteoblast precursors are
maintained by the expression of Runx2, which drives their commitment to the osteoblast
lineage by upregulating canonical pathways, such as Hedgehog and Wnt. Subsequent
expression of Osterix/SP7 drives the differentiation of mature osteoblasts, which expresses
osteocalcin and alkaline phosphatases that can serve as biomarkers for systemic bone
turnover activity [22,23]. Excessive osteoblastic differentiation and activity can lead to
abnormal bone turnover seen in Paget’s disease or osteosarcoma, which can be assessed by
18F-NaF-PET.

2.2. Osteoclast–Osteoblast Coupling

Although 18F-NaF-PET is specific to osteoblast activity, it can also be sensitive for lytic
bone lesions that are accompanied by a component of abnormal osteoblast activity [11]. It
is well known that the activities of osteoclasts and osteoblasts are closely coupled to one
another—osteoclasts and osteoblasts communicate and interact with each other via cell-to-
cell contact and the secretion of cytokines. Osteoclasts, the multinucleated bone-resorbing
cells of the body, originate from the myeloid lineage of the hematopoietic stem cells in
the marrow. Proliferation and differentiation of osteoclast precursor cells are regulated by
macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κ B
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ligand (RANKL), respectively [24,25]. Under pathological conditions, osteoclasts can also
become activated by various inflammatory cytokines, such as tumor necrosis factor-α (TNF-
α), interleukin (IL)-1, and IL-6 [24]. Osteoblasts directly promote osteoclast differentiation
by secreting M-CSF and RANKL as well as their inhibition by secreting osteoprotegerin
(OPG), which is a decoy receptor for RANKL. Similarly, osteoclasts can promote osteoblasts
and bone formation by releasing transforming growth factor beta (TGF-β) and insulin-like
growth factor 1 (IGF-1) from the bone matrix [26,27]. Anti-resorptive therapies, such as
denosumab, can obstruct the osteoclast–osteoblast communication by preventing RANKL
from binding to receptor activator of nuclear factor-κ B (RANK) on the osteoclast surface,
inhibit osteoclast formation, and decrease osteoclast-derived coupling factors that stimulate
bone formation by osteoblasts, which can all be detected and monitored using 18F-NaF-
PET [28,29].

2.3. Bone Perfusion

As 18F-NaF is administered intravenously and travels to the region of uptake via
blood vessels, differential vasculature to the bone also influences 18F-NaF uptake [15]. Vari-
ations in regional bone perfusion to the different bones of the body have been previously
demonstrated with 18F-NaF-PET, and abnormal 18F-NaF uptake in pathological conditions
may reflect altered vascularity and angiogenesis, which are known to be associated with
bone turnover [30]. In fact, angiogenesis is implicated in several osteogenesis processes,
such as bone development, fracture repair, and pannus formation in rheumatoid arthritis
(RA). Angiogenesis is stimulated under hypoxic conditions by hypoxia-inducible factors
(HIFs), leading to the expression of the master transcriptional regulator vascular endothe-
lial growth factor (VEGF). In normal bone development, VEGF couples angiogenesis and
osteogenesis together, regulating the proliferation of endothelial cells and stimulating
osteogenesis [31]. In pathological conditions, such as RA, pannus formation in the joint is
characterized by increased vascularity, while osteoporotic bone is hypothesized to exhibit
decreased bone perfusion [32,33]. As such, 18F-NaF-PET may be a suitable modality for
examining abnormal blood flow to the bone in many disease conditions. Overall, elucidat-
ing the cellular mechanisms behind pathological 18F-NaF uptake will widen the clinical
application of 18F-NaF-PET and strengthen the rationale and molecular basis for its use
(Figure 2).
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3. 18F-NaF-PET in Metabolic Bone Disorders
3.1. Osteoporosis

Osteoporosis is a metabolic bone disorder characterized by abnormally low bone
mineral density (BMD) and impaired bone microstructural integrity, leading to fragile
bone greatly susceptible to fractures and ultimately decreased quality of life. Molecularly,
osteoporosis is known to result from an imbalance in bone homeostasis in which bone
resorption by osteoclasts disproportionally exceeds bone formation by osteoblasts as well
as decreased BMD from impaired bone perfusion associated with aging [4,34,35].

The primary demographic group affected by osteoporosis includes postmenopausal
women with excessive bone degradation associated with increased aging and estrogen
deficiency, which increase osteoclast activity [36]. Vertebral and hip fractures are the most
common clinical manifestations of osteoporosis, often resulting in complications, such as
pain, decreased mobility, disability, and mortality [37]. A clinical diagnosis of osteoporosis
is made based on either fragility fracture or quantitative measurement of BMD using dual-
energy X-ray absorptiometry (DXA) [38]. While DXA remains the most frequently used
modality to measure BMD and diagnose osteoporosis, it has several downsides. These
limitations include low resolution to bone microarchitecture and quality, lack of three-
dimensional information, and inability to discriminate between cortical and trabecular
bone [7,39]. Since molecular alterations in the bone often precede gross structural changes
seen in osteoporosis, use of modalities with greater resolution, depth, and molecular sensi-
tivity, such as 18F-NaF-PET/CT, could be revolutionary for early diagnosis of osteoporosis
and other metabolic bone diseases.

18F-NaF-PET is a sensitive modality capable of monitoring the molecular effects of
osteoporosis (Figure 3). A study with 72 postmenopausal women who were placed into
normal, osteopenic, or osteoporotic groups according to their BMD T-score discovered
that the osteoporotic group had significantly decreased plasma clearance of 18F-NaF to
the bone mineral compartment of the lumbar spine compared to both osteopenic and
normal groups, suggesting that 18F-NaF-PET is a useful biomarker capable of detecting the
summative effect of impaired osteoblast function and decreased bone perfusion in patients
with osteoporosis [40]. Another study used 18F-NaF-PET/CT-derived SUV measurements
to derive a score called the bone metabolism score (BMS) that could serve as a biomarker
of age-related metabolic changes at the femoral neck, which is one of the most common
sites for osteoporotic bone fracture. These studies indicate that 18F-NaF-PET/CT could
be clinically implemented to determine osteoporotic changes in the bone with age and be
used for better guided therapeutic decision-making [41].

In addition, 18F-NaF-PET has been shown to be capable of detecting molecular alter-
ations due to therapeutic interventions in patients with osteoporosis, possibly earlier than
other traditional markers or imaging modalities. A study of 24 postmenopausal women
with history of glucocorticoid-induced osteoporosis employed 18F-NaF-PET to determine
if there were any significant changes in the 18F-NaF uptake in the bones upon treatment
with alendronate. Alendronate is an anti-resorptive agent and a type of bisphosphonate,
which binds to hydroxyapatite bone, induces osteoclast apoptosis, and decreases bone
resorption [42]. After 3 months of treatment, a significant decrease in 18F-NaF uptake in
the lumbar spine was detected, while there were no significant changes in BMD or serum
bone-specific alkaline phosphate (BSALP) levels in the same timeframe [43]. Decreased
18F-NaF uptake can be explained by the observation that bisphosphonates can indirectly in-
hibit bone formation by directly inhibiting bone resorption, as the two processes are closely
coupled [44]. Increased BMD from the bisphosphonate treatment reflects the relatively
slower attenuation of osteoblast activity compared to that of osteoclasts, resulting in net
bone formation [39]. Similarly, a study of 18 women considered osteoporotic or osteopenic
by their BMD T-scores revealed that after six months of bisphosphonate risedronate therapy,
significant decreases in mean vertebral Ki and BSALP levels were detected [45].
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Figure 3. Aging and 18F-NaF uptake in the bone. Maximum intensity projection 18F-NaF-PET images
of two healthy subjects, (A) a 26-year-old female and (B) a 62-year-old female. The difference in 18F-
NaF uptake is visible particularly in the spine, pelvis, and proximal femur, which can be quantified
in longitudinal studies to monitor disease progression and therapeutic response.

Overall, studies suggest that 18F-NaF-PET may be used to detect decreased bone
turnover activity during anti-resorptive therapy. In addition to detecting the effects of
bisphosphonates, 18F-NaF-PET has also been used to monitor the effect of bone anabolic
agents, such as teriparatide, which increases both osteoblast and osteoclast activities.
Teriparatide treatment has been observed to increase 18F-NaF uptake in the bones of osteo-
porotic patients [46,47]. It would be interesting to observe the effect of other therapeutic
anti-resorptive agents, such as denosumab, on the 18F-NaF uptake of osteoporotic patients.
It has been shown that denosumab treatment in patients with fibrous dysplasia/McCune–
Albright syndrome, a rare condition in which fibrous tissues replace the bone, decreases the
disease burden measured by 18F-NaF-PET/CT, as well as serum procollagen-1 N-terminal
peptide (P1NP) and alkaline phosphatase levels [29].

Further investigation on the effects of osteoporosis and its treatments in different
skeletal sites could be crucial for the implementation of 18F-NaF-PET into the clinical
management regimen, given that 18F-NaF uptake may vary depending on the type and
site of the bone being analyzed as well as the type of bisphosphonate used. A study
using 18F-NaF-PET to examine bone metabolism in the lumbar spine, hip, and femur
after discontinuation of either alendronate or risedronate in 20 postmenopausal women
found that bone metabolism at spine and femoral neck did not significantly change after
discontinuation for both alendronate and risedronate groups, but 18F-NaF uptake measured
by SUV significantly increased at femoral shaft and hip in the alendronate treatment group
only [48]. Differential 18F-NaF uptake depending on bone has also been demonstrated
previously. For instance, correlations between 18F-NaF uptake measured by SUV and age
at the humeral shaft and lumbar spine have been reported to show opposite trends [49].
Overall, the validation of 18F-NaF-PET for the treatment and diagnosis of osteoporosis
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with further studies will certainly enhance the way metabolic bone diseases are diagnosed
and treated [7,50].

3.2. Paget’s Disease

Paget’s disease of the bone, or osteitis deformans, is a metabolic bone disease caused by
increased bone turnover. While it has traditionally been classified as a disease of osteoclasts,
abnormality of osteoblasts in the condition is also recently being recognized. Pathogenesis
of Paget’s disease is characterized by increased activation of multinucleated osteoclasts
and excessive bone resorption followed by the abnormal bone formation of osteoblast
that results in structurally unstable and disorganized new bone [51]. The accelerated
bone remodeling and turnover cause overgrowth of bone at either single (monostotic)
or multiple (polyostotic) sites in the body, such as the skull and spine. Bisphosphonates
remain the first-line of treatment, as they interfere with osteoclast function and survival to
decrease the rate of bone turnover [52].

18F-NaF-PET has great potential to detect and monitor Paget’s disease, even when
it remains in asymptomatic form, because 18F-NaF-PET is sensitive to the increased os-
teoblast activity seen in pagetic bone. A study of 7 patients with Paget’s disease involving
the vertebrae demonstrated increased 18F-NaF plasma clearance in pagetic vertebra as
measured by Ki compared to unaffected bone, suggesting that 18F-NaF-PET is a suitable
modality for both detecting and localizing pagetic bone [53]. 18F-NaF-PET has also been
used to monitor and quantify treatment progress in Paget’s disease as well. In a study with
14 patients with either monostotic or polyostotic forms of Paget’s disease, 18F-NaF-PET de-
tected significantly decreased 18F-NaF uptake as measured by the maximum SUV after one
month of bisphosphonate treatment in all but one patient. While 18F-NaF uptake remained
at high levels at one month compared to normal control bone, all biochemical markers of
bone turnover were normal in six of nine patients with monostotic disease, suggesting that
18F-NaF-PET may be a more sensitive method of monitoring therapy response, especially
for subjects with the monostotic form [54].

3.3. Hyperparathyroidism

Hyperparathyroidism is an endocrine condition with excess production of parathy-
roid hormone (PTH) by parathyroid glands and hypercalcemia. Routine measurements of
serum calcium levels allow for early detection of hyperparathyroidism, but patients with
asymptomatic hyperparathyroidism can still present with osteoporosis and vertebral frac-
tures as a result of abnormal bone homeostasis [55]. PTH activates osteoclasts indirectly by
inducing osteoblasts to express RANKL and increase calcium levels by stimulating bone re-
sorption [56]. Rarely, severe forms of primary, secondary, and tertiary hyperparathyroidism
can manifest as osteitis fibrosa cystica, which are fibrous cysts resulting from excessive
bone destruction by osteoclasts. When the cysts are filled with brown hemosiderin deposits,
a non-neoplastic lesion called brown tumor can arise [57].

18F-NaF-PET/CT is useful for detecting osteitis fibrosa cystica and brown tumors
by showing either increased osteoblast activity or high vascularization in the lesions [58].
There has been a case report of a 16-year-old boy with osteitis fibrosa cystica shown to
have increased tracer avidity on 18F-NaF-PET/CT [59]. A retrospective series of eight
patients with primary hyperparathyroidism employed 18F-NaF-PET/CT to identify a total
of 72 brown tumors with an average maximum SUV of 17.5 ± 7.8 [60]. In another case
report, a patient without any bone or joint pain was diagnosed with secondary hyper-
parathyroidism by the detection of a brown tumor while ruling out any bone malignancy
with 18F-NaF-PET/CT, highlighting the sensitivity of this imaging modality [61].

4. 18F-NaF-PET in Autoimmune Diseases
4.1. Ankylosing Spondylitis

Ankylosing spondylitis (AS) is a rheumatic disease characterized by inflammatory
arthritis of joints in axial bones, such as those of the spine as well as the sacroiliac joints. It
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commonly manifests as chronic back pain, predominantly affecting males under the age
of 45 years. Patients with severe AS can suffer from fusion (ankylosing) of the spine as
well as syndesmophyte formation due to abnormal bone deposition in the context of a
chronic inflammatory state [6]. The main imaging modalities currently used to diagnose
AS remain conventional radiography and magnetic resonance imaging (MRI). Radiographs
are used to identify abnormalities in the sacroiliac joint such as syndesmophytes, erosions,
and sclerosis, but they are often subtle and not identified until the advanced stages of the
disease. On the other hand, MRI has the advantage of detecting inflammatory changes
with greater sensitivity at earlier disease progression [62]. Regardless, both modalities
remain insensitive to the pathological bone turnover present in AS, and there is a dire need
to improve methods of early detection and characterization.

Integrating MRI with 18F-NaF-PET may enhance the early diagnoses of AS by the
detection of inflammatory lesions with abnormal bone turnover and may be useful in
investigating the relationship between molecular and structural abnormalities seen in
AS. A study investigating 12 male patients with AS discovered that anterior vertebral
corners with spinal inflammation detected by MRI and syndesmophyte identified by
conventional radiograph had significantly higher 18F-NaF uptake measured by maximum
SUV compared to control regions, suggesting a link between inflammation and osteoblastic
activity [63]. A follow-up of the study after two years found that new syndesmophytes
formed significantly more frequently in anterior vertebral corners with increased 18F-NaF
uptake lesions at baseline compared to those without, suggesting that increased 18F-NaF
uptake may predict new syndesmophyte formation in the later disease stages. On the other
hand, neither acute nor chronic inflammatory lesions assessed by MRI were predictive of
future syndesmophyte formation [64]. Additional studies using 18F-NaF-PET/MRI have
also shown that increased 18F-NaF uptake was most associated with areas of acute spinal
inflammation marked as bone marrow edema, while pathologic lesions such as erosions,
sclerosis, and ankylosis did not [14,65].

Another hybrid approach for analyzing abnormal bone-turnover lesions with high
spatial resolution and diagnosing AS is 18F-NaF-PET/CT. In a single examination, 18F-NaF-
PET/CT allows the assessment of the entire skeleton and allows quantification of bone
turnover. A study of 15 patients with AS used a ratio of SUV in the sacroiliac joint to that
of sacrum derived from 18F-NaF-PET/CT with a defined cut-off to diagnose sacroiliitis
with an overall sensitivity of 80% [66]. A retrospective study of 68 patients with AS
similarly validated the diagnostic value of 18F-NaF-PET/CT, which had a diagnostic rate
of 72.1% with sensitivity to enthesopathy, syndesmophytes and symmetric sacroiliitis [67].
Another study involving 29 patients with AS demonstrated that there was a significant
correlation between the number of 18F-NaF-PET/CT positive sites and disease activity
indexes, suggesting that 18F-NaF-PET may be useful for quantifying the severity of the
disease [68].

18F-NaF-PET/CT may serve as a biomarker for predicting treatment response in AS
as well. In patients with AS receiving a TNF-α blocker, the maximum SUV of the spine
derived from 18F-NaF-PET/CT reliably predicted therapy response as measured by the
Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) in responders and non-
responders [69]. Similarly, a semi-quantitative index called lesion-to-background ratio
derived from 18F-NaF-PET/CT images of the spine in AS patients using anti-TNF-α or anti-
inflammatory drugs had a significant correlation with follow-up BASDAI score, suggesting
that 18F-NaF-PET/CT could be helpful in predicting treatment response [70].

4.2. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic inflammatory disease of the joint that leads to
the destruction and erosion of cartilage and bone. In RA, various immune cells, such as
macrophages and T cells, infiltrate the synovial fluid and secrete inflammatory cytokines,
such as TNF-α and IL-6, to stimulate bone resorption [71]. Damage to the joints by RA
severely limits mobility, increases risks for premature death, and carries socioeconomic
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costs [72]. 18F-NaF-PET/CT has been demonstrated to be sensitive to bone erosions seen
in the joints of RA patients. In a study involving 12 RA patients undergoing biological
treatment, 18F-NaF uptake measured by maximum SUV was significantly higher in RA-
affected, erosive joints compared to non-erosive ones [73]. 18F-NaF uptake was also found
to correlate with the Kellgren–Lawrence scores in nine RA patients who underwent both
18F-NaF-PET/CT imaging and conventional radiography of the knee [74]. In addition to
identifying areas of erosion due to RA, 18F-NaF-PET/CT could be used for the early detec-
tion of RA disease activity. In a case report of a 67-year-old male, 18F-NaF-PET/CT detected
18 joints with 18F-NaF abnormalities that were undetectable by 18F-FDG, ultrasound, or
clinical examinations prior to RA diagnosis confirmed later [75]. In addition to abnormal
bone turnover in the joints, 18F-NaF-PET/CT has been shown to detect abdominal aortic
calcification in RA patients [76].

Inhibitory effects of the RA microenvironment on osteoblasts raise the possibility that
increased 18F-NaF uptake in RA-affected joints may reflect significantly increased vascular-
ity and 18F-NaF flow to the skeletal lesion in addition to increased bone turnover [77,78].
Thus, clarifying the source of increased 18F-NaF uptake may be helpful in determining the
precise cellular mechanism behind joint erosions in RA.

5. 18F-NaF-PET in Osteogenic Bone Disorders
5.1. Osteosarcoma

Osteosarcoma is a primary malignant bone tumor characterized by excessive produc-
tion of osteoid and immature bone due to overactive bone-forming malignant cells [79]. The
malignant osteoblastic cells arise from the accumulation of gene mutations, such as loss of
p53, that results in increased osteogenic differentiation of mesenchymal stem cells [80,81].
There have been numerous case reports identifying osseous lesions and metastases in
patients with osteosarcoma using 18F-NaF-PET [82–86]. In a prospective evaluation of
99mTc-MDP scintigraphy, 18F-NaF-PET/CT, and 18F-FDG-PET/CT for identifying skeletal
metastases, researchers were able to use 18F-NaF-PET/CT to identify skeletal lesions and
metastases not identified by the other two modalities, highlighting the sensitivity of 18F-
NaF-PET/CT for detecting osseous lesions [82]. In a study of patients with osteoblastic
skeletal metastatic diseases, such as osteosarcoma, 18F-NaF-PET/CT was employed to cal-
culate the skeletal tumor burden using a maximum SUV threshold of 10 in a reproducible
way between observers [87]. Measurements derived from 18F-NaF-PET/CT may provide
patients and clinicians with a quantifiable way of monitoring disease progression and man-
agement [87,88]. In fact, in a clinical trial of 18 patients with osteosarcoma receiving one
to six cycles of radium-223 dichloride for treatment, researchers used 18F-NaF-PET/CT to
derive a new measurement called NAFCIST (Na18F PET response Criteria in Solid Tumors)
that significantly correlated with overall survival rate [89]. As such, 18F-NaF-PET/CT is a
promising modality to identify and monitor osteosarcoma and osteoblastic metastases in a
quantifiable manner.

5.2. Melorheostosis

Melorheostosis is a rare, benign bone disorder characterized by bone overgrowth
typically in the long bones leading to pain and functional disabilities. While the molecular
mechanism behind melorheostosis is still under investigation, it is suspected that enhanced
ERK1/2 activation and pathway results in greater osteoblast surface and increased deposi-
tion of unmineralized bone matrix or osteoid [90]. The “dripping candle wax” appearance
on conventional radiography followed by sclerotic lesions on CT have been traditionally
used to confirm the diagnosis. Melorheostotic lesions in either the skeleton or soft tissue
exhibit highly increased bone-turnover and 18F-NaF uptake, suggesting that 18F-NaF-
PET/CT could be highly valuable for both diagnoses and monitoring of melorheostosis
and its treatment [90–92]. A clinical study on melorheostosis employed 18F-NaF-PET/CT
to confirm its diagnosis and subsequent exclusion of patient subjects if they did not exhibit
increased 18F-NaF uptake in the lesions [93]. The combined nature of 18F-NaF-PET/CT
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may enable clinicians to more efficiently and comprehensively diagnose and examine
melorheostosis compared to other imaging modalities—PET can determine the intensity
and the extent of bone overgrowth, while CT can be used to locate and visualize ossifica-
tions and tissue/bone abnormalities [94]. Another advantage of 18F-NaF-PET/CT may be
its ability to detect early-state melorheostotic lesions with low-level density on CT through
the recognition of significant 18F-NaF regional uptake [95].

5.3. Fibrodysplasia Ossificans Progressiva
18F-NaF-PET/CT shows great promise for early detection and monitoring of hetero-

topic ossification, or external growth of bone outside of the normal skeletal system [50,96].
Recently, the potential of 18F-NaF-PET/CT in diagnosing and predicting the onset of
heterotopic ossification in fibrodysplasia ossificans progressiva (FOP) has been gaining
traction. FOP is a rare autosomal dominant genetic disorder characterized by inflammatory
episodes or “flare-ups” that often precede endochondral heterotopic ossification, which
often leads to pain and immobility. Traditionally, FOP imaging typically involves plain
radiographs or CT scans. Plain radiographs are cheap and readily available, but they
cannot detect lesions undergoing early inflammatory stage and are limited in calculating
the volume of heterotopic bone. CT scans allow volumetric measurements but are also of
limited value in detecting subtle edema associated with early stages of flare-ups [97,98].
18F-NaF-PET has been shown to be capable of detecting the flare-ups and predicting the
location of heterotopic ossification in early disease progress before it is detectable by CT
scan alone [99,100]. In a case study of an FOP patient who underwent maxillofacial surgery,
18F-NaF-PET/CT was used to predict the onset of new heterotopic bone in a region with
increased 18F-NaF uptake [99]. In a different study, increased 18F-NaF uptake was associ-
ated with six progressive but asymptomatic heterotopic lesions that were found in four
out of five FOP patients. These results suggest that 18F-NaF-PET is capable of identifying
heterotopic ossification lesions without any preceding flare-ups, demonstrating superiority
over MRI [101,102]. In fact, 18F-NaF is currently the only in vivo biomarker recognized and
available for detecting and monitoring the progression of FOP [103].

6. Conclusions
18F-NaF-PET is a promising imaging modality for the early detection and monitoring

of pathological bone diseases that affect osteoblast activity, osteoclast–osteoblast coupling,
and bone perfusion. The clinical application of 18F-NaF-PET has been examined in a wide
variety of metabolic, autoimmune, and osteogenic bone disorders. Studies of metabolic
bone diseases, such as osteoporosis, have confirmed that 18F-NaF-PET is a suitable imaging
modality for detecting abnormal bone homeostasis as well as therapeutic responses to
anti-resorptive therapies. In inflammatory joint disorders, such as AS and RA, 18F-NaF-
PET could be employed to identify future pathological sites involving syndesmophyte
formation or bone erosion. Additionally, the use of 18F-NaF-PET for the diagnosis of rare
osteogenic bone disorders or osteosarcomas with significant bone formation activity is
corroborated by the literature. Overall, research on the diagnostic role of 18F-NaF-PET is
expanding, with the potential for revolutionizing the delivery of patient care.
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