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Abstract: Live-cell imaging of single HIV-1 entry offers a unique opportunity to delineate the
spatio-temporal regulation of infection. Novel virus labeling and imaging approaches enable the
visualization of key steps of HIV-1 entry leading to nuclear import, integration into the host genome,
and viral protein expression. Here, we discuss single virus imaging strategies, focusing on live-cell
imaging of single virus fusion and productive uncoating that culminates in HIV-1 infection.
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1. Introduction

The human immune deficiency virus type-I (HIV-1) enters target cells by membrane fusion
mediated by interactions between the viral envelope glycoprotein gp120/gp41 with CD4 and
chemokine receptors, CCR5 and CXCR4. HIV-1 fusion results in the cytoplasmic delivery of the conical
core composed of ~1600 molecules of capsid protein (CA) that encloses two copies of positive-strand
viral genomic RNA (vRNA), the viral enzymes reverse transcriptase (RT), and integrase (IN), as well
as other viral and cellular proteins (reviewed in [1]). The released viral core is transported from the
fusion sites towards the nucleus by CA-interacting cellular motor proteins [2–6]. Loss of CA from
the viral core is referred to as uncoating [7–9]. Timely uncoating is linked to the synthesis of the
viral cDNA (vDNA) from vRNA by RT. The resulting pre-integration complex (PIC) containing the
newly formed vDNA and IN molecules is transported through interactions with essential host factors
into the nucleus, where IN catalyzes stable insertion of vDNA into actively transcribing regions of
chromatin [10–12]. Upon HIV-1 DNA integration, the cellular transcription and translation machinery
produces the viral genomic RNA and structural proteins that assemble at the plasma membrane and
form viral particles that exit the cell for a subsequent round of infection.

The HIV-1 life cycle has been traditionally studied using genetic, molecular biology,
structural biology, and biochemical tools. The more recent development of live cell fluorescent probes,
along with advancements in microscopic techniques, has opened new avenues for visualizing virus
infection in living cells. Importantly, the ability to fluorescently tag different viral components has
provided new insights into HIV-1 biology (reviewed in [13–17]). Live-cell-based virus imaging
provided a better understanding of key steps of infection, including virus–cell fusion [18–26],
cytoplasmic trafficking of HIV-1 cores [2–6], uncoating [4,27–30], virus nuclear import [28,31–33],
transcription [34–36], virus assembly and budding [37–46] and cell–cell transmission [47–50].

Here, we will review new fluorescent labeling approaches, focusing on those developed in our
laboratory, that enable robust live-cell visualization of single HIV-1 fusion and uncoating that result in
productive infection.
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2. A Bi-Functional Reporter of Single Virus Protease Activity and Virus–Cell Fusion

We and others have implemented real-time imaging of single virus-cell fusion by co-labeling
HIV-1 particles with a fluid-phase and fiduciary markers [18–26,29]. Here, a fluid-phase marker
is introduced into virions by inserting a green fluorescent protein (GFP)flanked by viral protease
cleavage sites between the matrix (MA) and CA domains of the Gag polyprotein (referred to as
Gag-internal-GFP or Gag-iGFP) [19,39]. During virus maturation, GFP molecules are released from
Gag-iGFP by the viral protease and remain trapped inside the virion. Viral fusion is sensitively
detected as a loss of this fluid-phase marker, and the inclusion of a fiduciary marker associated
with the viral core or the viral membrane allows robust particle tracking before and after fusion.
Labeling of the viral core can be accomplished by fluorescently tagging Vpr (viral protein R) or
IN [2,31,51–54] or using the virion-packaged cellular proteins, such as apolipoprotein B mRNA editing
enzyme, catalytic polypeptide-like APOBEC-3F (A3F) [33]. The HIV-1 membrane has been labeled by
incorporating lipophilic dyes [2,19] or fluorescently labeled transmembrane proteins [23], attaching
quantum dots [55], or by incorporating unnatural sugars into the viral surface glycoproteins followed
by click-labeling with an organic dye [20].

The above virus co-labeling techniques require cell transfection with multiple plasmids, including
those encoding for different fluorescent constructs. A major disadvantage of these approaches is
the relatively poor HIV-1 co-labeling efficiency, which tends to vary between viral preparations,
and reduced infectivity [22]. In order to overcome these limitations, we have recently developed
a dual-color fluorescent marker that is incorporated into viral particles through the Vpr protein.
This marker, referred to as mCherry-2xCL-eYFP-Vpr, contains a monomeric Cherry/enhanced
yellow fluorescent protein (mCherry/eYFP) tandem linked to the N-terminus of HIV-1 Vpr
(Figure 1a) [22]. A short sequence containing a tandem HIV-1 protease cleavage site (2xCL) links the
two fluorescent proteins. Upon HIV-1 protease activation, this linker is cleaved, ensuring the release
of mCherry from eYFP-Vpr, which remains associated with the viral core (Figure 1b). The produced
free mCherry molecules serve as a fluid-phase marker for sensitive detection of single virus fusion.
Labeling of HIV-1 particles with mCherry-2xCL-eYFP-Vpr results in a nearly perfect colocalization
of the two markers incorporated into the virions at 1:1 ratio (Figure 1c), without compromising the
virus infectivity.

An important advantage of the 1:1 ratio of mCherry and eYFP molecules in virions containing
mCherry-2xCL-eYFP-Vpr is the ability to assess the viral protease activity in single particles [22].
The close proximity of mCherry and eYFP in the uncleaved bi-functional construct results in efficient
Forster Resonance Energy Transfer (FRET) between eYFP and mCherry. Thus, FRET measurements or
simply the measurements of the relative intensities of eYFP (donor) and mCherry (acceptor) enable the
discrimination between immature (high FRET, low eYFP signal) and mature (low FRET, high eYFP
signal) viruses (Figure 1d). Further support for the FRET-based prediction of the virus maturation
status is provided by an excellent correlation between low FRET and release of mCherry from virions
upon saponin treatment (Figure 1d).

Importantly, the fixed ratio of eYFP and mCherry molecules in virions allows streamlining the
detection of viral fusion, using software that automatically detect changes in “color-balance” (the
normalized difference between yellow and red fluorescence) of individual particles in live cells. Here,
post-fusion particles are readily detected by identifying eYFP-Vpr puncta that have very low or no
mCherry signal (Figure 1e,f). However, quantifying post-fusion cores in the cytoplasm over time
is challenging due to the loss of eYFP-Vpr signal within 20–30 min after the viral content release
in HeLa- and CV1-derived cell lines [22,24]. This problem can be alleviated through the use of
proteasome inhibitors that minimize the loss of eYFP-Vpr puncta and allow reliable quantification of
post-fusion HIV-1 cores, following the quick and efficient fusion mediated by the Vesicular Stomatitis
Virus G (VSV-G) or Avian Sarcoma and Leukosis Virus (ASLV) Env glycoproteins [22]. Importantly,
this analysis can be carried out after fixing cells at varied times post-infection, without real-time single
particle tracking.
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Figure 1. Bi-functional fluorescence marker for HIV-1 protease activity and fusion. (a) Illustration of 
the bi-functional mCherry-2xCL-eYFP-Vpr marker; (b) Cartoon of immature and mature HIV-1 
particles labeled with mCherry-2xCL-eYFP-Vpr. eYFP fluorescence is quenched in immature viral 
particles as a result of FRET between the eYFP and mCherry. eYFP fluorescence is enhanced in mature 
virions following the release of mCherry from the bi-functional marker; (c) A representative image of 
single viral particles bound to a cover glass showing a nearly perfect colocalization of mCherry and 
eYFP; (d) Immature viruses produced in the presence of saquinavir (SQV) exhibit high Forster 
Resonance Energy Transfer (FRET) between eYFP and mCherry (middle panel). Corresponding 
fluorescence images of single virions before (left) and after (right) saponin lysis (+SAP) are shown; (e) 
Single virus fusion is detected based upon a quick release of fluid-phase mCherry marker from eYFP-
Vpr labeled mature HIV-1 core. The fluorescence intensity traces of the fusing particle are shown on 
the right; (f) Automated detection of post-fusion HIV-1 cores in CV1 cells as eYFP-Vpr-labeled labeled 
puncta negative for mCherry (marked by white diamonds). Data are adapted from Sood et al., 2017. 

3. Labeling CA to Study Single HIV-1 Uncoating 

Disassembly of the HIV-1 core after delivery into the cytoplasm, which is commonly referred to 
as uncoating, is arguably the least understood step of virus infection. Whereas CA is the main 
determinant for the cytoplasmic transport, nuclear import, and integration site selection (reviewed 
in [8,9,12,56]), a partial or complete disassembly of the conical capsid shell is thought to be required 
for HIV-1 nuclear entry. Several excellent studies, using biochemistry, molecular/cell biology, and 
fixed-cell-based microscopy tools, have contributed to our understanding of the uncoating process 
(reviewed in [8,9]). These studies led to the realization that the timing and localization of uncoating 
are key to understanding the multiple roles of CA in HIV-1 entry. Live cell imaging of single HIV-1 
uncoating can uniquely reveal the spatio-temporal regulation of this process during viral infection. 
However, the development of live-cell imaging assays to visualize single HIV-1 uncoating has been 
limited, primarily due to difficulties associated with fluorescent labeling of CA without 
compromising the virus infectivity [30,57,58]. For instance, tagging the CA protein with a small 

Figure 1. Bi-functional fluorescence marker for HIV-1 protease activity and fusion. (a) Illustration of the
bi-functional mCherry-2xCL-eYFP-Vpr marker; (b) Cartoon of immature and mature HIV-1 particles
labeled with mCherry-2xCL-eYFP-Vpr. eYFP fluorescence is quenched in immature viral particles as
a result of FRET between the eYFP and mCherry. eYFP fluorescence is enhanced in mature virions
following the release of mCherry from the bi-functional marker; (c) A representative image of single
viral particles bound to a cover glass showing a nearly perfect colocalization of mCherry and eYFP;
(d) Immature viruses produced in the presence of saquinavir (SQV) exhibit high Forster Resonance
Energy Transfer (FRET) between eYFP and mCherry (middle panel). Corresponding fluorescence
images of single virions before (left) and after (right) saponin lysis (+SAP) are shown; (e) Single virus
fusion is detected based upon a quick release of fluid-phase mCherry marker from eYFP-Vpr labeled
mature HIV-1 core. The fluorescence intensity traces of the fusing particle are shown on the right;
(f) Automated detection of post-fusion HIV-1 cores in CV1 cells as eYFP-Vpr-labeled labeled puncta
negative for mCherry (marked by white diamonds). Data are adapted from Sood et al., 2017.

3. Labeling CA to Study Single HIV-1 Uncoating

Disassembly of the HIV-1 core after delivery into the cytoplasm, which is commonly referred
to as uncoating, is arguably the least understood step of virus infection. Whereas CA is the main
determinant for the cytoplasmic transport, nuclear import, and integration site selection (reviewed
in [8,9,12,56]), a partial or complete disassembly of the conical capsid shell is thought to be required
for HIV-1 nuclear entry. Several excellent studies, using biochemistry, molecular/cell biology,
and fixed-cell-based microscopy tools, have contributed to our understanding of the uncoating
process (reviewed in [8,9]). These studies led to the realization that the timing and localization
of uncoating are key to understanding the multiple roles of CA in HIV-1 entry. Live cell imaging
of single HIV-1 uncoating can uniquely reveal the spatio-temporal regulation of this process during
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viral infection. However, the development of live-cell imaging assays to visualize single HIV-1
uncoating has been limited, primarily due to difficulties associated with fluorescent labeling of CA
without compromising the virus infectivity [30,57,58]. For instance, tagging the CA protein with a
small tetracysteine (TC) motif that can be labeled with bi-arsenical fluorescent dyes, compromises
virus infectivity [30,57,58]. This defect could be partially rescued by mixing labeled and unlabeled Gag
proteins [29,30,57].

To circumvent the disruptive effects of direct CA labeling, we have recently designed a novel
cyclophilin A (CypA) based marker, where the carboxy-terminal domain of CypA is fused to the
Discosoma sp. Red fluorescent protein (DsRed), to generate CypA-DsRed [27]. Like CypA, CypA-DsRed
naturally incorporates into virions by specifically binding to the residues G89 and P90 within the
CypA binding loop of CA [59–61]. However, unlike the CypA fusions with monomeric fluorescent
proteins [57], the tetrameric CypA-DsRed efficiently incorporates into virions (Figure 2a) as a result of
the increased binding avidity [62]. Importantly, the high-avidity binding of CypA-DsRed to Gag/CA
in virus-producing cells does not considerably affect HIV-1 infectivity in TZM-bl or Jurkat cells.
Perhaps owing to a sub-stoichiometric binding to Gag/CA [27,28], CypA-DsRed incorporation into
HIV-1 does not perturb the CA interactions with the target cell restriction factors, TRIMCyp [63,64],
and the cytosolic CPSF6-358 fragment [65]. Also, overexpression of this CA marker in target TZM-bl or
293T cells does not affect infection of unlabeled viruses [27]. Notably, the ability of virus-incorporated
CypA-DsRed to rescue HIV-1 infection of target CypA-null Jurkat cells [66] implies that CypA-DsRed
remains tightly bound to CA during viral infection and thereby functionally compensates for the
lack of CypA in Jurkat cells. Through the high-avidity non-disruptive binding to the HIV-1 core,
CypA-DsRed appears to faithfully report the loss of CA from the post-fusion cores co-labeled with
integrase-super-folderGFP (INsfGFP) [27] (Figure 2a). This notion is supported by the concomitant
loss of CA documented by immunolabeling for CA/p24. As expected, the loss of CypA-DsRed
is modulated, both in vitro and in living cells (see below and [27]), by the CA mutations that alter the
HIV-1 core stability [67].

Another important advantage of the CypA-DsRed-based CA labeling strategy is the ability to
discriminate between double-labeled virions trapped in endosomes and post-fusion HIV-1 cores,
which has been a challenge for other virus co-labeling strategies (e.g., [2,68]). The CypA-binding drug
Cyclosporin A (CsA) displaces the CypA-DsRed marker from post-fusion HIV-1 cores that retain CA.
Through the use of CsA, we have unambiguously identified post-fusion cores in the cytoplasm that
have not completed uncoating and quantified their CA content at different times after infection [27]
(Figure 2a, boxed inset).
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fusion. Single HIV-1 uncoating and nuclear import are shown. The second advantage of this labeling 
strategy (shown boxed) is the ability to identify post-fusion cores by Cyclosporine A (CsA) treatment. 
CsA selectively displaces CypA-DsRed from post-fusion cores, but not from intact viruses trapped in 
endosomes; (b–e) Uncoating and nuclear import of single HIV-1 cores in TZM-bl cells. Confocal 
images (b) and fluorescence intensity traces (c) of uncoating and nuclear import are shown; (d) Single 
particle trajectory corrected for the nucleus movement. Segments of the trajectory are colored to mark 
the cytoplasmic transport, docking and intra-nuclear movement. Dotted circles in (b) mark a single 
viral complex uncoating and entering the nucleus. Double arrows in (c) illustrate the virus docking 
time (colocalization with the lamin signal, blue) and the time of uncoating after docking (red). A 
model for HIV-1 uncoating and nuclear import is overlaid onto an actual 2D-trajectory of single HIV-
1 undergoing uncoating and nuclear import (e). Scale bar 5 µm in (a) and 2 µm in (b). Adapted from 
Francis et al., 2016 and Francis and Melikyan, 2018. 

4. Single HIV-1 Uncoating In Vitro 

Figure 2. A novel capsid protein (CA) marker CypA-DsRed enables visualization of single
HIV-1 uncoating. (a) Illustration of HIV-1 co-labeling with INsfGFP that marks the viral pre-integration
complexes and the tetrameric CA marker, CypA-DsRed (inset), that remains bound to CA after
viral fusion. Single HIV-1 uncoating and nuclear import are shown. The second advantage of
this labeling strategy (shown boxed) is the ability to identify post-fusion cores by Cyclosporine A
(CsA) treatment. CsA selectively displaces CypA-DsRed from post-fusion cores, but not from intact
viruses trapped in endosomes; (b–e) Uncoating and nuclear import of single HIV-1 cores in TZM-bl cells.
Confocal images (b) and fluorescence intensity traces (c) of uncoating and nuclear import are shown;
(d) Single particle trajectory corrected for the nucleus movement. Segments of the trajectory are colored
to mark the cytoplasmic transport, docking and intra-nuclear movement. Dotted circles in (b) mark
a single viral complex uncoating and entering the nucleus. Double arrows in (c) illustrate the virus
docking time (colocalization with the lamin signal, blue) and the time of uncoating after docking (red).
A model for HIV-1 uncoating and nuclear import is overlaid onto an actual 2D-trajectory of single
HIV-1 undergoing uncoating and nuclear import (e). Scale bar 5 µm in (a) and 2 µm in (b). Adapted
from Francis et al., 2016 and Francis and Melikyan, 2018.
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4. Single HIV-1 Uncoating In Vitro

We have recently developed an in vitro HIV-1 uncoating assay that takes advantage of the
CypA-DsRed CA marker [27]. Single viral particles co-labeled with INsfGFP and CypA-DsRed are
bound to a cover glass, permeabilized with a detergent or saponin, and fixed with paraformaldehyde
at varied time-points after permeabilization. To visualize CA, the permeabilized particles are
immuno-stained with anti-p24 antibodies. Uncoating is measured by assessing the loss of the
CA/p24 and CypA-DsRed signals from the INsfGFP-labeled viral complexes [27]. This approach
allows one to readily visualize all viral complexes irrespective of their CypA-DsRed/CA content
and determine the fraction of uncoated complexes as a function of time. The identical kinetics of
CypA-DsRed and CA/p24 loss from INsfGFP complexes strongly support the utility of the new
CA marker for visualizing the HIV-1 uncoating in vitro. As expected, the kinetics of CA/p24 and
CypA-DsRed loss after permeabilization is markedly modulated by changes in the capsid stability, with
immediate uncoating of viruses made of the unstable (K203A) CA mutant and delayed uncoating of the
hyper-stable (E45A) mutant, described in [67]. Importantly, similar to other reports [69], the addition
of cytosolic extracts stabilizes the HIV-1 cores in vitro, as evidenced by their delayed uncoating [27].
Collectively, these results imply that the loss of CypA-DsRed from INsfGFP labeled complexes is a
reliable indicator of single virus uncoating.

5. Time-Resolved Imaging of Single HIV-1 Uncoating in the Cytoplasm

We have used the CypA-DsRed marker in combination with INsfGFP labeling to visualize
single HIV-1 uncoating in TZM-bl cells. INsfGFP remains associated with RTC/PICs after
uncoating [32,51,70,71] and enables tracking single viral complexes before and after the loss of
CypA-DsRed [28]. Fluorescently labeled HIV-1 is pseudotyped with the Vesicular Stomatitis Virus
G glycoprotein (VSV-G) to allow efficient fusion and delivery of viral cores into the cytoplasm.
Synchronized viral fusion is achieved by binding the viral particles to cells at 4 ◦C, shifting to 37 ◦C
and immediately imaging the cells on a confocal microscope stage maintained at 37 ◦C under 5% CO2.
Live-cell imaging of the entire cell volume is performed at a relatively high temporal resolution
(typically, every 20–30 s) for a 2-h window. This imaging regime allows tracking of single INsfGFP
complexes and reveals the time-course of HIV-1 uncoating, as determined by the loss of CypA-DsRed.
We define uncoating as a terminal loss of CypA-DsRed to the background or near background level,
without a subsequent release of the remainder of this marker.

Two distinct uncoating phenotypes have been observed using the above labeling scheme.
The overwhelming majority (~95%) of the cores uncoat within 90 min post-infection, as evidenced by
an abrupt (within ~2 min) loss of CypA-DsRed. Addition of CsA that displaces CypA-DsRed from
the cytoplasmic cores, but not from intact viral particles trapped in endosomes, at this time point
reveals a minor fraction (~5%) of cores that retain the CA marker. Tracking of these single INsfGFP
puncta showed a gradual loss of CypA-DsRed from the rare long-lived cores over several hours in the
cytoplasm and in the vicinity of the nucleus [27]. For these cores, uncoating could be initiated shortly
after viral fusion, but completed at the nuclear membrane.

Although the overwhelming majority of the HIV-1 cores lose CypA-DsRed/CA at early times
after infection, these events do not appear to represent an infectious pathway. Most INsfGFP complexes
disappear in the cytoplasm within ~30 min after uncoating and the loss of single IN complexes could
be prevented by treating the cells with proteasome inhibitors, MG132 or lactacystin [28]. Notably,
treatment with proteasome inhibitors increases the virus infectivity and, proportionally, the nuclear
import of INsfGFP complexes. This finding implies that post-uncoating IN complexes are degraded
by proteasomes and that HIV-1 uncoating that culminates in infection occurs at the late stages of
virus entry, perhaps at the nuclear pore.
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6. Docking at the Nuclear Pore

The nuclear compartment has been labeled with fluorescently tagged histone proteins or
DNA-binding dyes, such as DAPI. However, this labeling strategy does not clearly define the
nuclear membrane. In order to reliably track single HIV-1 docking at the nuclear pore and
nuclear import, it is essential to clearly visualize the nuclear membrane. This has been accomplished
by expressing fluorescently tagged nucleoporins that localize to the nuclear pore complex (NPC)
or lamin proteins that underline the inner nuclear membrane [33,51,52,54,70,71]. Live-cell imaging
can readily identify single virus docking at the nuclear envelope (NE) based upon the restricted
viral motion while colocalizing with an NE marker. Recently, Burdick and coauthors [32] have
visualized the interactions between HIV-1 complexes labeled with A3F-YFP and the NE labeled
with POM121-mCherry, a nucleoporin which resides in the central channel of the NPC. The authors
have demonstrated that a relatively stable (>5 min) association of HIV-1 with the nuclear membrane
is dependent on the CA binding to nucleoporin 358 (NUP358). In agreement with the previous
results [3,72], depletion of this host factor significantly diminishes the stable NE association events [32],
implicating NUP358 in HIV-1 docking at the nuclear pore.

Further support for the role of CA–host factor interactions in HIV-1 docking has been obtained by
demonstrating the ability of a small molecule CA-binding inhibitor to displace HIV-1 cores docked at
the NE [28]. PF-3450074 (PF-74) binds a pocket formed by an interface between the CA N-terminal
and C-terminal domains [73], which overlaps with the binding sites of the cellular proteins, NUP153
and CPSF6, involved in the nuclear import of HIV-1 [74,75]. Treatment of cells with PF-74, which blocks
HIV-1 nuclear import [28,71], released the already docked viral complexes into the cytoplasm [28].
This important result implies that the CA–host factor interactions determine the virus docking at
the NE.

7. Uncoating at the Nuclear Membrane Is a Prerequisite for HIV-1 Nuclear Entry

Live-cell visualization of the HIV-1 nuclear import has been previously achieved by labeling
with IN-TC/FlAsh [31] and, more recently, with A3F-YFP or IN-YFP [32]. By co-labeling HIV-1
with CypA-DsRed/CA and INsfGFP and performing three-color live-cell imaging in TZM-bl cells
expressing the NE marker EBFP2-LaminB1, we have examined single virus uncoating and nuclear
import. In order to adequately resolve processes occurring at different time scales and to minimize
photobleaching, the full cell volume has been imaged at different temporal resolutions, from a fraction
of a minute to 30 min between image acquisitions. These different image acquisition modes allow one
to kinetically resolve individual steps of HIV-1 entry and monitor the infection process in its entirety.

Typically, viral particles exhibit rapid movement in the cytoplasm prior to docking at the
nuclear membrane. Single particle tracking reveals restricted virus motion following the INsfGFP
co-localization with EBFP2-lamin, which is a manifestation of docking at the NE (Figure 2b–d) [28].
For CypA-DsRed/INsfGFP-labeled viral complexes that subsequently enter the nucleus, docking
at the NE is followed by the drop in the CypA-DsRed signal to a background or near-background
level, indicating uncoating. After a pronounced lag following the loss of CypA-DsRed, the INsfGFP
complexes are quickly transported into the nucleus, on average 1.8 µm from the NE, where they
exhibit restricted motion (Figure 2b–d). This docking and nuclear entry dynamic is consistent with
the previous studies [31,32]. Importantly, viral cores that dock at the NE, but do not shed a major
proportion of CypA-DsRed, fail to enter the nucleus, and are often observed to eventually detach from
the NE.

Analysis of the CypA-DsRed intensity of single particles prior to and after docking at the NE
has revealed an accelerated loss of this CA marker after docking and showed that this loss was
a prerequisite for the nuclear penetration of IN complexes. Interestingly, a fraction of nuclear
INsfGFP complexes retained detectable amounts of CypA-DsRed and p24, as determined by
immunofluorescence experiments [28]. This finding is in excellent agreement with the low levels of
CA associated with the nuclear viral complexes and with vDNA in cell lines and primary human
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macrophages [32,53,71,76]. Long-term tracking of single INsfGFP complexes that entered the nucleus
after CypA-DsRed loss at the NE, showed that the residual CypA-DsRed signal (if any) remains stably
associated with the nuclear INsfGFP for several hours. This important result implies that the entire
releasable pool of CypA-DsRed is lost at the nuclear pore and that terminal release of CA takes place
immediately prior to nuclear import (Figure 2e). Finally, a proportional decrease in the CA/p24 signal,
as determined after immunofluorescence labeling, and in CypA-DsRed intensity associated with the
viral complexes after nuclear import further supports the notion that loss of CypA-DsRed at the NE is
a reliable measure of HIV-1 uncoating.

8. HIV-1 Nuclear Import Occurs after a Pronounced Lag Following the Loss of CypA-DsRed/CA
at the NE

The docking time of a virus at the NE can be measured as the time interval between
arrival/association with the NE and nuclear entry of a single viral complex (Figure 2c). In addition,
HIV-1 labeling with CypA-DsRed allows resolving the lag time from docking at the NE to uncoating
defined as a terminal loss of the CypA-DsRed signal. In these experiments, single HIV-1 cores uncoat,
on average, within ~17 min after docking while the nuclear import occurs after an additional lag of
~20 min after loss of CypA-DsRed. A significant lag between uncoating and nuclear entry suggests the
presence of an additional kinetic barrier for nuclear penetration. Importantly, labeling of HIV-1 with
CypA-DsRed does not alter the kinetics of nuclear entry or the total time of single virus residence at the
NE (docking) prior to nuclear import [28]. The mean docking time at the NE is not significantly affected
by knock-out of the target cell CypA [28]. Although somewhat longer docking times in HeLa-derived
cells have been observed by Burdick et al. [32], the quantitative difference in the mean docking
time may be related to the choice of the NE marker in these two studies. Neither the docking time
distribution nor the kinetics of nuclear entry were affected by inhibition of reverse transcription [28,32],
implying that the viral DNA synthesis is not strictly required for uncoating that ensures nuclear
penetration of RTC/PICs.

Interestingly, the CA N74D mutant that enters the nucleus through an alternative pathway [65,77]
also uncoats at the NE, but remains adjacent to the nuclear membrane. The lack of clear nuclear
penetration does not allow the measurements of the docking time for this mutant. However, the
N74D complexes exhibit a >3-fold slower uncoating after docking at the NE, as compared to the
wild-type virus, implicating CA-interacting host factors at the NE in facilitating the accelerated HIV-1
uncoating and nuclear penetration (see below and [28]).

9. Visualization of Functionally Relevant Single HIV-1 Entry/Uncoating Events

In addition to the lack of real-time assays for HIV-1 uncoating, a controversy surrounding this
process stemmed from the inability to relate the observed readouts to productive infection. In a
ground-breaking paper, Mamede and co-authors [29], have pioneered a live-cell imaging approach that
relates the early viral fusion/uncoating events to infection. The authors take advantage of the HIV-1
particles labeled with GagiGFP, in which a subset of GFP produced by the Gag-iGFP cleavage appears
to be trapped inside a mature viral core [78]. Consequently, the HIV-1 fusion results in a release of
the majority of GFP molecules into the cytoplasm, while a subsequent loss of the core integrity is
manifested in the second step of GFP release associated with the core-trapped GFP. This assay is thus
ideally suited for sensitive detection of the initiation of HIV-1 uncoating. By performing long-term
imaging of cells with no more than one virus co-labeled with mCherry-Vpr per cell, the authors
have identified the fusion/core-integrity loss events culminating in infection, as determined by the
subsequent expression of Gag-iGFP. Importantly, only the 2-step GFP release events resulted in
infection, whereas single-step release (presumably corresponding to viruses with defective/unsealed
cores) or incomplete GFP release events were not linked to productive entry. These findings imply
that: (1) only particles containing a sealed mature core can be infectious; and (2) HIV-1 uncoating,
at least the loss of core integrity, is initiated in the cytoplasm at early times after viral fusion. A major
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limitation of this assay lies in its inability to visualize subsequent steps of uncoating that occur at later
times (see also above and [28,32]).

We have recently performed extended time-lapse imaging of single virus infection using
eGFP-encoding HIV-1 pseudoviruses co-labeled with INsfGFP and CypA-DsRed [28]. Live-cell
imaging of TZM-bl cell expressing the nuclear membrane marker EBFP2-LaminB1 is performed
between 0 and 24 h post-infection. In order to avoid cytotoxicity and to enable sensitive detection of
fluorescent nuclear IN complex, images are acquired every 10–30 min, while adequately sampling in
the Z-dimension. Analysis of the number of viral complexes in the nucleus shows that, on an average,
only ~2% of cell-bound viruses enter the nucleus (Figure 3a), in agreement with Burdick et al. [32].
This imaging strategy has revealed that nearly all cells expressing the eGFP reporter of infection contain
at least 1 detectable INsfGFP complex in the nucleus (Figure 3a). The probability of infection strongly
correlates with the number of nuclear INsfGFP complexes and poorly correlates with the number of
cell-bound viruses, the majority of which are degraded in the cytoplasm after early uncoating [28].

Interestingly, although nuclear IN complexes can usually be tracked for hours, a fraction of these
complexes disappears after varied times following the nuclear import (Figure 3a, arrowhead). Most
importantly, the disappearance of nuclear INsfGFP complexes was highly predictive of subsequent
expression of the eGFP reporter: more than 80% of single nuclear INsfGFP disappearance events
culminated in eGFP expression [28]. A similar disappearance of the FlAsh-labeled IN puncta in the
nucleus has been previously reported [31] and speculated to represent integration events. We obtained
evidence supporting the notion that INsfGFP disappearance corresponds to productive integration.
First, the kinetics of nuclear IN disappearance and of the completion of integration, as determined by
the time of the integrase inhibitor Raltegravir (RAL) addition experiments, are virtually identical [28].
Second, RAL abrogates the loss of single INsfGFP puncta in the nucleus and thereby increases the
total number of nuclear complexes, in full agreement with the previous results obtained by fixed cell
imaging [54]. We have therefore examined the upstream trafficking and uncoating steps of single
IN complexes that disappeared in the nucleus to determine the location and timing of productive
uncoating. Without an exception, productive uncoating occurs after docking at the NE (Figure 3a).
Interestingly, the presence of residual CypA-DsRed in viral complexes that were imported into the
nucleus did not affect the probability of infection, as determined by analysis of the relationship between
the loss of IN complexes and eGFP expression.

For the N74D CA mutant that does not noticeably penetrate into the nucleoplasm, the INsfGFP
disappearance after uncoating has also been observed, but these events occurred at the
nuclear membrane. Similar to the wild-type CA containing viruses, disappearance of the
post-uncoating N74D IN complexes is highly predictive of the subsequent expression of eGFP.
This finding implies that, in spite of an apparent co-localization with the nuclear membrane, the N74D
complexes shallowly penetrate into the nucleoplasm where they undergo productive integration.
This notion is in excellent agreement with different intra-nuclear localization of viral DNA that has
been reported for the wild-type and mutant N74D infections [76,79].
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Figure 3. Live cell imaging of single HIV-1 uncoating and nuclear import that culminate in infection.
TZM-bl cells expressing EBFP2-Lamin were infected with VSV-G pseudotyped HIV-1 encoding for the
eGFP reporter. Viruses were labeled with the INsfGFP and CypA-DsRed markers. Confocal time-lapse
images were acquired every 5 min from 0 to 24 h post-infection. (a) Time-lapse images of single
HIV-1 entry and infection. The arrow marks a single INsfGFP labeled HIV-1 complex in the cytoplasm
that docks at the NE, uncoats, and enters the nucleus and disappeared at 14:05 hours post-infection
(yellow arrowhead). Loss of INsfGFP signal is followed by expression of eGFP reporter of infection.
Scale bar 5 µm. (b) Fluorescence intensity traces of the virus in (a) that undergoes terminal uncoating
after engaging the EBFP2-Lamin labeled NE (manifested in the increase in lamin signal) and enters the
nucleus (drop in the lamin signal). Single particle tracking was performed using INsfGFP as reference.
The drop in the INsfGFP signal at ~14 h post-infection marks disappearance of the IN spot prior to
eGFP expression. Scale bar 5µm.

In conclusion, terminal loss of CA at the NE is required for HIV-1 nuclear entry (Figures 2e and 3b).
This finding suggests that long-lived, gradually uncoating cores are more likely to enter the nucleus
and establish infection than the cores undergoing early/abrupt uncoating in the cytoplasm. This result
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is in line with the observation that early loss of core integrity (second step of GFP release) leads to
viral infection reported by Mamede et al. [29]. Note, however, that the overwhelming majority of the
two-step GFP release events does not lead to infection [29], perhaps corresponding to the early/abrupt
CypA-DsRed loss observed in our recent study [28]. It is therefore possible that early loss of core
integrity detected by the second release of GFP and a terminal loss of CypA-DsRed at the NE mark
the initial and final steps of the functional uncoating process, respectively. We further conclude that
CA–host factor interaction mediates uncoating at the NE, intra-nuclear transport, and potentially
determines the HIV-1 integration site preference.

10. Summary and Future Perspectives

An increasing number of researchers employ live-cell single virus imaging to gain mechanistic
insights into important questions that are difficult to address using more conventional bulk assays.
Success of these studies largely depends on developing non-invasive (or minimally invasive) virus
labeling approaches. Here, we reviewed two novel labeling strategies developed in our laboratory
that allow us to: (1) sensitively detect single HIV-1 fusion and predict the viral protease activity
in single particles; and (2) label HIV-1 CA to visualize single particle uncoating in vitro and in
living cells. Both these markers can be applied to detect virus fusion and uncoating in several
cell-lines and, more importantly, in primary CD4 T cells and macrophages. We also envision that the
mCherry-2xCL-eYFPVpr marker will be adaptable to studies of the HIV-1 maturation kinetics, as well
as correlative light-electron microscopy (CLEM) studies of post-fusion cores.

Currently, the CypA-DsRed and INsfGFP markers allow linking the uncoating and nuclear entry
events to subsequent IN disappearance as a surrogate for productive integration. Further development
of novel virus labeling tools holds a great promise for obtaining critical insights into the essential steps
of HIV-1 entry en route to integration. A recent report [80] used the Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) methodology to detect
the HIV-1 genome in living cells. A combination of this technique with the HIV-1 labeling tools (e.g.,
IN-sfGFP and CypA-DsRed) will help image the entire single HIV-1 infection process.

Long-term live-cell imaging will be aided by the continuous efforts to develop new genetically
encoded and synthetic fluorescent probes. Labeling of viral and cellular proteins with fluorescent tags,
such as fluorigen acceptor peptide (FAP), as well as the SNAP and CLIP tags, will afford a great deal of
flexibility for multicolor protein labeling that is not achievable with fluorescent proteins. These labeling
approaches are compatible with stochastic emission and depletion (STED) imaging, a super-resolution
microscopy technique that can be performed in living cells. Further improvements of fluorescence
detectors and implementation of light-sheet microscopy (selective plane illumination microscopy
(SPIM [81]) will help minimize photobleaching and phototoxicity. These advances will enable more
frequent long-term live-cell imaging for longer than 24 h and thus reveal a detailed picture of the entire
HIV-1 infectious cycle at a single virus level.
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