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Abstract
The advent of induced pluripotent stem cell (iPSC) technology, which allows to transform one cell type into another, holds 
the promise to produce therapeutic cells and organs on demand. Realization of this objective is contingent on the ability to 
demonstrate quality and safety of the cellular product for its intended use. Bottlenecks and backlogs to the clinical use of 
iPSCs have been fully outlined and a need has emerged for safer and standardized protocols to trigger cell reprogramming 
and functional differentiation. Amidst great challenges, in particular associated with lengthy culture time and laborious cell 
characterization, a demand for faster and more accurate methods for the validation of cell identity and function at different 
stages of the iPSC manufacturing process has risen. Artificial intelligence-based methods are proving helpful for these com-
plex tasks and might revolutionize the way iPSCs are managed to create surrogate cells and organs. Here, we briefly review 
recent progress in artificial intelligence approaches for evaluation of iPSCs and their derivatives in experimental studies.

Keywords Induced pluripotent stem cells · Regenerative medicine · Quality control · Artificial intelligence · Machine 
learning · Deep learning

Methods

A comprehensive literature search was conducted 
on May 21, 2021 using the PubMed-NCBI database. 
The following search terms were used: (1) induced 
pluripotent stem cells[MeSH:noexp] AND artificial 
intelligence[MeSH:noexp]; (2) induced pluripotent stem 
cells[MeSH:noexp] AND deep learning[MeSH:noexp]; (3) 
induced pluripotent stem cells[MeSH:noexp] AND machine 
learning[MeSH:noexp]. PubMed search returned a total of 
29 results. Three non-English (Japanese) language publica-
tions, one review, and four editorial/commentary contribu-
tions were excluded from the manuscript. Further search 
in the Scopus database returned an additional publication, 
which was also included. During manuscript revision, we 

added seven more articles as suggested by the reviewers. 
Considered articles were published between 2014 and 2021.

Introduction

Failed or failing organs, according to well-established prac-
tice, may be replaced by healthy ones obtained from a cadav-
eric or a live donor. Success of this approach, as significant 
as it is, however, is restricted by the short supply of donors 
of either type.

In recent years, alternative approaches for functional 
organ generation have emerged. Organ generation using 
tissue-specific stem/progenitor cells has been suggested 
[1], and more recently, induced pluripotent stem cells 
(iPSCs) have opened new avenues for regenerative treat-
ments [2]. iPSCs hold great potential for the development 
of personalized therapies without the ethical issues associ-
ated with embryonic stem cell treatment and the immuno-
logical risk of rejection. This promise has spurred efforts 
to generate all known cell types for therapeutic purposes, 
which have resulted in a hundred of clinical trials (http:// 
clini caltr ials. gov). However, major drawbacks for clinical 
translation are the low reprogramming and differentiation 
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efficiency of common iPSC protocols [3], as well as the 
high variability in differentiation outcomes [4], and the 
occurrence of differentiation-defective phenotypes [5]. 
iPSCs, during early culture passages, have a residual 
epigenetic memory of the tissue from which they were 
derived [6], and might revert to their somatic cells of ori-
gin. Furthermore, the genomic instability associated with 
the reprogramming process [7], and/or small variations in 
the complex multistep culture system [8], can influence 
iPSC response to differentiation stimuli and, hence, cell 
fate decisions. In many cases, the progeny of iPSCs are 
comparable to an immature fetal stage [9–11]. Failure to 
provide mature and functional cells, or contamination of 
the cellular product with residual undifferentiated iPSCs, 
might be detrimental to the recipients of iPSC-based 
therapies.

For safe and effective autologous cell replacement, a thor-
ough evaluation of the iPSC-derived cell product at different 
stages of culture is required. The current solution relies on a 
judgement call from well-trained cell culture experts, who 
often determine iPSC induction and maturation based on 
changes in morphology and/or lineage marker expression, 
tasks which are extremely effort-intensive and subjectively 
biased. Scalable production of therapeutic cells cannot be 
based on manual cell quality control. An automated method 
enabling high-throughput validation of cell identity and 
function would be desirable throughout the entire manufac-
turing process. The screening is multifold. It is needed: (1) in 
the reprogramming stage, to select those somatic cells which 
have been fully converted to iPSCs; (2) in the expansion 
stage, to exclude abnormal or unstable iPSC colonies; and 
(3) in the differentiation stage, to select functional mature 
cells for implantation.

While practical application of iPSCs in the clinic may 
not be forthcoming, an automated, high-throughput method 
would at least sustain the use of iPSC derivatives as drug 
screening platforms, by helping understand how drugs 
impact key cellular functions.

Developments in digital pathology and computational 
image analysis have provided advanced tools for cellular 
morphology description and classification [12]. Given the 
high-dimensionality of the data generated by computa-
tional image analysis, artificial intelligence, with the use of 
machine learning algorithms, has been increasingly deployed 
to build cell image classification methods [13]. Machine 
learning algorithms are able to learn from large datasets and 
to make predictions based on novel input. Hence, they can 
evaluate multiple parameters simultaneously without a priori 
knowledge. Several different machine learning methods have 
been developed in the last fifty years. Few examples are: the 
nearest-neighbor search developed in the 1960 s [14], sup-
port vector machines (SVM) in the 1990 s [15], and random 
forest (RF) in the early 2000 s [16].

In the machine learning field, deep learning has also 
attracted much attention. Deep learning uses a multilayered 
neural network that mimics human neural circuit structure 
[17]. Deep neural network can automatically extract features 
from an image, while traditional machine learning methods 
require human intervention. Convolutional neural network 
(CNN)-based deep learning methods or convnets, are now 
used for a wide range of image-related tasks. Such methods 
transform input images into predicted outputs after learning 
the proper associations from examples. Their performance 
largely depends on the features extracted for a given task, 
and it is usually measured using statistical metrics such as 
accuracy, precision, recall, F1 score, the receiver operator 
characteristic curve (ROC), and the area under the curve 
(AUC).

Not only applied to biological images, but also machine 
learning techniques have started to be exploited for the pro-
cessing and the analysis of the huge amount of data or big 
data, that is being created by advancements in next gen-
eration sequencing (NGS) technologies in various areas of 
medicine including the iPSC field [18].

By helping evaluate both the reprogramming state and the 
differentiation trajectories of human iPSCs, machine learn-
ing and deep learning have the power to open up the game 
for greater iPSC bioprocess efficiency and yield. A review 
of the methods which have been adopted in research for the 
identification, classification and prediction of iPSCs follows.

Machine and Deep Learning Methods 
for Image‑based iPSC Identification and Functional 
Characterization

Recently, machine learning methods have been trained to 
predict iPSC induction and differentiation from microscopy 
images. Machine learning methods based on time-lapse 
images of the morphology and motion pattern of iPSCs were 
used to predict/identify iPSCs against feeder fibroblasts dur-
ing the early stage of the reprogramming process [19]. After 
48 h of infection, the reprogramming process was recorded 
using a live cell imaging system. iPSCs and feeder fibro-
blasts within 3 to 5 days after infection were then labeled by 
retrospectively tracing the time-lapse microscopic image. 
Eleven types of cell morphological and motion features 
(volume, area, sphericity, ellipsoid-prolate, ellipsoid-oblate, 
nucleus-cytoplasm volume ratio, displacement, speed, etc.) 
were calculated, and different time windows were considered 
for modeling and perform feature selection. Six features and 
best time windows were finally used to build a prediction 
model using the algorithm XGBoost. In another study, the 
quality of newly reprogrammed iPSC colonies was identi-
fied from phase-contrast images using SVM followed by the 
feature extraction method Scaled Invariant Feature Transfor-
mation (SIFT) [20]. In these images, feeder cells were also 
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included. The classification task was a multiclass problem 
with three possible classes (good/semigood/bad) for the 
iPSC colonies. Importantly, such colony image classification 
method could be improved by applying an error-correcting 
output code (ECOC) framework [21]. Other authors devel-
oped a model to guide colony selection using a combination 
of bright-field microscopic images and CNNs [22]. Specifi-
cally, the CNN model was trained to locate unlabeled iPSC 
colonies and detect their boundaries. After the boundary 
of a colony was found, each colony was measured in terms 
of the area and time frame after reprogramming induction, 
and a growth curve was plotted. Abnormal growth condi-
tions (overgrowth/undergrowth) were manually defined and 
normal colonies were used to train a Hidden Markov Model 
(HMM) for prediction of optimal picking time window.

Healthy quality of undifferentiated iPSCs is an essen-
tial requisite for further experimental and therapeutic 
approaches. Kavitha et al. developed a vector–based CNN 
(V-CNN) to classify healthy from unhealthy colonies, con-
sidering both colony morphological and textural features 
[23]. In a further study, 151 texture features, extracted 
quantitatively from segmented colony regions, were evalu-
ated using several machine learning classifiers [24]. This 
approach could achieve a robust and reliable classification 
accuracy in the range of 82.5–92.7%, with low false positive 
and negative rates.

Not only for colony detection and classification, but also 
machine learning has been exploited to reveal specific iPSC 
cellular constituents. Indeed, Christiansen et al. designed a 
deep neural network capable of predicting fluorescent labels 
against nuclei or cell-type-specific markers from the z-stack 
of unlabeled transmitted-light images of fixed and live iPSCs 
[25]. Cellular constituents of several types of cells, including 
iPSCs could also be recognized in three-dimensional (3D) 
tissues by the CNN-based Cell Profiler 3.0 software, which 
supports both whole-volume and plane-wise analysis of 3D 
image stacks [26].

While the above described machine learning methods 
require to specify target morphologies, choose specific 
algorithms, and try different parameters depending on the 
imaging problem, the open source utility wndchrm, i.e. 
weighted neighbor distances using a compound hierarchy of 
algorithms representing morphology, provides an automated 
pipeline [27]. Wndchrm allows users to define classes by 
providing example images for each class; completely repro-
grammed cells or partially reprogrammed cells, for example. 
Given that nuclear morphology changes during differentia-
tion status, Tokunaga et al. constructed wndchrm image 
libraries from immunofluorescence of the promyelocytic 
leukemia (PML) and Cajal bodies to discriminate bona fide 
iPSCs from non-iPSCs [28].

Beside supporting iPSC colony identification/prediction/
classification, machine learning methods might also help 

assess differentiation and function of iPSC-derived cells. 
CNNs were trained to predict whether phase-contrast images 
contained human iPSC-derived endothelial cells (hiPSC-
ECs) based on morphology only [29]. Predictions were later 
validated by comparison with immunofluorescence staining 
for CD31, a pan-endothelial marker. Using high-throughput 
image-processing and SVM, Smith et al. considered instead 
the relationships between cytoskeletal tension, density, 
and micropattern geometry to predict pattern formation in 
early and late-stage human iPSC maturation toward both 
endothelial cells and pericytes [30]. Furthermore, a few 
studies used artificial intelligence methods to assess the 
quality of human iPSC-derived cardiomyocytes (hiPSC-
CMs). Orita et al. trained CNNs using bright-field images 
of hiPSC-CMs to classify the images into normal (experi-
mentally useable) or abnormal (experimentally unusable) 
[31]. Lee et al. established a screening method that com-
bines bright-field microscopy and machine learning to detect 
changes in the contraction of hiPSC-CMs after exposure to 
three cardioactive drug compounds with distinct, dissimi-
lar effects: E-4031 (hERG  K+ channel inhibitor), verapamil 
(L-type  Ca2+ channel blocker), and blebbistatin (myosin-II 
inhibitor) [32]. For the bright-field method, images were 
processed by an optical flow algorithm to generate vectors 
that represent the motion of hiPSC-CMs. The optical flow 
method was later combined with SVM. SVM classified the 
data points into normal and abnormal cardiomyocyte behav-
ior by creating a decision boundary between the two groups. 
Another method to assess the quality of hiPSC-CMs con-
sisted in optical quantification of the contractility of hiPSC-
CMs using bright-field microscopic videos [33]. Contraction 
waves were extracted directly from time-lapse video images 
using Fiji image processing package in ImageJ, and were 
divided into normal contraction (experimentally useable) 
and abnormal contraction (experimentally unusable) waves 
using an SVM classification. In addition to contractility, 
 Ca2+ transients were also exploited for functionality assess-
ment of hiPSC-CMs. Indeed, calcium cycling has a central 
role in cardiac functionality by linking electrical activation 
and contraction. Juhola et al. first proposed an analytical 
algorithm to detect cycling  Ca2+ transient peaks, quantify 
peak variables, and assess the abnormality of transient peaks 
and signals using iPSC-CMs generated from genetic car-
diac disease patients [34]. However, signal abnormality was 
based solely on characteristics of a single peak. An improved 
method consisting in the identification of peak abnormality 
based on quantified peak characteristics, was later suggested 
by Hwang et al. [35].  Ca2+ transient data of 200 cells and 
1893 peaks were collected and analyzed to train peak- and 
cell-level SVM models, and later validated using the leave-
one-out cross-validation (LOOCV) approach. In parallel, test 
data of 54 cells and 454 peaks were used to implement the 
SVM classifier to predict cell abnormality. This machine 
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learning classification method obtained higher sensitivity 
and accuracy with respect to the previous analytical algo-
rithm, and also allowed separating different genetic car-
diac diseases from each other and from controls [36, 37]. 
The genetic cardiac diseases included: catecholaminergic 
polymorphic ventricular tachycardia (CPVT), long QT syn-
drome 1 (LQT1), hypertrophic cardiomyopathy (HCM), 
dilated cardiomyopathy (DCM), and long QT Syndrome 2 
(LQT2). The improved method could also predict the type of 
mutation based on  Ca2+ transient signals only [38]. Finally, 
machine learning was exploited to study drug responses of 
hiPSC-CMs. Heylman et al. used machine learning to clas-
sify the electrophysiological effects of chronotropic drugs on 
hiPSC-CMs based on alteration of membrane depolarization 
waveforms [39], while Juhola et al. used machine learning to 
detect drugs affecting calcium cycling properties of CPVT 
iPSC-CMs [40].

Besides iPSC-CMs, the iPSC-derived retinal pigment 
epithelium (iPSC-RPE) was also analyzed using artifi-
cial intelligence-based methods. Deep neural networks 
and traditional machine algorithms were used to predict 
iPSC-RPE function from quantitative bright-field absorb-
ance microscopy (QBAM) images [41]. To demonstrate the 
effectiveness of the imaging and analysis method, a proof-
of-principle study was carried out on iPSC-RPE from the 
following donor types: healthy, oculocutaneous albinism 
disorder (OCA), and age-related macular degeneration 
(AMD) donors. QBAM was first used to assess iPSC-RPE 
for transepithelial resistance (TER) and polarized vascular 
endothelial growth factor (VEGF) secretion, where TER is 
a measure of RPE maturity that increases as tight junctions 
form between neighboring cells, and polarized VEGF secre-
tion is a measure of RPE function. Single-cell analysis began 
with a deep neural network that identified cell borders in 
QBAM images. Next, visual features of individual cells were 
extracted from QBAM images using the web image pro-
cessing pipeline (WIPP). The extracted visual features were 
then used to train five different traditional machine learning 
methods (multilayer perceptron [MLP]; linear SVM; RF; 
partial least squares regression [PLSR]; and ridge regression 
[RR]) to predict a variety of tissue characteristics, includ-
ing cell function, donor identity, and developmental outli-
ers. The iPSCs-RPEs from healthy donors were imaged as 
they matured throughout the long culture, thus providing a 
comprehensive/continuous assessment, while iPSCs-RPEs 
from AMD and OCA donors were imaged at a terminal time 
point once they had reached maturity. The latter approach 
allowed to predict function, identity and developmental out-
liers just prior to implantation. Similarly, Ye et al. developed 
a machine learning-based prediction model to predict failure 
RPE products [42]. As F-actin plays an important role in the 
maintenance of the epithelial architecture, authors analyzed 
how F-actin was distributed in RPE sheets and from this 

data predicted TER values. Cellular morphological analyses 
were performed using the ImageJ plugin Cell Magic Wand. 
Importantly, the TER discrimination model could also pre-
dict failure samples from non-labeled images.

Machine learning approaches also proved successful in 
image-based analysis of cellular pathways and injury mecha-
nisms, as demonstrated by Kandasamy et al., who combined 
an in vitro model of human iPSC-derived renal proximal 
tubular cells (iPSC-HPTCs) with the automated classifier RF 
to predict drug-induced proximal tubular toxicity in humans 
[43]. The nephrotoxicity prediction performance of iPSC-
HPTCs was determined by evaluating their responses to 30 
compounds. Given that compounds that are toxic to renal 
proximal tubular cells increase interleukin-6 (IL-6) and/
or interleukin‐8 (IL-8) expression, nephrotoxicity was pre-
dicted by exploiting changes in the levels of these cytokines, 
as determined by qPCR. Not only drug-induced toxicity 
could be predicted, but also underlying injury mechanisms 
and compound-induced cellular pathways could be detected 
with automated imaging of γH2AX generation, 4-hydrox-
ynonenal (4-HNE) production, and nuclear-cytoplasmic 
translocation of the nuclear factor (NF)-κB p65 subunit.

Thus, the power of machine learning can be leveraged 
in image-based characterization of iPSCs and iPSC deriva-
tives, and support future application of iPSCs in regenerative 
medicine and drug discovery.

Machine and Deep Learning Methods 
for Genomic‑based iPSC Identification 
and Functional Characterization

Machine learning has been applied not only to image pro-
cessing, but also to gene expression profiles. Danter et al. 
developed an unsupervised deep machine learning technol-
ogy called DeepNEU to simulate artificial iPSC systems 
using a defined set of reprogramming transcription factors 
[44]. By employing a fully-connected recurrent neural net-
work architecture with one processing layer for each input 
variable, the DeepNEU platform enabled authors to gain 
a better understanding of gene and pathway regulation in 
pluripotent and reprogrammed somatic cells, and therefore, 
key information about which genes/molecules are indispen-
sable for iPSC generation and maintenance.

In addition, machine learning techniques are being 
increasingly exploited to extract biologically relevant tran-
scriptomic and epigenetic signatures from NGS data. Bardy 
et al. built an extremely randomized trees (ERT) classifier 
with the transcriptome of 56 single cells and trained it with 
electrophysiological data to classify the functional states of 
human iPSC-derived neurons [45]. Wu et al., used NGS and 
machine learning to screen a library of 6107 synthetic pro-
moters with enhanced cell-state specificity (SPECS) [46]. 
Through this approach, they identified multiple SPECS 
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that exhibit distinct spatio-temporal activity during iPSC 
differentiation.

Another example of network-based screening that lev-
erages iPSC and machine-learning technologies has been 
very recently given by Theodoris et al. in the context of 
aortic valve (AV) disease, which is caused by heterozy-
gous loss-of-function NOTCH1 (N1) mutations [47]. ECs 
are drivers of AV disease and therapeutic targets. To map 
the gene network disrupted by N1 haploinsufficiency and 
to identify small molecules that could correct the network 
back to a normal state, the authors designed a targeted RNA-
seq strategy assaying expression of 119 signature genes in 
N1+/– iPSC-ECs or gene-corrected isogenic cells exposed 
to either dimethyl sulfoxide (DMSO) or one of a panel of 
1595 small molecules. Next, the authors trained a K-nearest 
neighbors (k-NN) algorithm to classify the gene expression 
network by targeted RNA-seq as WT or N1+/– based on 
isogenic ECs of each genotype exposed to DMSO. The k-NN 
algorithm classified ECs as either WT or N1+/– with 99.3% 
accuracy by LOOCV. Authors next applied the trained k-NN 
algorithm and hierarchical clustering to N1+/– ECs exposed 
to a library of 1595 small molecules to identify those mol-
ecules that could shift gene expression networks such that 
treated N1-haploinsufficient ECs could cluster with WT 
ECs. Through this investigation, they identified eight com-
pounds that could correct gene expression networks such 
that one or more replicates of treated N1+/– ECs were clas-
sified as WT by the k-NN algorithm in validation trials. Of 
these, XCT790, an inverse agonist of estrogen-related recep-
tor alpha (ERRα), had the strongest restorative effect.

Over the last several years, machine learning has also 
been applied to CRISPR/Cas9 system, the third-generation 
genome editing technology. An example is provided by Liu 
et al. [48], who developed a CRISPR interference (CRISPRi) 
platform targeting 16,401 long non-coding RNA (lncRNA) 
loci in diverse cell lines including human iPSCs, and con-
ducted screens for IncRNA genes that could modify cell 
growth. Large-scale screening identified 499 lncRNA loci 
required for robust cell growth. Growth modifier lncRNA 
function was found to be highly cell type-specific. Inter-
estingly, a larger fraction of lncRNAs hits were observed 
in the iPSC screen, suggesting that iPSCs are either more 
susceptible to growth perturbations or are differentiating to 
other cell types with lower growth rates. Taking advantage 
of the large dataset, authors finally constructed generalized 
linear models to assess which genomic properties could be 
predictive of lncRNA function and found an association of 
lncRNA function with higher order chromatin structure.

Overall, this evidence demonstrates how the extremely 
cumbersome manufacturing process for iPSC-derived 
functional cells is forcing researchers to leverage functional 
genomics and cutting-edge artificial intelligence algorithms 
to drill into the biology of iPSCs.

Conclusions

Since its beginning fifteen years ago [49], iPSC technol-
ogy has evolved rapidly. Currently, different studies are 
exploring its potential application in regenerative medi-
cine. However, there is still no solid strategy ensuring the 
exclusion of contaminants such as residual undifferenti-
ated iPSCs from differentiated cell products. Candidate 
marker genes for detecting undifferentiated iPSCs have 
been recently selected from single cell RNA sequence data 
[50]. Yet, this strategy has limitations with regard to the 
amount of product that can be validated in each assay.

In our experience, maintaining normal (useable) iPSC 
colonies in vitro is very challenging. First, iPSC colonies 
must be manually picked and re-plated from the primary 
reprogrammed cultures. Live immunostaining for Tra-1-
60, a surface marker of pluripotent cells, can help identify 
true iPSC colonies. In our graphical abstract, A and B 
microscopic images show Tra-1-60 immunofluorescence 
staining and phase contrast respectively of a primary 
reprogrammed culture. Absence of expression of Tra-1-
60 in a colony (dashed line) indicates that it is not fully 
reprogrammed. In the early passages, iPSCs often undergo 
spontaneous differentiation. Normal (usable) from abnor-
mal (unusable) colonies can be easily distinguished based 
on morphology. C and D microscopic images show nor-
mal iPSC colonies. These colonies appear flat and com-
pact, and show distinct borders. E-H microscopic images 
represent abnormal iPSC colonies. These colonies show 
irregular morphologies and/or signs of (de)differentiation, 
which can be appreciated at the colony center (E and F) or 
at the colony edges (G and H). A glandular-like phenotype 
can be observed in image F, which might be indicative of 
spontaneous endoderm differentiation. Image G shows the 
presence of contaminating unreprogrammed cells in the 
well, while image H shows fibroblast-like spindle-shape 
cells at the borders of a colony. When such abnormal colo-
nies appear in the culture, it is important to remove them 
promptly.

  Effective differentiation is highly dependent on iPSC 
quality. As such, several critical decisions must be taken 
when cultivating iPSCs, including but not limited to, when 
it is the right time to passage the colonies, which is the 
proper cell aggregate size during passaging, and what is 
the best colony density for maintaining healthy undiffer-
entiated iPSCs in vitro. These properties might be spe-
cific to each cell line and must be therefore experimentally 
determined. Accumulating evidence suggests that artifi-
cial intelligence, which applies machine learning, deep 
learning and other techniques to solve complex problems, 
might help answer these questions. Several machine learn-
ing approaches have already been developed and their 
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significance in classifying iPSCs and their derivatives has 
been confirmed. In this manuscript, we have provided an 
overview of machine learning-based state-of-the-art meth-
ods in such a rapidly evolving field, which we have sum-
marized in Table 1.

Compared to humans, artificial intelligence-based meth-
ods bring enormous improvements in terms of accuracy, 
speed of data analysis, and costs. As such, they have the 
potential to lay the groundwork for an iPSC manufactur-
ing revolution, by providing cost-effective, rapid and robust 
methods for efficient screening of large numbers of iPSC 
lines and their derivatives. This is crucial for the derivation 
of cells suitable for clinical applications. Furthermore, artifi-
cial intelligence-based methods can be applied in the context 
of iPSC-based drug discovery to assist with prediction of 
efficacy, toxicity and pharmacokinetics of drugs.

Not only modern artificial intelligence methods such 
as deep learning might provide an aid to human operator, 
but also, they might one day support or even replace deci-
sion making. However, much groundwork is still needed 
before these methods can be applied into the clinical realm. 
A major limitation is the need for large amounts of hand-
crafted, structured training data, and this data must be good 
enough to yield meaningful results.
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