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The chemotherapeutic agent paclitaxel is widely used for cancer treatment. Paclitaxel treatment impairs learning and memory
function, a side effect that reduces the quality of life of cancer survivors. However, the neural mechanisms underlying paclitaxel-
induced impairment of learning and memory remain unclear. Paclitaxel treatment leads to proinflammatory factor release and
neuronal apoptosis. Thus, we hypothesized that paclitaxel impairs learning and memory function through proinflammatory
factor-induced neuronal apoptosis. Neuronal apoptosis was assessed by TUNEL assay in the hippocampus. Protein expression
levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the hippocampus tissue were analyzed by Western blot
assay. Spatial learning and memory function were determined by using the Morris water maze (MWM) test. Paclitaxel
treatment significantly increased the escape latencies and decreased the number of crossing in the MWM test. Furthermore,
paclitaxel significantly increased the number of TUNEL-positive neurons in the hippocampus. Also, paclitaxel treatment
increased the expression levels of TNF-α and IL-1β in the hippocampus tissue. In addition, the TNF-α synthesis inhibitor
thalidomide significantly attenuated the number of paclitaxel-induced TUNEL-positive neurons in the hippocampus and
restored the impaired spatial learning and memory function in paclitaxel-treated rats. These data suggest that TNF-α is critically
involved in the paclitaxel-induced impairment of learning and memory function.

1. Introduction

The chemotherapeutic agent paclitaxel is widely used to treat
patients with breast, ovarian, and lung cancers [1–5]. By
binding to β-tubulin within the microtubules, paclitaxel
stabilizes the microtubule lattice to suppress depolymeriza-
tion and dynamic instability [6]. Paclitaxel treatment induces
mild to moderate cognitive impairment known as “chemo-
brain” in some cancer survivors [7–12]. Compared with the
8% incidence rate of cognitive concerns in participants
without a prior cancer diagnosis, an approximately 14%
incidence rate of cancer survivors with memory problems
represents a 40% increase in cancer survivors who have cog-
nitive concerns [13]. However, the mechanisms underlying
paclitaxel-induced neurological dysfunction remain unclear.

Previous studies have shown that the neuropathy of
paclitaxel is limited to peripheral sensory nerves through
affecting axonal degeneration in sensory nerves [14–16]
because paclitaxel does not cross the blood-brain barrier
(BBB) [17]. However, by using positron emission tomogra-
phy (PET), radiolabeled paclitaxel was detectable in the brain
tissues after intravenous administration [18], suggesting that
a small amount of paclitaxel may cross the BBB to act on
brain tissue. Furthermore, paclitaxel induces apoptosis in
neurons through a mechanism distinct from that of
nonneuronal cells [19]. In this regard, paclitaxel induces
apoptosis through endoplasmic reticulum stress [20]. The
hippocampus, cortex, and striatum are the core regions in
the limbic system [21] and play critical roles in spatial learn-
ing and memory as well as cognitive processes [22, 23].
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However, the mechanisms underlying the neurotoxicity of
paclitaxel on hippocampus neurons are not clear.

Paclitaxel increases the production of TNF-α in macro-
phages and endothelial cells [24–26] by promoting TNF-α
gene expression [27]. TNF-α is a membrane-integrated
proinflammatory cytokine which is produced by activated
macrophages and monocytes [28]. TNF-α can induce cell
death or a cell-protective effect depending on the receptor it
binds to TNF-α receptor 1 (TNFR1) or 2 (TNFR2) [29, 30].
TNF-α preferentially binds to TNFR1 which contains a
death-effector domain to induce caspase-8 cleavage and
apoptosis [31, 32]. It has been shown that TNF-α can initiate
apoptosis of neurons [33–35] and oligodendrocytes [36, 37].
Therefore, we hypothesized that neuronal apoptosis caused
by proinflammatory factors contributes to paclitaxel-
induced impairment of neurological function.

2. Materials and Methods

Male Sprague-Dawley (SD) rats (6–8 weeks old, 200–300 g)
were used in this study. The experimental protocol was
approved by the Use Committee of the Hebei Medical
University according to the guidelines of using animals
(K2016-020-3). All efforts were made to minimize both the
suffering and the number of rats used. The rats were
numbered during the study. The number identity of the rats
was revealed during data analysis. Quantitative data were
analyzed by staff blinded to group-identifying information.

2.1. Learning and Memory Tests Using Morris Water Maze.
Male SD rats were randomly assigned into experimental
groups for MWM test following randomized numbers gener-
ated by the GraphPad software. The sample size and power
were determined by using according to the data obtained
from our pilot studies by using the SPSS Statistics analysis
software. The rats were closely observed by staff from the
lab and animal facility for fatal signals and any abnormal
behaviors such as pain, distress, and infection, as described
in the animal protocol. The MWM testing experiments were
performed by staff blinded to treatment conditions. The
water maze container filled with opaque water was 150 cm
in diameter and 50 cm in height of the wall. The water level
was 32 cm in height. The escape platform was 30 cm in height
and 15 cm in diameter. The MWM tests were performed
before and every 4 days after paclitaxel and vehicle treatment
(an average of values of 4 tests during the testing day). The
escape latency and the number of crossings over the platform
location were analyzed and plotted.

2.2. Paclitaxel Treatment. Paclitaxel was dissolved in a vehicle
solution containing a mixture of saline and 10% Cremophor
EL, a derivative of castor oil and ethylene oxide, which is
clinically used for paclitaxel injection. Vehicle or paclitaxel
solution was administered intraperitoneally (i.p.) in a dosage
of 2ml/kg/day. After habituation to the test environment
and baseline measurement of behavioral tests, paclitaxel
or vehicle was injected administered to these 2 groups of
rats on 4 consequent days (days 1, 3, 5, and 7) with pac-
litaxel at a dose of 2mg/kg to reach a final cumulative

paclitaxel dose of 8mg/kg [38]. TNF-α inhibitor thalido-
mide was administered orally (100mg/kg/day) for 4 days
during paclitaxel treatment [39]. The treatment schedule
is illustrated in Figure 1.

2.3. Western Blot Assay. The Western blot analysis was
performed by staff blinded to treatment conditions. Under
deep anesthesia by intraperitoneal injection of pentobarbital
(60mg/kg), the rat was decapitated and the hippocampus
tissue was removed and homogenized in RIPA lysis buffer
containing proteinase F. An equal amount of protein
(60 μg) was loaded into each lane, separated electrophoreti-
cally by SDS-PAGE and electroblotted onto PVDF
membranes. After blocking for 1 h in 5% nonfat dry milk,
the membrane was incubated with anti-TNF-α and anti-IL-
1β and anti-GAPDH (Santa Cruz) at 4°C overnight. The
membrane was rinsed and incubated with horseradish
peroxidase-conjugated goat anti-rabbit secondary antibody
at 1 : 4000 dilutions for 3 h at 37°C. The membrane was devel-
oped by using an enhanced chemiluminescence kit according
to the manufacturer’s instruction. The blotting was captured
digitally, and the intensity of the band was quantified by the
Kodak EDAS 120 system and Quantity One 4.6 software. The
density of each band was normalized to GAPDH expression.

2.4. TUNEL Assay. For visualization of neuronal apoptosis in
the hippocampus, we performed terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) assay to assess
apoptotic cell death in rats treated by vehicle, paclitaxel, tha-
lidomide, and paclitaxel and thalidomide. In brief, the rats
were anesthetized and perfused with 200ml of 0.9% normal
saline with 0.1% of heparin, followed by 200ml PBS contain-
ing 4% paraformaldehyde. Brains were removed and placed
in 4% paraformaldehyde to postfix for 24 h at room temper-
ature. Then, the brains were dehydrated and sectioned into
brain slices at a thickness of 16μm. An In Situ Cell Death
Detection Kit (TMR Green; Roche Applied Sciences,
Indianapolis, IN) was used to determine the number of apo-
ptotic cells. Ten sections randomly selected from each group
were fixed in ethanol-acetic acid at −20°C. The sections were
incubated with proteinase K, rinsed, and incubated with 3%
H2O2 at room temperature. Then, 0.5% Triton X-100 was
used to permeabilize the cell membrane followed by
incubation with the TUNEL reaction mixture (6μl per sec-
tion) at 37°C. The sections were then visualized using
Converter-POD with 0.02% 3,3′-diaminobenzidine (DAB;
100μl/section) at room temperature. Then, the sections were
counterstained with hematoxylin for 30 seconds and washed
again with running water for 10 minutes. Cell counting was
performed in the CA1 subfield of the dorsal hippocampus.
Cells with brown nuclei were considered apoptotic and
were analyzed by using the Image-Pro 6.0 software (Media
Cybernetics Inc., Rockville, MD, USA). The number of
TUNEL-positive cells was quantified under ×400 magnifica-
tion, and the density of stained cells was presented as cells per
square millimeter.

2.5. Statistical Analysis. All data were expressed as mean
± SEM, and the data were analyzed by the SPSS 13.0 software
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(SPSS Inc., Chicago, IL, USA). For comparisons of more than
2 groups, the repeated measures ANOVA with Dunnett’s
post hoc test or one-way ANOVA with Bonferroni’s post
hoc test was performed to compare responses within or
between experimental groups (GraphPad Prism 6). P < 0 05
was considered statistically significant.

3. Results

3.1. Paclitaxel Impairs Spatial Memory in the MWM Test. It
has been shown that acute application of paclitaxel impairs
cognitive function in mice [40]. Thus, we first determined
the cognitive function in rats subjected to chronic paclitaxel
treatment by performing theMWM test. The escape latencies
and the number of crossings over the hidden escape platform
beneath the water were significantly decreased in the later
trails following the initial trail and reached a stable level
at trial numbers 5 to 9 in vehicle-treated rats (n = 15).
Another group of rats (n = 15) was treated with paclitaxel
(2.0mg/kg/day for 4 days, i.p.). Paclitaxel treatment signifi-
cantly increased the duration of escape latencies and the
number of crossings over the platform compared with
vehicle-treated rats (Figures 2(a) and 2(b)). These data suggest
that chronic paclitaxel impairs spatial learning and memory.

3.2. Paclitaxel-Induced Hippocampal Neuronal Apoptosis.
We performed TUNEL staining to evaluate cell apoptosis in
the hippocampus. Paclitaxel treatment significantly
increased the number of TUNEL-positive cells in the
hippocampus compared with vehicle-treated rats (P < 0 05,
Figure 3). Treatment with thalidomide, a TNF-α synthesis
inhibitor, did not change the number of TUNEL-positive
cells in vehicle-treated rats. However, thalidomide treatment
significantly reduced the number of TUNEL-positive cells in
paclitaxel-treated rats in the hippocampal CA1 region
(Figure 3). No significant difference was detected in the

number of TUNEL-positive cells between the vehicle-
treated and thalidomide-treated rats. These results suggest
that paclitaxel induces cell apoptosis in the hippocampus
through TNF-α.

3.3. Paclitaxel Increases Expression Levels of Proinflammatory
Cytokines. Then, the expression levels of proinflammatory
cytokines TNF-α and IL-1β in the hippocampus were
determined in the vehicle- and paclitaxel-treated rats. We
performed Western immunoblotting analysis by using anti-
bodies against TNF-α and IL-1β in hippocampal tissues
obtained from rats treated with vehicle, paclitaxel, and pacli-
taxel with thalidomide (TNF-α inhibitor, 100mg/kg/day).
Western immunoblotting showed a single band for TNF-α
or IL-1β. Paclitaxel treatment significantly increased the
band density for both TNF-α and IL-1β (Figure 4). However,
thalidomide application reduced the TNF-α and IL-1β
expression levels in paclitaxel-treated rats. Thalidomide
treatment had no effect on the expression levels in vehicle-
treated rats.

3.4. Inhibition of TNF-α Rescued the Impairment of Spatial
Learning and Memory Induced by Paclitaxel. Next, we
determined the effect of the TNF-α inhibitor on spatial learn-
ing and memory in rats subjected to chronic paclitaxel treat-
ment. The rats in each group received the injection of vehicle,
paclitaxel (2mg/kg/day, i.p.) for 4 days, and paclitaxel plus
oral administration of thalidomide (100mg/kg/day) for 4
days. During the MWM test, the rats in each group showed
a daily improvement in their ability to locate the hidden
platform. Paclitaxel treatment significantly increased the
escape latencies and the number of crossings compared with
vehicle-treated rats (Figure 5). Thalidomide treatment
restored the increased escape latencies and the number of
crossings in paclitaxel-treated rats, while it had no effect on
escape latencies and the number of crossings in vehicle-

Paclitaxel (2 mg/kg)

Vehicle

−2 −1 0 1 42 3 5 6 7 8 9 10 11 12 13 14 15 Days

Tissue harvest for
western blot
TUNEL staining

(a)

Thalidomide (100 mg/kg/day)

−2 −1 0 1 4 8 9 10 11 12 13 14 15 Days

Paclitaxel (2 mg/kg)

2 3 5 6 7

Tissue harvest for
western blot
TUNEL staining

(b)

Figure 1: Experimental procedure. Treatment schedule for paclitaxel or vehicle (a) and paclitaxel and thalidomide (b) in the different
experimental groups.
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treated rats. These data suggest that inhibition of TNF-α
restores paclitaxel-induced impairment of spatial learning
and memory.

4. Discussion

For the first time, this study demonstrated that chronic sys-
temic administration of paclitaxel impaired spatial learning
and memory function through TNF-α. Hippocampal cell
apoptosis caused by paclitaxel may contribute to the impair-
ment of this neurological function. We found that inhibition
of TNF-α synthesis restored the impaired learning and mem-
ory function in paclitaxel-treated rats. Furthermore, TNF-α
synthesis inhibition eliminated paclitaxel-induced cell apo-
ptosis in the hippocampus. These findings provide new infor-
mation about the neurotoxicity of paclitaxel and for
developing new therapeutics to treat the side effects of pacli-
taxel through targeting TNF-α.

Paclitaxel is one of the most effective chemotherapeutic
agents for the treatment of various types of cancer. By stabi-
lizing microtubules, paclitaxel treatment causes mitochon-
drial damage and p53-independent cell apoptosis through
blocking of the G2/M cell cycle [41–44]. The limitation for
the usage of paclitaxel in cancer treatment includes neurotox-
icity during paclitaxel therapy [45]. For example, systemic
administration of paclitaxel produces painful peripheral
neuropathies [46, 47]. We found in this study that paclitaxel
significantly increased the escape latency and decreased the
number of crossings over the hidden platform. These

findings suggest that paclitaxel impairs spatial learning and
memory function. Our findings are consistent with
commonly reported cognition defects associated with che-
motherapy treatment in cancer patients [48, 49]. It has been
shown that paclitaxel impairs learning and memory function
in rodents [50–52]. However, paclitaxel does not affect all
forms of cognition. For example, systemic administration of
paclitaxel does not impair spatial and episodic memory in
source memory task testing, a radial arm maze procedure
that requires the animal to remember the source of informa-
tion [38]. However, early studies have shown that paclitaxel
does not cross the blood-brain barrier (BBB) to affect
neurons in the central nervous system [17]. However, later
studies using positron emission tomography (PET) found
that radiolabeled paclitaxel was detectable in the brain after
intravenous administration [18]. Systemic administration of
paclitaxel may penetrate at a low rate into the central nervous
system to affect cognitive function. Thus, it is possible
that paclitaxel may directly cause hippocampal neuronal
apoptosis. However, the concentration of paclitaxel in
the hippocampus may not be high enough to cause neu-
ronal apoptosis during paclitaxel treatment.

Consistent with previous studies showing that paclitaxel
can induce apoptosis of neurons [19, 20], we found that
paclitaxel treatment increased the number of TUNEL-
positive neurons in the hippocampus. Paclitaxel induces neu-
ronal apoptosis through a mechanism distinct from that in
nonneuronal cells. In this regard, by stabilizing microtubules,
paclitaxel induces apoptosis in cancer and nonneuronal cells
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Figure 2: Paclitaxel impairs spatial learning and memory in the Morris water maze test. Summary data showing the escape latency (a)
and the number of crossings (b) over the platform during a series of testing before and after paclitaxel or vehicle treatment.
Representative swimming paths on the 12th day after paclitaxel or vehicle treatment (c). Data are expressed as mean± SEM. ∗P < 0 05
compared with the vehicle-treated group.
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[53, 54]. Paclitaxel induces apoptosis in cortical neurons by a
mechanism independent of Bcl-2 phosphorylation [19]. Pac-
litaxel also induces endoplasmic reticulum stress to cause
neuronal apoptosis [20]. We found that paclitaxel induces
hippocampal neuronal apoptosis associated with an increase
in expression levels of TNF-α and IL-1β in the hippocampus
tissue. One possible mechanism is that paclitaxel activates the
p38 MAPK/NF-κB pathway in peripheral macrophages and
monocytes. The activation of NF-κB promotes the expression
of various proinflammatory genes including TNF-α, IL-1β,
and interleukin-6 (IL-6) [55]. The circulating TNF-α released
from peripheral macrophages and monocytes increases the
permeability of the BBB [56, 57]. Thus, both TNF-α and
paclitaxel possibly penetrate the BBB to access the central
nervous system. Consequently, TNF-α activates the NF-κB
signaling pathway and inflammatory responses in neural
tissues such as microglia, astrocytes, and neurons. It has been
shown that sustained activation of the NF-κB-TNF-α

pathway triggers neuroinflammatory response to promote
local neuronal apoptosis [33, 58].

Previous studies have shown that paclitaxel is capable of
increasing the expression of IL-1β in primary human mono-
cytes, T lymphocytes, human breast cancer cell lines [59],
and macrophages [60]. Because paclitaxel led to IL-1β syn-
thesis in macrophages at early time points but secreted it at
following time points [60], it is likely that TNF-α triggers
the release of IL-1β from macrophages. It should be noted
that TNF-α is a cytokine produced predominantly by
macrophages and it stimulates macrophages to release
inflammatory cytokines [61]. This notion is supported by
the finding that the TNF-α inhibitor also decreased IL-1β
protein expression levels. This is not a nonspecific effect
because the TNF-α inhibitor alone did not change the
expression level in control rats. It has been shown that a
high plasma level of proinflammatory cytokine IL-6 is
associated with the occurrence of cognitive impairment
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Figure 3: Cell apoptosis in the hippocampal CA1 region of rats treated with paclitaxel. (a–d) TUNEL staining was used to observe differences
in apoptosis (×200). Paclitaxel treatment significantly increased TUNEL-positive cells (b) while thalidomide significantly decreased TUNEL-
positive cells in paclitaxel-treated rats (d). (e) Quantitative analysis of TUNEL-positive neurons per square millimeter in each group. No
significant difference in the number of TUNEL-positive cells was observed between the vehicle- and thalidomide-treated rats. Data are
expressed as mean± SEM (n = 10) and analyzed using one-way analysis of variance and Dunnett’s post hoc test. ∗P < 0 05 compared with
the vehicle group. #P < 0 05 compared with the PTX group. Vehicle: vehicle-treated group; PTX: paclitaxel-treated group; THD:
thalidomide-treated group; THD+PTX: paclitaxel- and thalidomide-treated group; TUNEL: terminal deoxynucleotidyl transferase dUTP
nick end labeling.
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Figure 4: Paclitaxel increased the expression levels of TNF-α and IL-1β. Representative gel images (a and b) and summary data (c and d)
show the TNF-α (a) and IL-1β (b) protein expression levels in the hippocampus tissue from rats treated with vehicle, paclitaxel,
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Figure 5: The TNF-α synthesis inhibitor thalidomide restored paclitaxel-induced impairment of spatial learning andmemory. Representative
swimming paths (a) on the 12th day after vehicle, paclitaxel, thalidomide, and paclitaxel plus thalidomide treatment. Summary data showing
the escape latency for finding the platform (b) and the number of crossings over the platform (c) during a series of testing in the group of rats
receiving vehicle, paclitaxel, and paclitaxel plus thalidomide. Data are expressed as mean± SEM. ∗P < 0 05 compared with the vehicle group.
PTX: paclitaxel; THD: thalidomide.
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in postchemotherapy breast cancer patients [62]. This high
level of IL-6 may result from paclitaxel-induced TNF-α.
However, in this study, we did not determine the role of
IL-6 in paclitaxel-induced impairment of learning and
memory as well as neuronal apoptosis in the hippocam-
pus. Thus, the role of IL-6 in mediating paclitaxel-
induced responses warrants further studies.

In summary, our findings indicate that paclitaxel treat-
ment induces neuronal apoptosis through the upregulation
of TNF-α. Inhibition of TNF-α synthesis with thalidomide
rescued paclitaxel-induced impairment of spatial learning
and memory function. Our findings identified a novel
mechanism underlying paclitaxel-induced impairment of
cognitive function. Findings from this study provide new
insight into the mechanisms underlying paclitaxel-induced
impairment of spatial learning and memory and new targets
for the development of novel therapy of neurological
dysfunctions during chemotherapy by targeting TNF-α.

Abbreviations

TNF-α: Tumor necrosis factor-α
IL-1β: Interleukin-1β
IL-6: Interleukin-6
MWM: Morris water maze.

Additional Points

Highlights. (i) Paclitaxel induces impairment of learning and
memory function. (ii) The behavior impairment induced by
paclitaxel is associated with an increase in TNF-α expression
level and apoptotic cells in the hippocampus. (iii) Inhibition
of TNF-α synthesis recovered the impaired learning and
memory function in paclitaxel-treated rats.
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