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Topological phases and bulk-edge correspondence
of magnetized cold plasmas
Yichen Fu 1,2,3✉ & Hong Qin1,2,3

Plasmas have been recently studied as topological materials. However, a comprehensive

picture of topological phases and topological phase transitions in cold magnetized plasmas is

still missing. Here we systematically map out all the topological phases and establish the

bulk-edge correspondence in cold magnetized plasmas. We find that for the linear eigen-

modes, there are 10 topological phases in the parameter space of density n, magnetic field B,

and parallel wavenumber kz, separated by the surfaces of Langmuir wave-L wave resonance,

Langmuir wave-cyclotron wave resonance, and zero magnetic field. For fixed B and kz, only

the phase transition at the Langmuir wave-cyclotron wave resonance corresponds to edge

modes. A sufficient and necessary condition for the existence of this type of edge modes is

given and verified by numerical solutions. We demonstrate that edge modes exist not only on

a plasma-vacuum interface but also on more general plasma-plasma interfaces. This finding

broadens the possible applications of these exotic excitations in space and laboratory

plasmas.
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Recently, the relation between the topological properties of
the bulk modes and the chiral (unidirectional) edge modes
has attracted growing interest in classical fluid1–5 and

plasma physics6–10. Originating in condensed matter physics, the
bulk-edge correspondence11–13 predicts that at the interfaces
between two topologically different materials, there exist gapless
edge modes across the common band gap. For condensed matter
systems, the gap Chern number is a topological invariant for bulk
modes to give a Z classification12. On the other hand, continuum
media, including plasmas, do not have well defined Brillouin zones,
and compactification techniques in the wavenumber space4,5,10,14

have been adopted to generate integer Chern numbers. It has also
been argued that proper Brillouin zones are not essential for using
Chern numbers to predicting boundary states15. Landau levels in
the continuum and Weyl semimetals are good examples.

In plasma physics, the well-known Clemmow-Mullaly-Allis
(CMA) diagram16–19 provides a crude topological classifica-
tion of wave normal surfaces in the parameter space of mag-
netic field and density. The classification of the waves using
the topological index of the Chern type provides a different
theoretical understanding that can be used as predictive tool,
e.g., in the study of edge modes. For cold magnetized plasmas,
topological phases and topological phase transitions have not
been systematically mapped out because of the complicated
parameter dependency. The bulk-edge correspondence has not
been well established due to the non-compactness of the
wavenumber space. For cases with wave vectors perpendicular
to the magnetic field, the bulk topology and corresponding
edge states of the X waves (transverse-magnetic waves) have
been extensively studied13,14,20–24 when the O waves (trans-
verse-electric waves) are ignored. It is reported that under
certain conditions, the bulk-edge correspondence between the
gap of X waves can be physically violated25. Another type of
edge mode has been derived using a simplified analytical
model6 and linked to the Weyl degeneracies7. This edge mode
was also numerically demonstrated10 for a plasma-vacuum
interface with continuous density falloff. However, the cor-
responding bulk topological phases and phase transition have
not yet been identified.

In the present study, we attempt at a comprehensive picture of
the topological phases, topological phase transitions, and the
bulk-edge correspondence of magnetized cold plasmas in the
absence of a solid boundary. We extend the study by Parker
et al.10 of the linear eigenmodes in a cold plasma with stationary
ions in a uniform magnetic field, and carefully draw the topo-
logical phase diagram in the parameter space, and clarify the
condition for the existence of the topological edge modes. Spe-
cifically, we report the following findings. (i) In the parameter
space of magnetic field B ¼ B0ẑ, density n, and wavenumber kz,
there are 10 topological phases, separated by the Langmuir wave-
L wave (LL) resonance, the Langmuir wave-Cyclotron wave (LC)
resonance, and the B= 0 surface. (ii) Their topological properties
are classified by the integer Chern numbers of the spectrum. For
fixed non-vanishing B and kz, there are two possible topological
phase transitions due to the two resonances, while only the
transition at the LC resonance produces edge modes. (iii) There
exists a critical density nc such that plasmas below and above nc
are in different topological phases across the LC resonance. We
find that edge modes exist not only at the plasma-vacuum
boundary10, but also at more general plasma-plasma interfaces
when a necessary and sufficient condition, Eq. (7), is satisfied,
and the edge modes can be categorized by different behaviors of
the Fermi arcs or Fermi-arcs-like curves. This finding broadens
the possible applications of these exotic edge modes in space and
laboratory plasmas.

Results
Bulk dispersion relation and eigenmodes. Following ref. 10, we
use the linearized fluid equations for a magnetized cold plasma
with stationary ion and uniform density ne to study the eigen-
modes of the system. The constant background magnetic field is
in the z-direction, i.e., B0 ¼ B0ẑ, and there is no equilibrium flow.
After spacetime Fourier transform, ∂t→− iω,∇→ ik, and the
governing equations can be written as HðkÞ ψ

�� � ¼ ω ψ
�� �, where

H(k) is a 9 × 9 Hermitian matrix, and ψ
�� � ¼ ðv;E;BÞT is a nine-

dimensional vector consisting of the perturbed velocity and
electromagnetic fields. A detailed derivation of H(k) is provided
in the “Methods” section.

The dispersion relation is given by the vanishing determinant
of H(k)− ωI9, which can be simplified as

det NN� N2I3 þ ϵ
� � ¼ 0; ð1Þ

where N= ck/ω, and ϵ is the 3 × 3 cold plasma dielectric tensor.
In terms of the standard notations in ref. 16,

ϵ ¼
S �iD 0

iD S 0

0 0 P

2
64

3
75; P ¼ 1�

ω2
p

ω2
; ð2Þ

S ¼ 1�
ω2
p

ω2 �Ω2 ; D ¼ �Ω

ω

ω2
p

ω2 �Ω2 ;
ð3Þ

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nee2=meϵ0

p
is the plasma frequency, and Ω=

−eB0/me is the electron cyclotron frequency. The plasma is called
underdense if ωp< Ωj j, and overdense if ωp> Ωj j. It can be shown
that the dispersion relation surfaces in the (ω, k) space are
symmetric with respect to all four coordinate hyperplanes. For
each given kz, the system has 9 eigenvalues ωn and eigenvectors
ψn

�� �
as functions of k⊥, where ω−n=− ωn and n=− 4,− 3, ...,

3, 4 is the index for the eigenmodes. See the “Methods” section for
a detailed discussion of the symmetry properties of the spectrum.
Note that ω0= 0 is the zero frequency eigenmode of the system.
The dispersion surfaces ω(kz, k⊥) of the four positive-frequency
branches for both overdense and underdense plasmas are shown
in Fig. 1a, b. To better illustrate the crossing between branches,
the dispersion curves ω(kz) at different values of k⊥ are shown in
Fig. 1c, d. We can observe that branch crossing occurs only when
k⊥= 0, represented by the coldest blue lines. In this case, the
horizontal lines ω= ωp are the Langmuir waves given by P= 0.
The other three branches are the R wave and the L wave given by
N2= R and N2= L, respectively, where R= S+D and L= S−D.
For convenience, we define functions

k± :¼ ωp=cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ±ωp=Ω

q : ð4Þ

When kz > 0, the Langmuir wave resonates with the L wave at
kz= k+. In an underdense plasma, the Langmuir wave also
resonates with the lower branch of the R wave, a.k.a electron
cyclotron wave, at kz= k−. Notice that k−→∞ when ωp→ ∣Ω∣.
These four resonant points at kz= ± k±, previously recognized as
the Weyl points7, play important roles in determining the
topological properties of magnetized plasmas.

Topolgoical phase diagram. When fixing kz as a parameter, we
can calculate the Chern number for each band, i.e., branch of the
dispersion relation, in the k⊥= (kx, ky) space. If the k⊥ space can
be properly compactified10,14, Chern numbers in the system
should be integers, which are invariant under continuous trans-
forms. It means that each band’s Chern number is a topological
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invariant that can change only when different bands cross. As
shown in Fig. 1, the band crossing in a cold plasma is only
possible at the points (kx, ky, kz)= (0, 0, ± k±) when B ≠ 0 and
kz ≠ 0. Therefore, the locations of kz= ± k± defines the boundaries
between topologically different regions if separated regions have
different Chern numbers. In Fig. 2a, the surfaces of kz= k± and
Ω= 0 in the (ωp,Ω, kz) space are shown, which separate the
parameter space into 10 different regions, each represents a dif-
ferent phase characterized by a set of Chern numbers. Although
the first band touches the zero-frequency mode at kz= 0, we will
show later that this band crossing does not affect the topology.
The cross sections of the 3D surfaces at (ωp= 1,Ω > 0, kz > 0) and

(ωp > 0,Ω= 1, kz > 0) are shown in Fig. 2b, c, each of which is
separated into three phases. Notice that phase I in these cross
sections only exists in underdense plasmas, i.e, when ωp < ∣Ω∣.

We adopt the same formalism of Berry curvature and
regularization strategy used in ref. 10 to calculate the Chern
numbers numerically. The Chern number of the n-th band is
denoted by Cn. As functions of (ωp,Ω, kz), Chern numbers admit
the following symmetries, Cn(Ω, kz)= Cn(Ω,− kz)=− Cn(−Ω,
kz)=− C−n(Ω, kz). See additional details about the symmetry
properties of the Chern numbers for the system in the Methods
section. Therefore, it suffices to calculate the Chern numbers for
the three phases in the domain of kz > 0 and Ω > 0, as shown in
Fig. 2b, c.

The resulting Chern numbers for each positive-frequency band
in all three phases are shown in Fig. 3a–c. We find that the Chern
numbers in phases II and III are (C1,C2, C3,C4)= (−1, 1, 1, −1)
and (−1, 2, 0,−1), respectively, as reported in ref. 10. For the special
case of kz= 0, the Chern numbers for phase III are consistent with
those calculated in refs. 14,22. For phase I, we discover that its Chern
numbers are (C1, C2,C3,C4)= (0, 0, 1,− 1), which was not reported
previously. When the parameters cross the boundary of kz= k−

and change from phase I to phase II, bands 1 and 2 cross at k⊥= 0
and change their Chern numbers from (0, 0) to (−1, 1). This
change agrees with the fact that the Weyl point at kz= k− has
Chern number 17. Similar behavior is observed between bands 2
and 3 when parameters cross the boundary of kz= k− and change
from phase II to phase III.

Of particular interest in the present study is the transition
between phases I and II. The boundary between them, i.e., the
LC resonance surface, defines a critical density nc, which,
expressed in terms of the corresponding plasma frequency
ωp;c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nce2=meϵ0

p
, is

ωp;c ¼
jΩj
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ckz
Ω

� �4

þ 4
ckz
Ω

� �2
s

� ckz
Ω

� �2
2
4

3
5: ð5Þ

For fixed kz and Ω, transition between phases I and II occurs at
n= nc. Notice that when kz→∞, ωp,c→ ∣Ω∣, and nc becomes
nc

1 � Ω2meϵ0=e
2.

The surface of Ω= 0 is also a boundary between different
topological phases because Cn(−Ω)=− Cn(Ω). For the special

Fig. 1 Dispersion relations of magnetized cold plasmas. a Dispersion
relation surfaces of an overdense plasma. Only the k⊥ > 0 and kz > 0 part of
positive-frequency branches are shown. Different colors represent different
branches. b The dispersion curves ω(kz) at fixed k⊥ of an overdense plasma.
The colors represent different values of k⊥. Only the crossing of the curves
with the same color indicates the crossing of different branches.
ω1;2=jΩj ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 þ 1

p
± 1Þ=2, where r=ωp/∣Ω∣. k± are given by Eq. (4)

assuming Ω > 0. (c), (d) Same as (a), (b) but for an underdense plasma.

Fig. 2 Topological phase diagrams of magnetized cold plasma. a 3D phase diagram of a cold plasma in the (ωp,Ω, kz) space. There are 10 topological
phases. b, c 2D cross sections of (a) at ωp= 1 and Ω= 1. Only the kz > 0 and Ω > 0 part is shown. Dashed lines indicates Ω=ωp. Dotted lines indicates
kz= k*. The Roman numerals I-III indicate three different topological phases in each cross section. The band structures and Chern numbers at three black
dots in (b) are shown in Fig. 3.
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case of kz= 0, the boundary between phases I and II and the
boundary between phases II and III collapse to the lines defined
by Ω= 0 and ωp= 0. In this case, the only possible nontrivial
phase transition happens at the Ω= 0 surface.

Band gaps. Bulk-edge correspondence suggests that edge modes
exist in the common band gaps at the interface between two
topological materials with different gap Chern numbers. We now
identify possible band gaps in a magnetized cold plasma. At fixed
kz, when k⊥→∞, (ω1, ω2, ω3, ω4)→ (0, ωuh, ck⊥, ck⊥), where
ω2

uh ¼ ω2
p þ Ω2 is the upper hybrid frequency. Thus, when ∣kz∣ ≠

k±, it is possible to have gaps between bands 1 and 2 and between
bands 2 and 3. However, the gap between bands 2 and 3 does not
always exist. When k⊥= 0, ω3(kz) is given by N2= L. The non-
overlapping of bands 2 and 3 requires ω3(kz) > ωuh, which leads to

jkzj> k� :¼ jΩj
c

1þ
ω2
p

Ω2

 !1=4

: ð6Þ

The locations of ∣kz∣= k* in the parameter space are shown in
Fig. 2b, c. It is clear that the gap between bands 2 and 3 does not
exist in phase III because condition (6) is not satisfied there.

The topology of a band gap is characterized by it gap Chern
number, which is defined as Ci;iþ1 ¼ ∑i

n¼�4 Cn for the gap
between the i-th and (i+ 1)-th bands. In phase I, both C1,2 and
C2,3 are trivially zero, as in the phase of vacuum11 that phase I
neighbors at the boundary of ωp= 0. Thus, as far as the gap
topology is concerned, phase I plasmas are identical to the
vacuum, which is interesting if not surprising. In phase II, the gap
Chern numbers (C1,2, C2,3) become (−1, 0), indicating a
topological phase transition at the boundary between phases I
and II due to the crossing of the gap between bands 1 and 2. In
phase III, the gap Chern numbers (C1,2, C2,3) are (−1, 1).
Although C2,3 is different between phase II and III, there is no
band gap between bands 2 and 3 in phase III as proved above.
When ∣kz∣ ≠ 0, there is another band gap between bands 0 and 1.
However, the gap Chern number C0,1 for this gap is zero for all
three phases, and it is a trivial band gap. Therefore, only the band
gap between bands 1 and 2 shared by phases I and II is interesting
in the context of bulk-edge correspondence.

It is worth mentioning that when kz= 0, band 3 becomes the O
wave, and bands 2 and 4 are the X wave. If one chooses to ignore
the O wave13,14,20,22, then a band gap shows up between bands 2
and 4, as long as Ω ≠ 0. The physical properties of this gap has
been extensively studied, including the violation of bulk-edge
correspondence under certain conditions25. However, as an
important eigenmode in magnetized cold plamsas, band 3 always
exists. Especially when ∣kz∣ > k+, band 3 has a non-zero Chern

number and should not be ignored. In the present study, we
include all 9 bands in magnetized cold plasmas.

Bulk-edge correspondence. Having established the topological
phase diagram and possible band gaps in a magnetized cold
plasma, we now investigate the edge modes at the interface
between two different magnetized cold plasmas. As discussed
above, at a fixed B, the only possible nontrivial gap that admits
two different gap Chern numbers is the gap between bands 1 and
2 shared by phases I and II. The bulk-edge correspondence then
predicts that edge modes exist in the common band gap at the
interface between a phase I plasma and a phase II plasma. We
now solve for these edge modes numerically in an 1D inhomo-
geneous plasma. The background magnetic field is constant, i.e.,
B0 ¼ B0ẑ, and the plasma density is nonuniform only in the
x-direction, as shown in Fig. 4a. The density profile is given
by nðxÞ ¼ 1

2 ðn1 � n2Þftanh½�ðx � lÞ=δ� þ tanh½ðx þ lÞ=δ�g þ n2,
where n1 and n2 are the densities of the inner and outer plasmas,
and l and δ are the location and width of the interface. For
realistic plasmas, the width of the interface is finite, i.e., δ > 0.

Because the system is uniform in the z-direction, the parallel
wavenumber kz enters as a parameter. The inner and outer plasmas
can be represented by two points, (ωp,1,Ω, kz) and (ωp,2,Ω, kz), in
the phase diagram shown in Fig. 2. Here, ωp,1 and ωp,2 are the inner
and outer plasma frequencies. As discussed above, when there is a
common band gap shared by the inner and outer plasmas, chiral

Fig. 3 Chern numbers. a–c Chern numbers of each positive frequency
bands of the three phases of the phase diagram. Since the dispersion
relation is isotropic in (kx, ky) plane, only the k⊥ > 0 part is shown. The
parameters used are Ω= 1 and (ωp, ckz)= (0.4, 1.2) in (a), (1.5, 1.2) in (b),
and (1.5, 0.5) in (c), which are shown as black dots in Fig. 2b.

Fig. 4 The band structures of nonuniform plasmas at ckz/∣Ω∣= 0.7.
a Schematic diagram of the density profile in x direction, where cl/∣Ω∣= 40
and cδ/∣Ω∣= 4. b, c The non-zero components of electric fields of edge
modes in (e) at cky/∣Ω∣= 0.05. d–f The band structure ω(ky) with various
inner and outer densities. The plasma frequencies (ωp,1,ωp,2)/∣Ω∣ are (0.8,
0.6), (0.6, 0.4), and (0.4, 0) in (d)–(f), respectively. The topological edge
modes on left and right side are shown by blue and red lines, respectively.
The rest modes are shown by gray lines. Notice that the critical plasma
frequency given by Eq. (5) is ωp,c/∣Ω∣ ≈ 0.5.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24189-3

4 NATURE COMMUNICATIONS |         (2021) 12:3924 | https://doi.org/10.1038/s41467-021-24189-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


edge modes exist in the gap if and only if the inner plasma is in
phase I and outer plasma is in phase II such that they have different
gap Chern numbers. Furthermore, the number of chiral edge modes
at the interface should be equal to the difference of the gap Chern
numbers, which is 1 in the present case. Since nc is the critical
density at the boundary between phases I and II, for given kz and Ω,
the chiral edge mode exists if and only if

n1 >nc >n2; ð7Þ
which, expressed in terms of plasma frequencies, is

ωp;1

jΩj þ
ωp;1

2

c2k2z
> 1>

ωp;2

jΩj þ
ωp;2

2

c2k2z
: ð8Þ

Here, we observe that underdense and overdense plasmas behave
differently. When both the inner and outer plasmas are overdense,
edge mode cannot exist regardless of kz. If the inner plasma is
overdense while the outer plasma is underdense, edge modes can be
found when kz > k−(ωp,2). If both the inner and outer plasma are
underdense, the edge mode can only be found when k−(ωp,1) > ∣kz∣
> k−(ωp,2). Notice that when the outer side is a vacuum, the criteria
given by Eq. (8) can be satisfied in two scenarios, either k2z is small
enough or the inner plasma is overdense. Incidentally, all the
parameters chosen in ref. 10 belong to the first scenario.

To numerically verify the criteria in Eqs. (7) or (8), we Fourier-
transform in y, z and t, then spatially discretize the Hamiltonian
H in the x-direction using a finite difference method. A periodic
boundary condition at x= ± 2l is adopted, as in ref. 1. To ensure
the numerically calculated spectrum admits the same symmetries
as the analytical spectrum, we adopt a discretization scheme that
preserves the Hermiticity and the particle-hole symmetry of the
system. See the “Methods” section for details. The structures of
the positive-frequency bands for different (n1, n2) at ckz/∣Ω∣= 0.7
are shown in Fig. 4d–f. For the cases of nc > n1 > n2= 0 and n1 >
n2 > nc, there is no edge mode in the gap between the first and
second bands. In particular, Fig. 4f shows that the edge modes can
be absent at a plasma-vacuum interface. In Fig. 4e, n1 > nc > n2
and there are two gapless edge modes in the band gap. Due to the
symmetry of ω(ky)= ω(− ky), the two edge modes cross at
ky= 0. The electric field structure of the two gapless modes
localized at different edges is shown in Fig. 4b, c. The number of
edge modes at each edge is the same as the difference of the gap
Chern number, consistent with the prediction of bulk-edge
correspondence.

To further understand the edge modes, band structures at
ky= 0 with various densities are plotted in Fig. 5, which shows
that edge modes can be classified by behaviors of the Fermi arc or
Fermi-arc-like curves. The inner plasma is underdense in Fig. 5a, c
and overdense in Fig. 5b, d. The outer is underdense in Fig. 5c, d
and vacuum in Fig. 5a, b. The bulk dispersions are shown by
orange and blue lines for inner and outer plasmas in each case.
The topological edge modes are shown in red lines representing
the crossing points between the left and right edge modes at each
given kz. We can see that the range where edge modes exist
coincides with Eq. (8) exactly. Noticeably, in Fig. 5a, edge modes
exist when ∣kz∣ < k−(ωp,1) between a underdense plasma and a
vacuum. The dispersion surface ω= ω(kz, ky) of the edge modes
connects the two Weyl points of the inner plasma at kz= ± k−

(ωp,1). The intersection of this dispersion surface and ω= ωp,1 is
known as the Fermi arc connecting two Weyl points26,27. When
the inner plasma is overdense in Fig. 5b, the Weyl points ± k−

(ωp,1) disappear, but the edge modes still exist and the dispersion
surface connects to kz= ±∞. When the inner and outer plasmas
are all underdense in Fig. 5c, edge modes are prohibited if− k−

(ωp,2) < kz < k−(ωp,2), then the dispersion surface no longer
connects the Weyl points of the inner plasma at positive and

negative kz. Instead, a Fermi-arc-like curve connects kz= k−(ωp,1)
and kz= k−(ωp,2), the Weyl points of the inner and outer plasmas.
In Fig. 5d, the inner is overdense and the outer underdense, a
Fermi-arc-like curve connects the Weyl point of the outer plasma
to infinity. These numerical results also confirm the condition
given by Eqs. (7) or (8) for the existence of the edge modes.

As a side note, the gap between bands 1 and 2 of the inner
plasma may overlap with the gap between bands 2 and 3 of the
outer plasma. It is reasonable to suggest that if Cin,1,2 ≠ Cout,2,3,
edge modes might exist within this gap. However, this common
gap is filled with other eigenmodes in reality. The upper hybrid
frequency ωuh, which depends on plasma density, sets the upper
range for band 2. Since the density profile is continuous, the local
upper hybrid frequency ωuh(x) will always fill in the gap between
the second bands of the inner and outer plasmas. An example is
illustrated in Fig. 6, where the inner and outer plasmas belong to
phases II and I, respectively.

Varying density is a convenient but not the only way to create
interfaces between topologically different plasmas. Since plasma
topology varies with the strength and direction of the magnetic
field, one can create topologically nontrivial interfaces by
assembling two plasmas with different background magnetic
field. In particular, when kz= 0, the only possible topological
phase transition in a cold plasma occurs at the Ω= 0 surface, as
discussed above. In this case, the edge modes at the interface
between two plasmas with opposite magnetic fields has been
studied for the X wave13,23. However, as a whole system, such a
setup is inhomogeneous, and the O wave cannot be decoupled.
More thorough analysis is need.

Discussion
The linear and nonlinear properties of edge modes, or surface
waves, in plasmas have been studied for decades28–30. However,
the relation between surface modes and the topology of bulk

Fig. 5 Four possible types of Fermi-arc-like structures. a–d Band structure
ω(kz) at ky= 0 with different parameters, where Fermi-arc-like structures
of edge mode connecting Weyl points. The topological edge modes are
highlighted by the red curves. The bulk modes of the inner and outer
plasmas when k⊥= 0 are highlighted by orange and blue curves,
respectively. The other bulk modes are indicated by gray curves.
k�1 ¼ k�ðωp;1Þ and k�2 ¼ k�ðωp;2Þ. The plasma frequencies (ωp,1,ωp,2)/∣Ω∣ in
(a)–(d) are (0.75, 0), (1.1, 0), (0.75, 0.3), and (1.1, 0.3).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24189-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3924 | https://doi.org/10.1038/s41467-021-24189-3 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


plasma was only pointed out recently. In the present research, we
studied the linear eigenmodes of a cold plasma in a uniform
magnetic field, and found that the system has 10 different topo-
logical phases in the (ωp,Ω, kz) space. The different phases are
separated by the surfaces of Langmuir wave-L wave resonance,
Langmuir wave-cyclotron wave resonance, and Ω= 0. We found
that at fixed Ω and kz, only the band gap between bands 1 and
2 shared by phases I and II is interesting in the context of bulk-
edge correspondence, and that the necessary and sufficient con-
dition for the existence of edge modes is n1 > nc > n2. These
findings were verified by numerical studies of the corresponding
chiral edge modes in 1D inhomogeneous plasmas. The edge
modes exist not only on the plasma-vacuum interface, but also on
more general plasma-plasma interfaces. The validity of the bulk-
edge correspondence is confirmed for the cold magnetized plasma
as a non-driven Hermitian system. These results improved our
understanding of the elementary properties of the magnetized
plasma as a topological material.

It is worth mentioning that in the plasma physics community,
the term “edge” usually refers to the physical boundary of plasmas
adjacent to the first wall of vacuum chambers31,32. In the context
of topological matters, the term ‘edge’ refers to the boundary of
two topologically different regions, although a plasma-vacuum
edge can also be a topological edge when the plasma and the
vacuum have different Chern numbers. As discussed above, the
topological edges include not only the plasma-vacuum boundary,
but also more general gaseous plasma-plasma interfaces, which
are the focus of the present study We did not consider gaseous
plasma-solid interfaces, which, unlike the interfaces between solid
state materials27, involve more complex physical processes, such
as the plasma sheath and plasma-wall interactions31,33. It is not
appropriate to model gaseous plasma-solid interfaces only as
simple interfaces between two different topological materials.

The present classification of the topological phases in the
parameter space is carried out for the linearized system of a
homogeneous, magnetized, cold plasma with stationary ions.
Such a classification in this simplified system provides an ele-
mentary tool and serves as a reference model for studying the
topological-matter properties of more realistic plasmas. For
example, in an inhomogeneous plasma, edge modes may be
excited at the interface between two plasmas in different topo-
logical phases. When other physical effects, such finite tempera-
ture, plasma collisions, and kinetic interactions, are important,

the band structures16 and topological properties of the system can
change significantly, including the number of topological phases
and possible phase transitions. One systematic approach for
understanding these changes is to analyze the variations of the
symmetry properties of the system34. For instance, the magne-
tized cold plasma model studied here has a broken time-reversal
symmetry, but the linearized ideal magnetohydrodynamics
system is invariant under the (modified) time-reversal
transformation8, despite the existence of an external magnetic
field. Furthermore, the linear dynamics in many plasma models is
expected be to non-Hermitian35,36, permitting unstable and
damped eigenmodes. Applying the methods of topological phases
for non-Hermitian systems37,38 will bring more insights and
discoveries in the study of plasma instabilities for laboratory and
astrophysical plasmas.

Methods
Basic equations. Here we outline the band structure of cold plasma waves. Assume
the background plasma is uniform and stationary, the ions are motionless and the
magnetic field is constant, i.e., B0 ¼ B0 ẑ. The linearized fluid equations are16

∂tv ¼ e
me

ðEþ v ´B0Þ;

∂tE ¼ c2∇ ´B� ene
ϵ0

v;

∂tB ¼ �∇ ´ E;

ð9Þ

where v, B, E are perturbed velocity, magnetic field and electric field, e is the
electron charge, me and ne are electron mass and density, and c is light speed. Let
plasma frequency ω2

p ¼ nee
2=ϵ0me and cyclotron frequency Ω=− eB0/me. Define

renormalized velocity ~v ¼ ωpv, reference electric field �E and reference frequency �ω.
We normalize time to �ω�1, frequency to �ω, length to c=�ω, ~v to e�E=me, electric field
to �E, and magnetic field to �E=c. The equation system becomes

∂t~v ¼ ωpE�Ω~v ´ ẑ;

∂tE ¼ ∇ ´B� ωp~v;

∂tB ¼ �∇ ´ E:

ð10Þ

Notice that when the density is not uniform, it suffices to change ωp to ωp(r) in Eq.
(10). From now on, we omit the tilde for convenience. After space Fourier
transform, ∂t→− iω,∇→ ik, and the governing equations can be written as
H ψ
�� � ¼ ω ψ

�� �, where ψ
�� � ¼ ðv;E;BÞT and

Hðωp;Ω; kÞ ¼
iΩẑ ´ iωp 0

�iωp 0 �k ´
0 k ´ 0

0
B@

1
CA: ð11Þ

Here, H is a 9 × 9 Hermitian matrix. The dispersion relation is given by
detðH � ωI9Þ ¼ 0, which simplifies to Eq. (1).

Symmetries of the system. As a real system, the equations of motion for plasmas
admit an unbreakable particle-hole symmetry9,39. For our system, the symmetry
states that H(−k)*=−H(k), where * denotes complex conjugate. It ensures that
the dispersion relation has the symmetry of ω(− k)=− ω(k). Notice that Eq. (1)
remains invariant under k→− k, so the dispersion relation satisfy ω(k)= ω(− k)
as well. In addition, since the system is isotropic in the direction perpendicular to

the background magnetic field, ω only depends on kz≡ kz and k? �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
.

Therefore, the dispersion relation surfaces in the (ω, kx, ky, kz) space are symmetric
with respect to the reflections of all four coordinate hyperplanes.

The symmetries of eigenvalues can also be obtained, which will be useful during
the calculation of the Chern numbers. H(ωp,Ω, k) has 9 eigenvalues, one of which
is identically zero. The eigenvalues and corresponding eigenvectors can be labeled
as ωn; ψn

�� �
, where n=− 4,− 3,⋯ , 3, 4, ωi < ωj if i < j. Assume that at some (ωp,

Ω, k), the n-th eigenvalue and eigenvector are ωn= ω and ψn

�� � ¼ ðv;E;BÞT. We
can verify the following symmetries of eigenvalues and eigenvectors:

1. For the reflection of band number n→− n, ω−n=− ω and
ψ�n

�� � ¼ ðv�;E�;�B�ÞT.
2. For the reflection of magnetic field Ω→−Ω, ωn= ω and

ψn

�� � ¼ ð�v�;E�;B�ÞT.
3. For the reflection of wavenumber k→− k, ωn= ω and ψn

�� � ¼ ðv;E;�BÞT.

The symmetries of Chern numbers. In this section, we briefly describe the cal-
culation and symmetries of Chern numbers. For any given parallel wavenumber kz,

Fig. 6 Band structure when two different gaps overlap. In this case,
ckz/∣Ω∣= 1.4 and the inner and outer plasma frequency are (ωp,1,ωp,2)/
∣Ω∣= (1.4, 0.1). The bulk modes of the inner and outer plasma when k⊥= 0
are highlighted by orange and blue curves, respectively. The other bulk
modes are indicated by gray curves. The gap between bands 1 and 2 of the
inner plasma overlaps with gap between bands 2 and 3 of the outer plasma.
However, this band gap is filled with local upper hybrid modes due to
continuous density profile.
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the Chern number can be calculated in the k⊥ space for each band by12Cn= (2π)−1

∫dS ⋅ Fn(k), where Fn=∇k ×An is the Berry curvature, and An= i〈ψn∣∇kψn〉 is the

Berry connection. Let ψnðωp;Ω; kÞ
��� E

¼ ðv;E;BÞT. The Berry connection is An(ωp,

Ω, k)= i(v†∇kv+ E†∇kE+ B†∇kB), where † denotes conjugate transpose. Based
on the symmetries of eigenvectors, we obtain the following symmetries of Chern
numbers:

1. For the reflection of band number n→− n,

A�nðωp;Ω; kÞ ¼ ihψ�nj∇kψ�ni
¼ iðv∇kv

y þ E∇kE
y þ B∇kB

yÞ
¼ �Anðωp;Ω; kÞ:

ð12Þ

Thus, C−n(ωp,Ω, kz)=− Cn(ωp,Ω, kz).
2. For the reflection of magnetic field Ω→−Ω, An(ωp,−Ω, k)=−An(ωp,Ω,

k). Thus, Cn(ωp,−Ω, kz)=− Cn(ωp,Ω, kz).
3. For the reflection of parallel wavenumber kz→− kz, since the system is

isotropic in k⊥-plane, it is equivalent to the reflection of wavenumber k→−k.
Due to the symmetries of the eigenvectors, we have An(ωp,Ω,− k)=−
An(ωp,Ω, k) and Fn(ωp,Ω,− k)= Fn(ωp,Ω, k). Therefore, Cn(ωp,Ω,−kz)=
Cn(ωp,Ω, kz).

For numerical evaluation of the Chern numbers, the following alternative
formula of Berry curvature is used,

Fn ¼ i ∑
m≠n

ψn

	 ��∇kH ψm

�� �
´ ψm

	 ��∇kH ψn

�� �
ðωm � ωnÞ2

: ð13Þ

To enforce integer Chern numbers, we adopt the same regularization strategy
used in ref. 10. At large k⊥, we regularize the plasma frequency in Eq. (11) by
replacing ωp with ωp=ð1þ k2?=kc

2Þ, where kc is a large-enough cutoff wavenumber.

Numerical scheme. Here we introduce the numerical methods for eigenmodes
calculation. When density n(x) is nonuniform in the x-direction, we Fourier-
transform Eq. (10) in y, z, t and but not in x. The simulation region in the x-
direction is [− 2l, 2l] and is discretized into N grids. The interval of grids is
Δx= 4l/N and the grid points are xi= iΔx− 2l, i= 0,⋯ ,N− 1. Similar to ref. 1, a
periodic boundary condition is applied at x= ± 2l. Next, we adopt the strategy of
structure-preserving geometric algorithms in plasma physics to discretize v and E
on integer grid points xi and B on half-integer grid points xi+1/2≡ (xi+ xi+1)/2, i.e.,
vi≡ v(xi), Ei≡ E(xi), and Bi+1/2≡ B(xi+1/2). Such discretization ensures centered
discretization of x-derivatives and preserves the geometric relations between dif-
ferent components of the field. Periodic boundary condition enforces that vN= v0,

EN= E0, BN+1/2= B1/2. Define ωp;j � ωpðxjÞ �
ffiffiffiffiffiffiffiffiffiffi
nðxjÞ

q
. Then, Eq. (10) is dis-

cretized as

ω vx;i ¼ �iΩvy;i þ iωp;iEx;i;

ω vy;i ¼ iΩvx;i þ iωp;iEy;i;

ω vz;i ¼ iωp;iEz;i:

8><
>: ð14Þ

ω Ex;i ¼ �iωp;ivx;i þ kz
By;iþ1=2þBy;i�1=2

2 � ky
Bz;iþ1=2þBz;i�1=2

2 ;

ω Ey;i ¼ �iωp;ivy;i � kz
Bx;iþ1=2þBx;i�1=2

2 � i
Bz;iþ1=2�Bz;i�1=2

Δx ;

ω Ez;i ¼ �iωp;ivz;i þ ky
Bx;iþ1=2þBx;i�1=2

2 þ i
By;iþ1=2�By;i�1=2

Δx

8>>><
>>>:

ð15Þ

ω Bx;iþ1=2 ¼ �kz
Ey;iþ1þEy;i

2 þ ky
Ez;iþ1þEz;i

2 ;

ω By;iþ1=2 ¼ kz
Ex;iþ1þEx;i

2 þ i
Ez;iþ1�Ez;i

Δx ;

ω Bz;iþ1=2 ¼ �ky
Ex;iþ1þEx;i

2 � i
Ey;iþ1�Ey;i

Δx :

8>>><
>>>:

ð16Þ

Equations (14)–(16) are now a standard matrix eigenvalue problem, which can
be solved by various established algorithms. It is straightforward to confirm that
the matrix specified by Eqs. (14)–(16) is Hermitian and admits the particle-hole
symmetry as Eq. (10) is and does. This structure-preserving discretization enables
the reformulation of the eigenvalue problem of an inhomogeneous, magnetized,
cold plasma as an eigenvalue problem for a Hermitian matrices with the particle-
hole symmetry.
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