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In order to understand the genetic basis of starch pasting viscosity characteristics of
Chinese spring wheat, we assessed the genetic variation of RVA parameters determined
by the Rapid Visco Analyser in a panel of 192 Chinese spring wheat accessions grown in
Er’shi, Shihezi and Zhaosu during 2012 and 2013 cropping seasons. A genome-wide
association study with 47,362 single nucleotide polymorphism (SNP) markers was
conducted to detect marker-trait associations using mixed linear model. Phenotypic
variations of RVA parameters ranged from 1.6 to 30.7% and broad-sense heritabilities
ranged from 0.62 to 0.91. Forty-one SNP markers at 25 loci were significantly associated
with seven RVA traits in at least two environments; among these, 20 SNPs were located in
coding sequences (CDS) of 18 annotation genes, which can lead to discovering novel
genes underpinning starch gelatinization in spring wheat. Haplotype analysis revealed one
block for breakdown (BD) on chromosome 3B and two blocks for pasting temperature (T)
on chromosome 7B. Cultivars with superior haplotypes at these loci showed better starch
pasting viscosity than the average of all cultivars surveyed. The identified loci and
associated markers provide valuable sources for future functional characterization and
genetic improvement of starch quality in wheat.
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INTRODUCTION

Wheat (Triticum aestivum L.) is one of the most important staple food crops worldwide. With the
improvement of living standards, people pay more attention to the quality of end-use products of wheat.
Improvement of quality traits has become a major objective in wheat breeding (Kong et al., 2013). The
gelatinization characteristic of wheat flour is a main index to evaluate the processing quality of food
products (Crosbie, 1991; Panozzo et al., 1993; Liu et al., 2003; Kaur et al., 2016; Amiri et al., 2018;
Moiraghi et al., 2019). Rapid Visco Analyser (RVA) profile has proven useful in wheat breeding programs
to assess the eating and cooking quality of wheat (Konik et al., 1992; He et al., 2003; He et al., 2004; Zhang
et al., 2004; Zhang et al., 2005; León et al., 2006). Starch pasting viscosity is controlled by multiple genes
and often influenced by environments (Zhang et al., 2009), the traditional methods for assessing RVA
parameters are laborious and need expensive equipment. The use of molecular markers for an indirect
marker-assisted selection (MAS) is effective in selection for quality traits in breeding process. Therefore, it
is important to study the genetic basis of starch gelatinization for wheat quality improvement usingMAS.
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Previous studies have been heading for localizing genes and QTL
for starch gelatinization characteristics to expedite MAS in wheat
breeding (Udall et al., 1999; Araki et al., 2000; Deng et al., 2014).
However, QTL identified by bi-parent populations cannot explain
the variation of starch gelatinization characteristics in complex
genetic population due to relatively simple genetic background
and lower allele variability. The genome-wide association study
(GWAS) can identify genomic regions associated with variations
in a given trait by combining phenotypic with genotypic data (AL-
Maskri et al., 2012). Compared with conventional bi-parental QTL
mapping, GWAS has the advantage of surveying a larger range of
allelic variations and avoiding a time-consuming process for
establishing a customized mapping population (Tadesse et al.,
2015). Because of having more genetic diversity and historical
recombination of alleles among associated panels, GWAS can get
more accurate results (Muhu-Din Ahmed et al., 2020). With
development of sequencing technology, high-density wheat SNP
arrays have been developed, which combined with GWAS were
widely used to identify genetic loci for important traits in hexaploid
wheat (Sukumaran et al., 2015; Sun et al., 2017; Rimbert et al., 2018;
Zhang et al., 2018; Yan et al., 2019; Lv et al., 2020; Shi et al., 2020),
especially for quality-related traits, such as grain protein content, wet
gluten content, grain starch content, SDS-sedimentation volume,
dough rheological properties, and so on (Muqaddasi et al., 2020;
Yang et al., 2020;Muhu-Din Ahmed et al., 2020), but none for starch
pasting properties.

Herein, we performed a GWAS to identify genetic loci for
RVA parameters using the wheat 90K SNP array and multi-
environment field data in a panel of 192 Chinese spring wheat
genotypes. Markers significantly associated with RVA
parameters and candidate genes were identified. The results
of this study can enhance our understanding of the genetic basis
of wheat starch gelatinization and provide valuable information
for MAS in wheat breeding.

MATERIALS AND METHODS

Plant Materials and Field Trials
A set of 192 genetically diverse spring wheat accessions, representing
cultivars and breeding lines from different provinces of China, was
grown at Er’shi, Shihezi and Zhaosu in Xinjiang province in
randomized complete blocks with three replications during 2012
and 2013 cropping seasons (hereafter referred as 2012_ES,
2012_SHZ, 2012_ZS, 2013_ES, 2013_SHZ and 2013_ZS,
respectively). Each genotype was sown in ten rows, with a row
length of 3m, a row-to-row distance of 25 cm and plant-to-plant
distance of 10 cm. There were differences in climate and soil
conditions among Er’shi, Shihezi and Zhaosu, and different
temperatures between the years 2012 and 2013. Planting and
harvest dates and trial management varied according to the
recommendations of each location. The accessions were harvested
at maturity and cleaned prior to quality test.

Milling
Flour milling was performed in a mill (MLU202, Wuxi, China) to
flour extraction rates of around 65%. Prior to milling, the hard,

medium hard (mixtures of hard and soft wheat) and soft wheats
were tempered overnight to moisture contents of around 16, 15,
and 14%, respectively.

Measurements of RVA Parameters
Pasting properties of flour were determined with a Rapid Visco
Analyser (RVA-Techmaster, Newport Scientific, Australia). The
3 g flour was suspended in 25ml of distilled water before the
solution was placed inside RVA instrument. The programs of
temperature in the following order: held at 50°C for 60 s, heated
from 50 to 95°C at a rate of 1°C/5 s and held at 95°C for 150 s, then
cooled to 50°C at a rate of 1°C/5 s and held at 50°C for 120 s. RVA
parameters including peak viscosity (PV), trough viscosity (TV),
breakdown (BD), final viscosity (FV), setback (SB), peak time (PT)
and pasting temperature (T) were determined.

Genotyping
Fresh leaf samples were collected from 10-day old seedlings and
sent to the CapitalBio Technology company1 in Beijing for
genotyping with the high-density illumina wheat 90K SNP
array. After excluding the low-quality SNP markers with
minor allele frequency (MAF) ≤0.02 and missing data ≥10%,
47,362 SNPs were used for GWAS. All SNP markers were
anchored on the wheat genome (IWGSC RefSeq v1.0) using
BLASTN by 50 bp SNP flanking sequences on both sides of
the SNP.

Structure Analysis
The Bayesian clustering technique was used with 3400 SNP
markers to classify groups of genotypically same individuals
using the statistical software STRUCTURE v.2.3.4 (Pritchard
et al., 2000). Burn-in iterations of 104 cycles were used,
followed by a simulation runs of 105 cycles with an admixture
model. The K values of 1–10 and 3 independent runs were selected
to attain reliable results. Web-based analysis “Structure Harvester
v0.6.93”2 was applied to obtain maximum value or peak of “K” for
validation to understand the STRUCTURE v.2.3.4 results using ad-
hoc techniques (Earl and VonHoldt, 2011). ΔK was plotted against
the number of sub-group K following Evanno et al. (2005).

A principal component analysis (PCA) using filtered SNPs was
performed with the TASSEL v.5.2.43 and the first three PCA
values were plotted in three dimensions.

Genome-Wide Association Study
Phenotypic data in different environments and best linear unbiased
prediction (BLUP) values were analyzed, respectively, for association
analysis to identify the marker-trait associations (MTAs) employing
mixed linear model (MLM) in TASSEL v.5.2.43 (Bradbury et al.,
2007). The MLM option requires population structure (Q-matrix)
and kinshipmatrix (K-matrix) as covariates for GWAS to avoid false
positives. The Q-matrix was generated through STRUCTURE
v.2.3.4, whereas the K-matrix was generated by TASSEL v.5.2.43.
The Bonferroni multiple testing correction was used to identify

1https://www.capitalbiotech.com/.
2http://taylor0.biology.ucla.edu/structureHarvester/.
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significant markers. Significant SNPs associated with RVA traits
were claimed when the significance test reached p < 4.18E-4 (20/
47,362 = 0.000418). Linkage disequilibrium (LD) was calculated by
TASSEL 5.0 with the markers whose positions were known. The LD
decay plot was generated by intra-chromosomal r2 and base pair
distance using R package ggplot2.

Mapping SNPs and Prediction of Candidate
Genes
The Chinese spring reference genome (IWGSC RefSeq v1.0) and
gene annotations in GFF3 format were retrieved from the Ensemble
database release 443. The SNPmarker sequences weremapped to the
wheat genome using BLASTN program with a stringent E-value of
0.0001. For each SNP only the best scoring hit was retained. Each
aligned genomic position was annotated into 5′-UTR, 3′-UTR, CDS,
intron and intergenic region according to the genomic regions
provided in the GFF3 file. The intergenic region was the
genomic region with no annotated genes. The protein functions
of candidate genes were predicted in the Uniprot Protein database4.

Haplotype Analysis
For the genomic regions harboring SNPs with -log10 (p) above the
threshold, and the phenotypic values of accessions with different
alleles reached significant level (p < 0.05) in multi-environment,
haplotype analysis was carried out by Haploview version 4.2
software (Barrett et al., 2005), and candidate loci were
determined by testing the significant differences on phenotypes
among major haplotypes through analysis of variance (ANOVA).

Statistical Analysis
ANOVA and correlation analysis were carried out using SPSS
version 22.0. The coefficient of variation (CV) was calculated by
dividing the standard deviation by the average of trait values. The
BLUP values of all traits over 2 years across environments were
calculated by the R package Lme4 (Bates et al., 2015). Broad-sense
heritabilities (h2) of RVA traits were calculated as h2 = σ2g/(σ

2
g + σ2gl/

l +σ2gs/s + σ2gls/ls), where σ2g, σ
2
gl, σ

2
gs, σ

2
gls variances for genotypic,

genotype by location interaction, genotype by season interaction
and genotype by location by season interaction, respectively,
whereas l and s were the numbers of locations and seasons,
respectively. SNP density plots, Manhattan and quantile-quantile
(Q-Q) plots were generated in R package CMplot while
histograms were performed in Origin 8.0.

RESULTS

Phenotypic Distributions and Correlations
of RVA Parameters
The variation coefficients of PV, TV, BD, FV, SB, PT and T were
in the ranges of 8.4–13.6%, 7.0–12.9%, 20.4–30.7%, 5.4–12.6%,
7.6–12.9%, 1.6–3.0%, 1.9–13.6%, respectively, across

environments, and h2 estimates were 0.91, 0.77, 0.86, 0.89,
0.82, 0.62 and 0.85, respectively (Supplementary Table S1).
Except the T, the frequency distributions of BLUP values of
RVA parameters were nearly symmetrically distributed
(Supplementary Figure S1). RVA parameters exhibited wide
phenotypic variations and high broad-sense heritabilities, which
were imperative for an efficient GWAS.

Based on the BLUP values across six environments, PV was
significantly and positively correlated with TV (r = 0.68**), BD (r
= 0.81**) and FV (r = 0.63**); TV was significantly and positively
correlated with FV (r = 0.94**), SB (r = 0.72**) and PT (r =
0.63**); FV was significantly and positively correlated with SB (r =
0.89**) and PT (r = 0.48**); BD was significantly and negatively
correlated with PT (r = −0.43**, Table 1).

Genome-wide Associations
Based on whole-genome genotyping data, PCA showed that the
association panel could be divided into two subgroups (Figure 1A),
the same with the results calculated by the STRUCTURE software
with 3,400 markers, in which the peak of the broken line graph was
observed at k = 2 (Figure 1B), indicating the association panel can be
divided into two sub-populations. After filtering low-quality
markers, 47,362 SNPs were used for GWAS analysis with BLUP
values and individual data in six environments. The number of SNPs
within 1Mbwindow size in chromosomes indicated that these SNPs
were almost evenly distributed across the whole genome
(Figure 1C). To avoid multiple significances within individual
LD blocks, the support interval was determined when the decay
distance of LD reached r2 = 0.2, and LD was estimated to decay at
about 7Mb for whole genome (Supplementary Figure S2).
Manhattan and Q-Q plots based on BLUP values identified 92
significant SNPs at 51 loci (Figure 2; Supplementary Table S2), of
which 13, 7, 5, 16, 10, 7 and 2 were significantly associated with PV,
TV, BD, FV, SB, PT and T, respectively (Figure 1D). Phenotypic
variations explained by these SNPs ranged from 6.9 to 11.1% for PV,
6.6–8.4% for TV, 7.2–8.8% for BD, 5.9–11.9% for FV, 5.2–7.3% for
SB, 6.7–7.7% for PT, and 6.8–9.1% for T (Supplementary Table S2).

Significant and Stable SNPs Associated
With RVA Parameters and Candidate Genes
Forty-one SNPs at 25 loci were stably detected in at least two
environments (BLUP is considered as an environment,

TABLE 1 | Pearson’s correlation coefficients (r) between RVA parameters.

Trait PV TV BD FV SB PT

TV 0.68a

BD 0.81a 0.13
FV 0.63a 0.94a 0.10
SB 0.36a 0.72a −0.09 0.89a

PT 0.03 0.63a −0.43a 0.48a 0.31a

T −0.24a −0.14 −0.22a −0.13 −0.04 0.01

PV, peak viscosity; TV, trough viscosity; BD, breakdown; FV, final viscosity; SB, setback;
PT, peak time; T, pasting temperature.
aIndicates significance levels at p < 0.01.

3ftp://ftp.ensemblgenomes.org/pub/plants/release-44.
4https://www.uniprot.org/.
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Supplementary Table S3), and four SNPs (GENE-4428_113,
BobWhite_c13098_670, IAAV4275, Kukri_rep_c69088_774) on
chromosomes 7A (1), 7B (1) and 7D (2) at 534, 489 and
463 Mb, respectively, were significantly associated with both
PV and TV, while one SNP (Excalibur_c9183_1397) on
chromosome 7D at 13 Mb was significantly associated with
both PV and BD. Thirty-four SNP markers associated with
RVA parameters were mapped in the annotated genes; 20
SNPs among these were located in the CDS of 18 annotation
genes, which were considered as candidate genes
(Supplementary Table S4).

Haplotype Analysis of Genetic Loci Related
to RVA Parameters
To test the effect of different genotypes on RVA parameters,
stable SNPs were selected to group the populations according to
their genotypes, and t-test was used to test the significance of
genotypic effects on the traits. Three SNPs (BS00023017_51,
Excalibur_c10124_361, Kukri_c4560_110) revealed significant

differences (p < 0.05) of the traits between two alleles in at least
four environments (Supplementary Table S5), indicating that
these loci had a great influence on phenotypic variation.

The haplotype analysis for regions harboring the SNP marker
(BS00023017_51) associated with BD showed that the
776–782 Mb interval on chromosome 3B had an 862-kb block,
and six SNPs including BS00023017_51 were clustered in the
block (Figures 3A,D). Comparison of BD values indicated that
37 cultivars with the TT/AC/CC/CC/GG/AA (BS00024883_51/
BS00023017_51/IAAV8892/RFL_Contig2578_862/wsnp_Ex_c3
3879_42293206/wsnp_CAP11_c59_99263) haplotypes showed
significantly higher BD (p < 0.05) than the average of all
cultivars surveyed in four environments (2012_SHZ,
2013_ES, 2013_SHZ, 2013_ZS, Figures 3B,C). Haplotype
analysis was also conducted for region harboring the SNPs
(Excalibur_c10124_361, Kukri_c4560_110) associated with T,
and two blocks in 442–454 Mb interval on chromosome 7B
were detected. Two cultivars with CC/AA/CC
(CAP12_c8025_110/IAAV 2037/Excalibur_c49622_60), 17
cultivars with AA/TT/GG/GG (wsnp_Ex_c64815_63464750/

FIGURE 1 | Structure of the association panel of 192 Chinese spring wheat varieties for genome-wide association study (GWAS), distribution of SNPs and
significant loci revealed by GWAS. (A) Structure of association panel. (B) Broken line of delta K. (C) Distribution of SNPs on chromosomes. (D) Histogram plot of loci
number significantly associated with RVA parameters via GWAS based on BLUP values.
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FIGURE 2 | Manhattan and quantile-quantile (Q–Q) plots for RVA parameters identified by genome-wide association study based on BLUP values. (A) peak
viscosity (PV). (B) trough viscosity (TV). (C) breakdown (BD). (D) final viscosity (FV). (E) setback (SB). (F) peak time (PT). (G) pasting temperature (T).
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RAC875_c4438_419/IAAV3414/TA001679-0356) haplotypes
showed higher T than the average of all cultivars surveyed,
exhibiting significant differences in some locations (p < 0.05,
Supplementary Table S6, Supplementary Figure S3).

DISCUSSION

Phenotypic Variations and Heritabilities in
RVA Parameters
Identification of genetic loci controlling wheat quality parameters
is useful in breeding programs (Matus and Hayes, 2002; Mourad
et al., 2020). In the association panel evaluated in this study, we
observed significant phenotypic variations among accessions in
RVA parameters (Supplementary Table S1). Earlier researches
were in line with current results that starch pasting properties

exhibited large variations (He et al., 2006; Ram and Sharma,
2013). Successive phenotypic distributions indicated polygenic
inheritance of RVA parameters (Supplementary Figure S1).
Heritability estimation provides information about the extent
of a particular genetic character to be transmitted to offspring
(Muhu-Din Ahmed et al., 2020). In this experiment, RVA
parameters had high heritabilities (Supplementary Table S1),
similar with a previous study, which also reported a high
heritability in RVA parameters (Rahim et al., 2020). Our
results demonstrated that this panel of wheat varieties had
high levels of intra-species genetic flow, which made it suitable
for the genetic study of RVA parameters by GWAS.

GWAS for RVA Parameters
Marker-trait association study established the relationship
between specific phenotypic and genetic variability within a

FIGURE 3 | Haplotype analysis. (A) Local Manhattan plot. (B) Haplotypes with different SNP alleles in the block. (C) Phenotypic effects of haplotypes in different
environments, Different lowercase letters indicate significant differences at p < 0.05. (D) Haplotype analysis of multi-environment significant SNPs associated with
breakdown on chromosome 3B, the color represents the linkage between SNPs, and the deeper color means the higher linkage between SNPs.
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genome, which ultimately detected loci underpinning
corresponding traits. The ability to capture significant
associations between polymorphic loci and phenotypic
variance depend on the extent of LD along the genome
(Pritchard and Przeworski, 2001; Remington et al., 2001). LD
decay was about 7 Mb in our association panel in the present
study, which consistent with previous studies (Appels et al., 2018;
Yang et al., 2020), but inconsistent with most studies (Sukumaran
et al., 2015; Jamil et al., 2019; Roncallo et al., 2019; Muhammad
et al., 2020; Hu et al., 2021; Sharma, 2021), because of the
differences in the type of markers used for genotyping and the
sample size variation in the different studies (Chao et al., 2010). In
the past, many studies for protein quality in wheat have been
reported (Kristensen et al., 2019; Yang et al., 2020), whereas, few
reports are about QTL for RVA parameters. In this study, we
identified SNP markers associated with RVA traits using MLM.
Besides the BLUP value, GWAS was also conducted with data of
individual environments as a reference for locating SNPs that
were relatively stable across different experimental environments.
We highlighted those SNPs detected in at least two environments
as stable SNPs and 41 significant MTAs were identified
(Supplementary Table S3).

Loci for RVA Parameters
Significant and stable MTAs for PV were mainly clustered to
chromosomes 2B, 3A, 3B, 4A, 4B, 5A, 7A, 7B and 7D
(Supplementary Table S3); several were consistent with
previous studies (Udall et al., 1999; Sun et al., 2008; Zhang
et al., 2009; Deng et al., 2014). Wx-B1 gene
(TRAESCS4A02G418200, chr4A, 688,097,145–688,100,962 bp)
encodes granule-bound starch synthase, generating a higher
PV and BD (Briney et al., 1998; Araki et al., 2000; Batey et al.,
2002; Miura et al., 2002; Ram and Sharma, 2013). Some studies
found the QTL for starch pasting properties near Wx-B1 on
chromosome 4A (Batey et al., 2002; Mccartney et al., 2006). In the
present study, we also identified a SNP marker
(BobWhite_c17731_56, Chr.4A: 689,849,795 bp,
Supplementary Table S3) associated with PV, its physical
position was very close to Wx-B1 gene.
TRAESCS7D02G365900 on chromosome 7D at 473,617,760 to
473,624,545 bp, encodes phosphorylase which probably
contributes to starch synthesis and degradation (Tetlow et al.,
2004; Tickle et al., 2009; Mishra et al., 2016). In the current study,
we found two SNP markers (IAAV4275 and
Kukri_rep_c69088_774) around there.

Our results corroborated other QTL studies in wheat, where
QTL associated with BD was detected on chromosome 3B
(Supplementary Table S3). However, we did not find QTL for
BD on chromosomes 1A, 1B, 3A, 4A, 4B, 6A and 6D (Zhang et al.,
2009; Deng et al., 2014). We detected new QTL (GENE-4993_69
on chromosome 7B, Excalibur_c9183_1397 and
Tdurum_contig69003_459 on chromosome 7D, Supplementary
Table S3) were not reported in previous studies. One stable SNP
(BS00067650_51, Supplementary Table S3) associated with FV
was detected at 526,464,187 bp on chromosome 5D in this study
which was never reported before, while several FV QTL were
identified on chromosomes 1A, 1B, 1D, 3A, 3D, 4A, 4B, 5B, 5D,

6B, 6D and 7A previously (Batey et al., 2002; Mccartney et al.,
2006; Sun et al., 2008; Zhang et al., 2009; Deng et al., 2014). Using
two DH populations, Batey et al. (2002) found QTL for FV near
Wx-B1 on chromosome 4A, where no locus associated with FV
was detected in this research. Nine SNPs in seven loci on
chromosomes 2B (2), 5B (1), 6B (1), 7B (2) and 6D (1) were
significantly associated with T (Supplementary Table S3),
whereas QTL for T were reported on chromosomes 2D, 3A,
3B, 4A, 4B, 5D, 6D in previous studies (Zhao et al., 2009; Deng
et al., 2014). The MTA at BS00022437_51 (chr.6B, 715,775,218
bp) significantly associated with T was very close to
TRAESCS6B02G418100 (chr.6B, 690,447,513–690,452,026 bp)
which was the homolog of phosphorylase (PHO, Tetlow et al.,
2004; Li et al., 2018).

We also detected eight stable SNPs at five loci for TV on
chromosomes 7A, 2B, 5B, 7B and 7D, one SNP for SB on
chromosome 5A, and one SNP for PT on chromosome 2A
(Supplementary Table S3). Whereas, previous studies have
reported more loci on other chromosomes (Sun et al., 2008;
Deng et al., 2014), which were not detected in this study, because
alleles at these loci might be fixed in this association panel, or rare
alleles cannot be detected.

Candidate Genes
The annotation conducted on 41 stable SNPs identified by GWAS
showed that seven (17%) SNPs were mapped in intergenic
regions, and 34 (83%) were mapped in genic regions
(Supplementary Table S4). Among these, 20 SNPs were
located in the CDS of 18 annotation genes which will result in
discovering new genes controlling RVA parameters in wheat.
Furthermore, GENE-4428_113, BobWhite_c13098_670,
IAAV4275 and Kukri_rep_c69088_774 had effects on both PV
and TV, and Excalibur_c9183_1397 had effect on both PV and
BD; these SNPs were all mapped in the CDS of annotation genes,
which may be key candidate genes that participate in regulating
wheat starch quality. Excalibur_c9183_1397 was located in the
CDS region of TraesCS7D02G026700 encoding 1,3-beta-glucan
synthase that is present mainly in the cell walls of starchy
endosperm (Moravčíková et al., 2016). Other candidate genes
that were not reported in previous research need to be paid more
attention for study in the future.

Haplotype Analysis
In the present study, SNPs significantly associated with RVA
parameters were identified on almost all wheat chromosomes. To
validate the effect of each SNP, estimations of SNP effects were
used to predict the observed phenotypic performance
(Supplementary Table S5). BS00023017_51,
Excalibur_c10124_361 and Kukri_c4560_110 had significant
(p < 0.05) effects on traits in at least four environments, and
could be used as optimal loci in marker-assisted breeding and
quality improvement. The haplotype analysis was conducted on
these loci and three blocks were detected (Figure 3,
Supplementary Figure S3; Supplementary Table S6).
Cultivars with superior haplotypes showed relatively better
phenotypes than the average of all cultivars surveyed.
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Therefore, these loci can be considered to improve cultivars for
starch quality.

CONCLUSION

It is not feasible that phenotypic selection for improving wheat
starch quality at the early stages in wheat breeding. Even at later
stages in the breeding process, starch quality was also impacted
greatly by environments. Therefore, genetic selection through
MAS is a desirable way to improve wheat starch quality in wheat
breeding programs. Based on dense SNPs across the whole
genome, the GWAS has become a common approach to
uncover genetic components of agronomic traits, which
provides us with insightful information into genetic
architecture of complex traits. In this study, GWAS analysis
were performed for RVA parameters with 47,362 SNPs in 192
Chinese spring wheat accessions among six environments.
Forty-one SNPs at 25 loci were stably detected in at least two
environments, of which 20 SNPs were located in the CDS of 18
annotation genes. Haplotype analysis for regions harboring the
SNPs (BS00023017_51, Excalibur_c10124_361,
Kukri_c4560_110) revealed one block for BD on chromosome
3B and two blocks for T on chromosome 7B, cultivars with
superior haplotypes at these loci showed better starch pasting
viscosity than the average of all cultivars surveyed. Validation
studies for SNPs in the candidate genes and detected loci will be
conducted in the future by designing KASP assays, which can be
further used for marker-assisted breeding for improvement of
grain starch quality in wheat.
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