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PURPOSE. Luminance contrast is the fundamental building block of human spatial vision.
Therefore contrast sensitivity, the reciprocal of contrast threshold required for target
detection, has been a barometer of human visual function. Although retinal ganglion cells
(RGCs) are known to be involved in contrast coding, it still remains unknown whether
the retinal layers containing RGCs are linked to a person’s contrast sensitivity (e.g., Pelli-
Robson contrast sensitivity) and, if so, to what extent the retinal layers are related to
behavioral contrast sensitivity. Thus the current study aims to identify the retinal layers
and features critical for predicting a person’s contrast sensitivity via deep learning.

METHODS. Data were collected from 225 subjects including individuals with either glau-
coma, age-related macular degeneration, or normal vision. A deep convolutional neural
network trained to predict a person’s Pelli-Robson contrast sensitivity from structural
retinal images measured with optical coherence tomography was used. Then, activation
maps that represent the critical features learned by the network for the output prediction
were computed.

RESULTS. The thickness of both ganglion cell and inner plexiform layers, reflecting RGC
counts, were found to be significantly correlated with contrast sensitivity (r = 0.26 ∼
0.58, Ps < 0.001 for different eccentricities). Importantly, the results showed that retinal
layers containing RGCs were the critical features the network uses to predict a person’s
contrast sensitivity (an average R2 = 0.36 ± 0.10).

CONCLUSIONS. The findings confirmed the structure and function relationship for contrast
sensitivity while highlighting the role of RGC density for human contrast sensitivity.
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Luminance contrast, the difference in intensity between
light and dark regions of an image, is the fundamental

building block of human pattern vision. It is contrast, not
light intensity, that is the primary signal sent from the eye
into the primary visual cortex.

For this reason, when the visual system is not able to
receive or process the full range of contrast signals, it often
brings about devastating effects on various everyday activ-
ities1 such as reading,2–5 object/face recognition,6–8 visual
search,9 walking,10,11 and driving.12,13 Thus contrast sensi-
tivity, the reciprocal of contrast threshold required for target
detection, has been a major barometer of visual function.1,14

Besides the aforementioned functional significance, eluci-
dating the exact mechanism underlying behavioral contrast
sensitivity has been of great interest to many scientists
because it is assumed to reflect the fundamental proper-
ties of human visual processing. Studies have shown that
behavioral contrast sensitivity is accounted for by three
major factors: the eye’s optics such as optical aberrations
and pupil size15; the response and sampling properties of
retinal neurons, such as the density of cones or ganglion
cells16,17; and the properties of cortical neurons such as divi-

sive normalization or bandpass-spatial-frequency tuning.18,19

Importantly, it has been well established that contrast infor-
mation is first encoded by the center and surround structure
of retinal ganglion cell (RGC) receptive fields, where the
photoreceptor signals are first converted into neural activ-
ity.20,21 For this reason, the human contrast sensitivity func-
tion (i.e., a plot of contrast sensitivity as a function of spatial
frequency) has been modeled by the response properties of
RGCs.16,17,22,23 Furthermore, RGC counts have been related
to visual perimetry representing light sensitivity across the
visual field in patients with glaucoma.24–30 For example,
Harwerth et al.31 showed that light sensitivity threshold
measured with visual perimetry is linearly related with either
the thickness of ganglion cell layer or RGC counts.24–26,32

In light of the known involvement of the retina in contrast
coding, here we examined the structure and function rela-
tionship for human contrast sensitivity by identifying retinal
layers/features closely linked to behavioral contrast sensi-
tivity via deep learning. More specifically, we addressed the
following questions: whether knowing the structural prop-
erties of the retina allows us to predict a person’s contrast
sensitivity; whether any particular regions in the retina
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(e.g., ganglion cell layer or photoreceptor layer) would serve
as critical features in prediction of contrast sensitivity; and if
so, how much of the variance in contrast sensitivity can be
explained by the retinal structural information.

To this end, the structural properties of the retina such
as each retinal layer and its thickness were obtained with
spectral-domain optical coherence tomography. We used a
deep convolutional neural network (CNN) trained to decode
Pelli-Robson contrast sensitivity measured in a person’s
central vision from optical coherence tomography (OCT)
structural images. We then computed activation maps repre-
senting the critical features learned by the network for the
output prediction. To further validate our results, we also
included a control experiment: Visual acuity (i.e., the abil-
ity to resolve fine spatial details) is another major barom-
eter of visual function and is known to be largely limited
by the photoreceptor mosaic and sampling.33 Interestingly,
a recent study showed that the relationship between visual
acuity and contrast sensitivity varies across different diagno-
sis groups including glaucoma, cataract, age-related macu-
lar degeneration (AMD), retinitis pigmentosa, and normal
vision,34 indicating the dissociative nature of visual acuity
and contrast sensitivity. For this reason, we undertook a
control experiment in which we compared the resulting crit-
ical layers/features learned by the CNN to decode visual
acuity from OCT structural images to those features used
to decode contrast sensitivity. Given the separable nature of
visual acuity and contrast sensitivity, we would expect to see
that different retinal layers/features are used by the network
to predict visual acuity and contrast sensitivity.

METHODS

Participants

The study design included a total of 225 subjects including
91 patients with primary open-angle glaucoma (mean age =
64.6 ± 8.4 years), 104 normally-sighted adults (mean age =
43.8 ± 19.6 years), and 30 patients with AMD (mean age =
74.1 ± 5.6).

Glaucoma was clinically diagnosed and confirmed
through medical records. The patients with primary open-
angle glaucoma in the current study met the following three
inclusion criteria: (1) glaucoma-specific changes of optic
nerve or nerve fiber layer defect in which the presence of
the glaucomatous optic nerve was defined by masked review
of optic nerve head photos done by glaucoma specialists
using previously published criteria35; (2) glaucoma-specific
visual field defect, defined as having a value on glaucoma
hemifield test from the Humphrey field analyzer outside
normal limits; and (3) no history of other ocular or neuro-
logic disease or surgery that caused visual field loss. The
preperimetric glaucoma patient met the inclusion criteria of
(1) and (3). The visual field test was performed with standard
automatic perimetry using SITA Standard 24–2 and 10–2 tests
with a Humphrey Field Analyzer (Carl Zeiss Meditec, Inc.,
Dublin, CA, USA). Goldmann size III targets with a diameter
of 0.43° were presented for 200 ms at a given test location in
a grid on a white background (10 cd/m2). The pupil diam-
eter for each eye was obtained from the Humphrey Field
Analyzer. The average mean deviation obtained from the
Humphrey Field Analyzer in glaucoma patients was −7.11
± 9.31 dB for the right eye and −7.63 ± 7.59 dB for the
left eye. Visual acuity was measured using Early Treatment
Diabetic Retinopathy Study (ETDRS) charts and reported in

logarithm of the minimum angle of resolution (logMAR). The
mean visual acuity for glaucoma patients was 0.09 ± 0.16
logMAR (or approximately 20/25 Snellen equivalent) for the
right eye and 0.08 ± 0.16 logMAR for the left eye. Contrast
sensitivity was measured using Pelli-Robson contrast sensi-
tivity charts (the letter spanned about 3° of visual angle at
the viewing distance of 1 m). The mean log contrast sensi-
tivity (Pelli-Robson charts) was 1.52 ± 0.28 for the right eye
and 1.56 ± 0.21 for the left eye.

AMD was clinically diagnosed and confirmed through
medical records. According to the Age-Related Eye Disease
Study grading performed by our imaging specialist,36

our patients had either early/intermediate noncentral
geographic atrophy, central geographic atrophy, or neovas-
cularization AMD. The mean visual acuity was 0.03 ± 0.17
logMAR (or approximately 20/20 Snellen equivalent) for the
right eye and 0.07 ± 0.23 logMAR for the left eye. The mean
log contrast sensitivity was 1.55 ± 0.12 for the right eye and
1.54 ± 0.15 for the left eye.

In this study, normal vision was defined as better than
or equal to 0.2 logMAR (or 20/32 Snellen equivalent) best-
corrected visual acuity in each eye with normal binocular
vision (i.e., stereopsis) and with no history of ocular or
neurologic disease other than cataract surgery. For normal
adults, the mean visual acuity was −0.04 ± 0.10 logMAR (or
20/20 Snellen equivalent) for the right eye and −0.04 ± 0.10
logMAR (or 20/20) for the left eye. The mean log contrast
sensitivity was 1.78 ± 0.13 for the right eye and 1.75 ± 0.15
for the left eye. The average mean deviation was −0.2 ± 1.5
dB for the right eye and −0.7 ± 1.6 dB for the left eye.

All participants were native or fluent English speak-
ers without known cognitive or neurologic impairments,
confirmed by the Mini Mental Status Exam (≥25 score for
those aged 65 and over). Proper refractive correction for
the viewing distance was used. The experimental protocols
followed the tenets of the Declaration of Helsinki and were
approved by the Internal Review Board of the University
of Alabama at Birmingham. Written informed consents were
obtained from all subjects before the experiment and after
explanation of the nature and possible consequences of the
study.

Data Collection

Data were collected from subjects (see Participants section
for details) as follows:

(i) Visual acuity and contrast sensitivity. For each
subject, Pelli-Robson contrast sensitivity and visual
acuity were obtained for both eyes (see Participants
section for details).

(ii) OCT image acquisition and preprocessing. The cross-
sectional retinal images were acquired through Spec-
tralis Spectral-Domain Optical Coherence Tomog-
raphy (Heidelberg Engineering GmbH, Heidelberg,
Germany) from both eyes. The measurement was
made in the macula, approximately 6 × 6 mm centered
on the fovea (corresponding to the central 20° visual
field). Using high-resolution volume scan mode with
automatic real-time mean value of 15, 49 B-scans with
each consisting of 1024 A-scans were acquired for
normal vision and glaucoma, and 73 B-scans were
obtained for AMD. Any scan with a quality score less
than 20 dB was excluded from the analysis.
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The Heidelberg Eye Explorer software (version 6.3.1.0)
automatically segmented the B-scan image into 10 layers
and the data was acquired.37 The outer four layers including
the inner and outer photoreceptor (PR) segments and the
layers above and below retinal pigment epithelium (RPE)
were combined into two layers of PR and retinal pigment
epithelium, respectively, based on functional similarity and
distance, resulting in a total of eight segmented layers. We
then performed rigid registration on OCT images: The whole
image was rotated at its center to make the left and right
endpoints of Bruch membrane equally high. The center-
ing was done by translating the image to the fovea center.
The fovea center was determined as the point where the
distance between central internal limiting membrane and
Bruch membrane is the shortest. Note that the original OCT
image spanned about 6 mm in width, but after the image
registration only the central 5 mm of the retina was used
for further analysis. Also note that no additional adjustment
was made for any possible change in image scale that may
occur during image rotation. However, the images with large
offsets and rotation angle were excluded from the analysis to
ensure the data quality. Eccentricity segmentation separating
the image into nine columns was also performed with each
column spanning 0.5 mm in width except for the central
column (centered at the fovea) spanning 1 mm. Thus both
layer segmentation and eccentricity segmentation ended
up dividing the OCT image into a total of 72 subregions
(see Fig. 1B).

For each subject, 10 B-scan OCT images were selected
(five from each eye, five out of 49 B-scans for normal and
glaucoma subjects and five out of 73 B-scans for AMD
subjects). The selected B-scans included the B-scan centered
at the fovea and four other B-scans to its left and right
(two from each direction). After removing the B-scans with
low quality scores (less than 20 dB), a total of 2030 pairs
of contrast sensitivity/visual acuity and OCT image were
obtained for data analysis. The left and right edges of the
B-scan image was cropped to exclude possible invalid data
points, which resulted in an image size of 496 pixels × 1016
pixels. The images from the left eyes were flip horizontally
to match the images from the right eyes.

CNN Architecture

A CNN was adopted to detail the structure and function
relationship of the human retina. The CNN took the down-
sampled OCT B-scan images as input and was trained to
predict either Pelli-Robson contrast sensitivity or ETDRS
visual acuity as output. In the current study, a pretrained
vgg16 model38 with transfer learning was selected because
of its generalizability to other datasets. The model architec-
ture was changed based on the requirements of the ques-
tion of interest and the nature of our dataset. The original
vgg16 architecture includes 13 convolutional layers with 3
× 3 filter sizes and “ReLU” activation functions, five max-
pooling layers, and three fully connected layers. We changed
the model architecture to meet the requirements of our
regression task. The last three fully connected layers were
replaced with a global average pooling layer, followed by
a fully connected layer with a linear activation function to
generate the output. Moreover, to avoid information loss due
to the image size reduction throughout the network and to
achieve activation maps with high resolution, we only kept
the first max-pooling layer and removed the rest of max-
pooling layers from the network architecture (see Fig. 1A).

Because the first layers in the CNN models extract more
generic features and the last layers contain more specialized
features of the training dataset, to fine-tune the model, the
weights of the first four convolutional layers were retained
from the vgg16 model pretrained on ImageNet dataset and
frozen. The weights of the rest of the layers in the network
were fine-tuned using our dataset.

Data Augmentation

The contrast sensitivity data were unbalanced in a way that
the number of eyes with poor contrast sensitivity (CS)/visual
acuity (VA) (e.g., CS < 1.5 log unit/VA > 0.2 logMAR) was
much smaller than the eyes in a normal contrast sensitivity
range. Thus we conducted data augmentation to increase
the heterogeneity of the training dataset known to help
improving the generalization performance of the training
models.39 For example, when contrast sensitivity was less
than 1.5 log unit/VA > 0.2 logMAR, the corresponding OCT
image was tripled in number by randomly rotating within 3°
and vertically shifting within six pixels. Moreover, because
the number of AMD subjects was about one third of the
other two groups, we used data augmentation to handle
imbalanced training samples from different groups. Specifi-
cally, the number of training samples from the AMD group
was tripled by randomly rotating the training images of this
group within 3° or vertically shifting them within six pixels.
Furthermore, to avoid the overfitting problem, real-time data
augmentation of all the training data was also performed
during the model training by random rotation of the images
within 6° and vertical shifting of them within 20 pixels.

All OCT images were down-sampled to 320 pixels × 320
pixels for the input of the CNN. Additionally, since for the
vgg16 model, the input images need to be in RGB format
(three channels) and our OCT images were in grayscale
format (one channel), the images were converted to RGB
by repeating the same image array on three channels, which
resulted in images of 320 × 320 × 3 size.

Model Training and Hyperparameters

We trained five replicates of the model using five different
splits of the data. Each split was obtained as follows: For
each group of subjects, the data were randomly split by
subjects into train (70%), validation (15%) and test (15%)
subsets. The whole train, validation, and test subsets were
formed by putting the corresponding subsets from all groups
together which resulted in the total numbers of 145, 29,
and 29 subjects for training, validation, and testing, respec-
tively. Subjects with missing contrast sensitivity/visual acuity
information and eyes with poor B-scans quality (e.g., qual-
ity score less than 20 dB) were removed from the dataset
before the splitting. For each replicate of the model, cross-
validation was used for tunning its hyperparameters, inde-
pendently. The CNNs were trained to minimize the mean
squared error (MSE) between the predicted and true contrast
sensitivity/visual acuity values. Note that although the hyper-
parameters were fine tunned for each model independently,
they were obtained to be the same: The RMSprop algorithm
with an initial learning rate of 1e–4 and a learning rate decay
of 1e–6 was considered as the optimization algorithm and
the number of epochs for training the model was set to 150.
During the training, 10 selected B-scans for each subject (five
for each eye) in the training and validation subsets were
used for training and validation, respectively, whereas in the
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FIGURE 1. (A) The architecture of the CNN. The CNN takes OCT B-scan images as the input and predicts Pelli-Robson contrast sensitivity
or ETDRS visual acuity data as the output. (B) Image processing steps. (i) An example of an original OCT B-scan cross-sectional image with
retinal layer segmentation. OCT images were first segmented into the following eight retinal layers: RNFL containing the axons of ganglion
cells; GCL containing ganglion cell bodies; IPL containing the dendritic structures of ganglion cells; inner nuclear layer (INL) containing
bipolar cells, horizontal cells, and amacrine cells and muller glial cell bodies; outer plexiform layer (OPL) containing neuronal synapses;
outer nuclear layer (ONL) containing rod and cone granules; PR layer containing inner and outer segments of photoreceptors; and retinal
pigment epithelium layer (RPE) containing pigmented cells. (ii) The OCT image after flattening/centering and eccentricity segmentation.
Colored lines demarcate the segmented retinal layers and the white vertical lines indicate segmentation by eccentricity. (C) Activation maps.
The regression activation maps are computed as a weighted sum of the feature maps (i.e., outputs) of the last convolutional layer. Image
correction and adjustment were also performed on activation maps to better localize critical features. Solid lines demarcate the segmented
layers and eccentricities.
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testing step, for each subject in the test subset, only two
of the 10 selected B-scans were used (one for each eye,
centered at fovea).

Activation Maps of the CNN

Gradient-weighted regression activation maps were used to
highlight the important regions in the OCT images for the
output prediction. A gradient-weighted regression activation
map M was generated as the absolute value of the weighted
sum of the feature maps from the last convolutional layer
where the weight of each feature map was considered as the
gradient of the predicted output with respect to the pixel
values of that feature map, global-average-pooled over its
height and width, as follows:

M =
∣∣∣∑

k
wkA

k
∣∣∣ ,

where Ak is the kth feature map of the last convolutional
layer and

wk = 1

Np

∑
i

∑
j

∂y

∂Aki j
,

where y is the predicted output, Aki j is the (i, j)th pixel value
of Ak, and Np is the total number of pixels in the feature map.
The computed activation map was then normalized between
0 and 1 by dividing all the pixels by the maximum pixel
value. Note that the way we computed the activation maps
follows the same idea of computing gradient-weighted class
activation maps proposed by Selvaraju et al.40 However, here
we used abs(.) function instead of the ReLU because of the
difference in the nature of our task (regression vs. classi-
fication/linear vs. softmax activation function of the output
layer) in which pixels with both positive and negative values
in the feature maps could be important for predicting the
output, whereas in the classification task only the pixels with
positive values in the class activation map are considered to
be important for calculating the score of the correspond-
ing class. Note that in our modified vgg16 architecture, the
max-pooling layers of the original vgg16 architecture were
removed (except for the first one) to avoid image size reduc-
tion and information loss and achieve high-resolution acti-
vation maps. Each activation map (160 × 160 pixels) was
resized back to the input size (496 × 1016 pixels). Then,
the segmentation and registration of the OCT images were
applied to their corresponding activation maps resulting in
72 subregions (eight layers and nine eccentricities) in the
activation maps, where the activation value of each subre-
gion was set to the mean of the activation values of all pixels
in that subregion.

To calculate the mean activation map of each model
across its test subjects, we threshold the normalized maps
as follows: first, the segmented activation maps were thresh-
olded based on the activation values of different subregions.
Subregions with activation values higher than one standard
deviation away from the mean value (across all sub-regions)
were set to one, and the rest of the subregions were set to
zero:

Mthresholded (l, ecc) =
{
1, activation (l, ecc) − μ ≥ σ

0, otherwise
,

where activation(l, ecc) is the value of the segmented map at
layer l(l = 1, 2, …, 8) and eccentricity of ecc(ecc = 1, 2, …, 9)
and μ and σ are the mean and standard deviation of the acti-
vation values across all 72 subregions, respectively. These
steps are shown in Figure 1C. Then these thresholded maps
were averaged over the test samples of each model (with
prediction error less than 0.15) to obtain its corresponding
mean activation map. Finally, the average activation map was
obtained by calculating the average of the mean activation
maps across five models. For visualization purpose, the aver-
age activation map was superimposed onto an OCT B-scan
cross-sectional image as shown in Figure 1C.

For all the experiments, data processing and analysis
were conducted using both MATLAB (R2020b; The Math-
Works Inc., Natick, MA, USA) and Python 3.7.41

RESULTS

Correlation Between the Retinal Layer Thickness
and Foveal Contrast Sensitivity

We first examined whether the overall thickness of each reti-
nal layer differs across different diagnosis groups, reflect-
ing a loss of a particular type of retinal neurons. Figure
2A compared the thickness of each retinal layer for differ-
ent subject groups. One-way analysis of variance and post-
hoc pairwise comparisons with the Bonferroni correction
were conducted on the mean thickness of different layers
to determine the significance of differences between subject
groups. For each subject, the average of each layer from both
eyes was considered as the thickness of the corresponding
layer. As illustrated in Figure 2A, four noticeable observa-
tions were made from this analysis: First, consistent with
our prediction, the mean thickness of both ganglion cell
and inner plexiform layers for glaucoma group was signifi-
cantly lower (Ps < 0.01) than the AMD and normal groups,
but there was no significant difference among the AMD and
normal groups. Second, the mean thickness of photorecep-
tor layer was significantly lower in both AMD and glaucoma
groups compared to the normal group (Ps < 0.01). Third,
the mean thickness of the retinal pigment epithelium layer
in AMD and glaucoma groups was significantly higher (Ps
< 0.01) than the normal groups. Fourth, the other layers
including retinal nerve fiber, inner nuclear layer, outer plex-
iform layer, and outer nuclear layers did not show any signif-
icant difference among different groups (the last three are
not shown in Fig. 2A). Furthermore, when we qualitatively
compared the average thickness of the ganglion cell layer
of the healthy eyes obtained from our current study (mean
age = 44.0 years) as a function of retinal eccentricity with
the RGC density acquired from the histological study of the
adult human retina (mean age = 34.0 years)42 in a dual axis
plot, we observed an excellent correspondence between the
two across retinal eccentricities (Fig. 2B). This result was
well aligned with previous findings showing that the thick-
ness of the ganglion cell and inner plexiform layers (i.e., the
RGC+ layer) were closely related to RGC counts/density.43–45

The question, then, arises whether the overall thick-
ness of each retinal layer is indeed correlated with a
person’s behavioral contrast sensitivity. Our correlation anal-
ysis showed that a person’s contrast sensitivity was signifi-
cantly correlated with the thickness of the ganglion cell layer
and inner plexiform layer (Note that the r value ranged from
0.26, 95% confidence interval [CI]: [0.17, 0.35] to 0.58, 95%
CI: [0.51, 0.64] for all the eccentricities except for −0.5 to
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FIGURE 2. (A) Comparing retinal layer thickness among subject groups. The thickness of each retinal layer within the central 5 mm retina
was compared for glaucoma (orange patch), AMD (gray patch), and normal vision groups (green patch). Each patch represents the 95%
confidence interval. The box graphs for each layer show the results of one-way analysis of variance and multiple comparisons between
the mean thickness of different groups. The significant differences between groups (P < 0.01) were indicated by **. (B) Correspondence
between the RGC density and the ganglion cell layer thickness. The average thickness (green line) of the ganglion cell layer of healthy eyes
obtained from the current study is plotted against the RGC density (black line) acquired from the histologic study of the human adult retina
as a function of retinal eccentricity.42 (C) Correlation between a person’s contrast sensitivity and individual retinal layer thicknesses. The
heatmap represents the correlation coefficient between contrast sensitivity and individual retinal layer thickness for each subregion based
on the eyes of all subjects.

0.5 mm, all Ps < 0.001). The thickness of RGC plus inner
plexiform layer (RGC+IPL) is known to be highly correlated
with RGC counts.34 As shown in Figure 2C, it is notewor-
thy that the correlation coefficient was noticeably higher at
the ganglion cell layer in the retinal region between 1∼2
mm eccentricities, which is consistent with the fact that the
receptive fields of RGCs in the foveal region are laterally
displaced.46 Also see Supplementary Table S1 for the corre-
lation values at different layers and eccentricities.

These results highlight the linkage between the thick-
ness of RGC related layers and human contrast sensitiv-
ity. Importantly, the fact that our results are well aligned
with various previous findings4,43,45–53 further helped us
assure the quality of our OCT image acquisition and
preprocessing.

Using Deep Learning to Identify Structural
Retinal Features Linked to Foveal Contrast
Sensitivity

So far, we have shown that how the thickness of the RGC
layer is correlated with the contrast sensitivity measured by
Pelli-Robson charts. In this section, we explored whether this
association between the RGC layer and Pelli-Robson contrast
sensitivity can be captured by a deep neural network trained
to predict behavioral contrast sensitivity from retinal struc-
tural image data (i.e., OCT retinal images). If so, how much
of the variance in behavioral contrast sensitivity can be
explained by knowing retinal structural image data?

To this end, we probed the critical features (layers) in
the OCT images that the model used to predict the contrast
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sensitivity. As shown in Figure 1A, the input of the CNN
model is the macular OCT image and the output is Pelli-
Robson contrast sensitivity measured in central vision (see
Methods for more details on the network architecture and
training). Note that the focus of this work is not to propose
a regression model for predicting the behavioral contrast
sensitivity value from retinal structure, but to take advantage
of such a model to find the possible linkage between these
two by probing the retinal features the model utilized for
predicting behavioral contrast sensitivity. Therefore, good
prediction performance for the test (unseen) samples is pre-
requisite and essential to ensure the validity of the potential
features. The model was evaluated using the test dataset and
achieved high prediction performance: the average MSE was
0.03 ± 0.004 and the average mean absolute error (MAE) was
0.13 ± 0.011 for all subjects (both eyes) in the test subsets. It
should be noted that the contrast range of the Pelli-Robson
contrast sensitivity chart is from 0 to 2.25 log units. The chart
uses the 10 Sloan letters with constant size, and the letters
are arranged in 16 triplets over eight lines, with each triplet
of the same contrast level representing an increment of 0.15
log units (0.05 per each letter).54

Convinced by the prediction performance of the model,
we then went on to probe whether there were any particular
regions in the retina that served as critical features for the
output prediction. We identified which regions in OCT reti-
nal image were being utilized for predicting Pelli-Robson
contrast sensitivity. To this end, we extracted gradient-
weighted regression activation maps from the CNN models
(see Methods for more details on activation maps). For
simplicity, we use the term “activation map” throughout the
article. To better localize critical features in activation maps,
we performed image correction and segmentation on both
OCT images and activation maps. Samples from each test
dataset with prediction errors (|true CS − predicted CS|)
less than 0.15 included for computing the mean activation
map of the corresponding model. We threshold the indi-
vidual activation maps based on the activation values of
different subregions and calculated the average over the test
samples (with prediction error less than 0.15) (see Meth-
ods for more details on how we threshold the individ-
ual maps and calculate the mean activation map of each
model). Finally, we calculated the average of the mean activa-
tion maps from five replicates the models. For visualization
purpose, the final average activation map was superimposed
onto an OCT B-scan cross-sectional image (Fig. 3A(i)). This
map shows the average recurrence rate of each subregion
being highlighted as a critical region in individual thresh-
olded activation map (it can be viewed as the probability of
each subregion being used as a critical feature for predicting
contrast sensitivity). The original activation maps (without
thresholding) for four individual subjects (for one selected
eye) from each diagnosis group were shown in Figure
3A(ii) (the subjects were selected from the test samples of
a randomly selected model among the five replicates). It
is evident that despite some variabilities across individual
subjects, the pattern of activations is consistent between the
average activation map and the individual subjects’ activa-
tion maps.

Going back to our hypothesis, we expected that, consid-
ering the role of RGCs in encoding visual signals, the
retinal layers containing RGCs would be the predominant
features in predicting a person’s contrast sensitivity. Consis-
tent with our prediction, the layers that contain ganglion cell
bodies (GCL) and its axons (retinal nerve fiber layer [RNFL])
received the highest activation as shown in Figures 3A(i)

and 3A(ii). These results suggested that the retinal layers
containing ganglion cells are linked to Pelli-Robson contrast
sensitivity.

However, are these aforementioned retinal layers
uniquely linked to contrast sensitivity per se? We cannot
rule out the possibility that these layers may remain essen-
tial regardless of the type of visual functions considering
the fact that ganglion cells are the output neurons of the
retina. We thus explored the retinal layers linked to the
visual acuity as a control experiment by capitalizing on the
dissociative nature of visual acuity and contrast sensitivity at
both behavioral and neurophysiological levels.33,34,49–51 We
expected that unlike those used for contrast sensitivity, the
network is likely to rely on a different retinal layer (e.g.,
the photoreceptor layer) for predicting visual acuity. To this
end, CNNs with the same architecture as the contrast sensi-
tivity experiment (Fig. 1A) were trained using OCT images
as the inputs and ETDRS visual acuity values as the outputs.
The same five splits of training, validation, and test subsets
used in the contrast sensitivity experiment were employed
for training, validation, and testing the five replicates of a
model for visual acuity prediction, respectively. To calcu-
late the mean activation map of each model, test samples
with prediction errors (|true VA − predicted VA|) less than
0.1 logMAR were considered. The average activation map
(the average of mean activation maps across five replicates
of the model) is illustrated in Figure 3B. Similar to the
contrast sensitivity experiment, the trained model achieved
good prediction performance on the test dataset. Specifi-
cally, the average MSE was 0.02 ± 0.005, and the average
MAE was 0.09 ± 0.011 for all samples of test subsets (i.e.,
unseen data samples). More importantly, consistent with our
prediction, the photoreceptor layer turned out to be the
most critical retinal layer linked to the foveal visual acuity
(Fig. 3B) whereas the ganglion cell layer received much less
activation. This result is in accordance with the view that
foveal visual acuity is largely limited by the properties of
the photoreceptor mosaic or sampling,33 whereas contrast
sensitivity is largely explained by the response properties of
RGCs.16,17,22,23 To our knowledge, this is the first evidence
supporting the dissociative nature of the two major visual
functions: foveal visual acuity and foveal contrast sensitivity
at the retinal structural level.

Note that although we elucidated the critical retinal layers
linked to a person’s contrast sensitivity, it is well established
that there are other factors that can affect the measured
behavioral contrast sensitivity of a person including the
luminance condition (e.g., photopic or scotopic vision), eye’s
optics, and cortical neurons as mentioned in the Introduc-
tion. Therefore we calculated the R2 value between the
predicted and true contrast sensitivity to further look into
the amount of variance in the behavioral contrast sensi-
tivity explained by the properties of the retinal structure.
Given our sample, the R2 value ranged from 0.23 (95% CI:
[0, 0.46]) to 0.49 (95% CI: [0.26,0.66]) for different models
(see Supplementary Table S2 for the R2 value of different
models) and the average R2 value of 0.36 suggested that
on average 36% of the variation in the contrast sensitivity
can be explained by simply knowing the retinal structure
of the eye. This accountability is well in line with the esti-
mates (i.e., the R2 value of 0.30 to 0.46) reported in previous
studies30,55–59 relating the perimetric sensitivity and retinal
structural measurements in glaucomatous vision. This level
of accountability by the retinal structure is rather remarkable
considering various sources of the variation including opti-
cal, retinal, cortical, and cognitive factors in behavioral data.
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FIGURE 3. (A) (i) Average activation map for contrast sensitivity. The contrast sensitivity activation map averaged across all mean activation
maps of the five model replicates is illustrated. (ii) Activation maps of individual subjects. Individual activation maps of four subjects (for
one selected eye) from each diagnosis group are arranged in each column: glaucoma, AMD, and normal vision. (B) Average activation map
for visual acuity. The visual acuity activation map averaged across all mean activation maps of the five model replicates is shown.

DISCUSSION

Contrast sensitivity, the ability to distinguish between an
object and the background, is a foundation for human
pattern vision. Behavioral contrast sensitivity is assumed
to reflect the essential properties of human visual process-
ing such as the eye’s optics,15 the response character-

istics of the retinal neurons,16,17,23,33,60 or the cortical
neurons.18,19 Recently, a number of studies have been
using deep learning techniques to investigate the relation
between the retinal structure and visual sensitivity.61–70

Here, we aimed to identify the retinal layers/features
underlying human contrast sensitivity via deep
learning.
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First, we compared the thickness of the different reti-
nal layers across different diagnosis groups. Consistent with
previous findings, we found that the thickness of the GCL
and IPL were significantly lower for glaucoma patients
compared to the normal and AMD groups. Also, consistent
with previous work,71,72 our results showed that the thick-
ness of the PR layer (PRL) in glaucoma and AMD groups was
significantly lower than the normal group. However, Matlach
et al.,73 using the Heidelberg retina angiograph imaging
technique, showed that local measurements of cone density
in patients with glaucoma do not differ significantly from
healthy controls, despite large differences in RGC density,
suggesting no thinning of the PRL in the glaucomatous eyes.
One reason for the difference in the results between our
study and Matlach et al.’s73 study might have to do with the
age range of the subjects with normal vision because the
thickness of PRL is known to decrease with aging.74 In our
study, the average age of the normal subjects was 43.8 ± 19.6
years (the median age was 49 years), whereas in the Matlach
et al.’s study,73 the median age of the normal group was 57
years. A future study is called for to address the apparent
discrepant findings with respect to thinning of the PRL in
glaucomatous vision.

Then, we examined the relation between the Pelli-Robson
contrast sensitivity and thickness of the retinal layers. Our
results showed that the thickness of the ganglion cell layer
(where ganglion cell bodies are located) and inner plexi-
form layer (where the dendritic structures of ganglion cells
are located) within the retinal region between 1 mm and 2
mm eccentricities exhibited the strongest correlation (r =
0.6, P < 0.01) with behavioral contrast sensitivity compared
to other regions (Fig. 1C). This finding is consistent with
the fact that RGC receptive fields responsible for process-
ing foveal visual input are laterally displaced.46 The role of
RGC counts/sampling density in behavioral contrast sensi-
tivity has been implicated in previous studies. For example,
Hess and Field have also hinted that sparse RGC sampling
is likely to lead to decreased contrast sensitivity.75 Our
recent work using a computational model has also demon-
strated that RGC undersampling may in part explain the loss
of foveal contrast sensitivity in glaucoma patients.76 RGC
counts have also been related to visual perimetry repre-
senting light sensitivity across the visual field.24–30 Partic-
ularly, a study done by Harwerth et al.31 showed that light
sensitivity measured with visual perimetry is linearly related
with either the thickness of ganglion cell layer or RGC
counts.24–26,32 Taken together, these results underscore the
linkage between RGCs and behavioral contrast sensitivity.

In the current study, we used a deep learning technique
to elucidate the structure-function relationship for Pelli-
Robson contrast sensitivity measured in central vision. We
probed the retinal features used by CNNs trained to predict
a person’s contrast sensitivity from OCT images. Activation
maps provide a means by which the important regions of
the OCT images that the CNN uses to predict the output
can be visualized. Our activation maps indicated that the
deep neural network learned and used the information from
the features of the retinal layer containing ganglion cells to
predict the Pelli-Robson contrast sensitivity. The pattern of
the results remained consistent across subjects regardless of
their ocular pathology or age.

Note that although the goal of this study was not to
propose a model for predicting behavioral contrast sensitiv-
ity from retinal structure, we checked the prediction perfor-
mance of the model to confirm the validity of our activation

map results. In other words, the detected linkage between
the behavioral contrast sensitivity and RGC layer is valid
only if the model can reliably predict the behavioral contrast
sensitivity from OCT images. The results obtained from the
test datasets (for all replicates of the model) showed that
the CNN models were able to predict a person’s contrast
sensitivity with good precision (i.e., the average MAE of
0.13). Considering the fact that the smallest contrast step
you could measure with the Pelli-Robson chart is either 0.15
(a triplet of the same contrast) or 0.05 (letter-by-letter scor-
ing),77 the observed precision of the average MAE of 0.13
is a good accuracy. Although we cannot rule out the pres-
ence of other factors that can affect a person’s behavioral
contrast sensitivity including the eyes’ optics15 (e.g., age-
related lens opacity and pupil size) and properties of corti-
cal neurons,18,19 our results indicated a linkage between the
Pelli-Robson contrast sensitivity and RGC layer. In fact, the
average R2 value between the true and predicted contrast
sensitivity from OCT images (from test samples) indicates
that, given our sample, on average 36% of the variance in the
behavioral contrast sensitivity can be explained by the reti-
nal structure (i.e., the retinal layer containing ganglion cells).
As mentioned earlier, the retinal structure such as the thick-
ness of retinal layers or RGC counts, was shown to be corre-
lated with the perimetric sensitivity in glaucoma.24–32 For
example, Shafi et al.30 studied the relation between the peri-
metric sensitivity and the neuroretinal rim area in patients
with glaucoma and their results suggested a linear relation
between these two (R2 > 0.3, P < 0.005). Thus it is worth
noting that the average R2 value (0.36) observed in our study
is quite comparable to the values reported in the previ-
ous studies30,55–59 (0.30 to 0.46) despite obvious method-
ological differences between our study and the aforemen-
tioned studies: subject group (glaucoma vs. normal vision,
AMD, and glaucoma), measurement site (optic nerve head
scan vs. macular scan), measurement method (visual field
perimetry vs. foveal contrast sensitivity), analysis method
(correlation/regression analysis vs. deep neural network
approach). Thus one major contribution of our current
study is to further confirm the relationship between the
retinal structure and contrast sensitivity using different
methods.

On the other hand, our control experiment of decoding
visual acuity from OCT images suggested that the neural
network utilizes the features from the PRL (Fig. 3B), which
is in line with the view that the foveal visual acuity is largely
limited by the photoreceptor sampling. It is worth mention-
ing that unlike foveal visual acuity, the peripheral visual
acuity has been shown to be mostly limited by ganglion cell
density.78–81 Moreover, the RNFL exhibited high activation
for both contrast sensitivity and visual acuity prediction as
shown in Figures 3A(i) and 3B. The highest recurrence rate
of RNFL layer (over all eccentricities) in the contrast sensi-
tivity average activation map is 0.80 (vs. 0.73 recurrence rate
for GCL) and in the visual acuity average activation map is
0.61 (vs. 0.47 recurrence rate for PRL). One possible expla-
nation for the relatively high activation of RNFL might be in
part due to age-related changes in RNFL and its correlations
with visual acuity and contrast sensitivity.82 Taken together,
the results of the current study on predicting Pelli-Robson
contrast sensitivity and ETDRS visual acuity suggest that the
retinal structure containing the retinal GCL and its axons
(RNFL) and the PRL are linked to two major barometers of
human visual function (i.e., contrast sensitivity and visual
acuity).
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We, however, acknowledge the limitations to our study. It
is known that the deep CNN models usually require a
large dataset to train a network with good generalizabil-
ity. However, in the current study, small datasets were avail-
able to train and evaluate the CNN model. We addressed this
issue by using transfer learning, as well as data augmenta-
tion techniques that were extensively used in previous stud-
ies including medical applications.83–90 Furthermore, lack of
a public OCT dataset that includes the Pelli-Robson contrast
sensitivity information made this problem of testing the
model on other datasets challenging. Also, as shown in
previous studies,91–93 we cannot rule out the fact that vari-
ous factors such as individual differences in axial length,
gender, retinal disease, or age might have affected the accu-
racy of OCT retinal thickness measurements. Furthermore,
understanding the direct correspondence between a foveal
stimulus to its underlying retinal structures poses intrinsic
difficulties because of the lateral displacement of ganglion
cell receptive fields in the fovea and other colocalization
issues present in retinal nerve fibers. Although the current
study focused on the structure and function relationship in
the central vision, the question of whether this relation-
ship still holds true in the peripheral vision (i.e., visual
acuity and contrast sensitivity measured in the peripheral
vision) should be addressed in a future study. Although
speculative, it is possible that the potential imprecision of
our measurements might have resulted in an increase in
the variance in foveal contrast sensitivity or visual acuity
that cannot be explained by OCT structural measures in our
model. While artificial intelligence has been applied success-
fully in screening, diagnosing, and monitoring ophthalmic
diseases69,94–97 using retinal images, it is still challenging to
understand and interpret how artificial intelligence makes a
decision.98,99

Despite the stated challenges, our painstakingly care-
ful image processing procedure and segmentation analysis
enabled us to successfully analyze the activation of the CNN
with respect to its prediction outcome, thereby localizing the
retinal layers linked to foveal contrast sensitivity or visual
acuity. We further showed that the information contained in
the thickness of the RGC layers is critical to Pelli-Robson
contrast sensitivity. This result is consistent with our earlier
work,4 as well as previous reports32,100,101 showing that the
thickness of the ganglion cell layer and inner plexiform layer
(i.e., RGC+IPL) is correlated with visual sensitivity. On the
other hand, studies also showed that the reflectivity (the
pixel value in OCT image) of the retina is associated with
visual functions.102 We, however, did not find any evidence
that retinal reflectivity contributes to the prediction of behav-
ioral contrast sensitivity.

In summary, our findings confirmed the structure and
function relationship for human contrast sensitivity via deep
learning while highlighting the role of RGC sampling density
for behavioral contrast sensitivity.
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