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Breast cancer is themost common cancer amongwomen and is considered amajor public health concernworldwide. Biogeography-
based optimization (BBO) is a novel metaheuristic algorithm. This study analyzed the relationship between the clinicopathologic
variables of breast cancer using Cox proportional hazard (PH) regression on the basis of the BBO algorithm.The dataset is prospec-
tively maintained by the Division of Breast Surgery at Kaohsiung Medical University Hospital. A total of 1896 patients with breast
cancer were included and tracked from 2005 to 2017. Fifteen general breast cancer clinicopathologic variables were collected. We
used the BBO algorithm to select the clinicopathologic variables that could potentially contribute to predicting breast cancer prog-
nosis. Subsequently, Cox PH regression analysis was used to demonstrate the association between overall survival and the selected
clinicopathologic variables. C-statistics were used to test predictive accuracy and the concordance of various survival models. The
BBO-selected clinicopathologic variables model obtained the highest C-statistic value (80%) for predicting the overall survival of
patients with breast cancer.The selected clinicopathologic variables included tumor size (hazard ratio [HR] 2.372, p = 0.006), lymph
node metastasis (HR 1.301, p = 0.038), lymphovascular invasion (HR 1.606, p = 0.096), perineural invasion (HR 1.546, p = 0.168),
dermal invasion (HR 1.548, p = 0.028), total mastectomy (HR 1.633, p = 0.092), without hormone therapy (HR 2.178, p = 0.003),
and without chemotherapy (HR 1.234, p = 0.491). This number was the minimum number of discriminators required for optimal
discrimination in the breast cancer overall survival model with acceptable prediction ability. Therefore, on the basis of the clinico-
pathologic variables, the survival prediction model in this study could contribute to breast cancer follow-up and management.

1. Introduction

Breast cancer is the most common cancer among women
worldwide, with an estimated 1.67 million newly diagnosed
cases each year, ranking second for cancer incidence rate and
fifth for cause of death from cancer [1].Worldwide increase in
breast cancer incidence represents a sizeable burden onpublic
health services [2]. Consequently, the diagnosis, treatment,

and prognosis of breast cancer has become a vital research
concern [3]. Previous studies have reported various prognosis
factors for susceptibility [4–9] and the overall survival of
patients in breast cancer [3, 10–12].

The clinicopathologic factors for breast cancer progno-
sis and overall survival include both tumor burden and
tumor molecular biological factors. Tumor burden factors
are usually defined as tumor size, lymph node invasion,
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and lymph vascular and dermis invasion, and tumor
molecular biological factors usually include tests for hor-
monal status—including estrogen receptor (ER), proges-
terone receptor (PR), and human epidermal growth factor
receptor 2 (HER2)—combined with fluorescence in situ
hybridization and immunochemistry test results. The Not-
tingham prognostic index (NPI) was developed to predict
prognosis outcomes for various tumor burden situations
[13, 14], and the breast cancer severity score was developed
for the same purpose but depends mainly on both tumor
burden and tumor molecular biological factors [15]. Age at
diagnosis is also a factor that is associated with breast cancer
prognosis outcome and overall survival [16].The effect of age
on breast cancer progression and mortality might be affected
by other clinicopathologic factors [17, 18]. Although various
treatments for breast cancer can result in favorable prognosis
and survival rates for breast cancer patients [19–23], the
radiotherapy, chemotherapy, hormonal therapy, and targeted
therapy are highly reliant on clinicopathologic factors [10].

Formerly, analysis of survival benefit or long-term follow-
up of breast cancer was based mainly on the common
statistical analysis strategy. Along with the improvements
in data volume and complex disease causality, machine
learning and optimization algorithms have emerged as novel
strategies for analyzing breast cancer survival [24–27]. Both
statistical and machine learning and optimization algorithm
approaches provide theoretical and acceptable explanations
for the association between clinicopathologic factors and
breast cancer survival benefit. The combined and hybrid use
of both statistical and machine learning approaches is a trend
in modern biological research.

Biogeography-based optimization (BBO) is ametaheuris-
tic algorithm that was proposed by Simon in 2008 to solve
global optimization problems [28]. BBO is an evolutionary
algorithm that was inspired by the migration of species
between habitats. Specifically, it was inspired by biogeog-
raphy, which describes (i) the speciation and migration of
species between isolated habitats and (ii) the extinction of
species [29]. In recent years, the BBO algorithm has been
widely used in a myriad of fields, such as to solve the
engineering optimization problem. Various BBOs have been
proposed to enhance the BBO search ability in specific prob-
lems, including blended BBO [30], localized BBO [31], and
ecogeography-based optimization [32].TheBBOalgorithm is
a powerful search technique because it contains both explo-
ration and exploitation strategies based on migration [33].

To explore the clinicopathologic variables of the overall
survival of patients with breast cancer, this study analyzed the
relationship between the clinicopathologic variables of breast
cancer by using a BBO algorithm. We sought to (i) assess the
relationship between the clinicopathologic characteristics of
overall survival among patients with breast cancer and (ii) to
demonstrate the optimization of the overall survival predic-
tion model on the basis of the clinicopathologic variables of
breast cancer.

2. Material and Methods

2.1. Data Source and Patients. All data were collected from
the single-center Taiwan Breast Cancer Consortium (TBCC)

database, which is prospectively maintained by the Division
of Breast Surgery at Kaohsiung Medical University Hospital,
Taiwan. Patients who were diagnosed with ductal carcinoma
in situ were excluded. In total, 1,896 patients with breast
cancer were included and tracked from 2005 to 2017. The
prognosis variables in this dataset included age at diagnosis,
grade, tumor size (American Joint Committee on Cancer
[AJCC] stage), estrogen receptor (ER), progesterone receptor
(PR), human epidermal growth factor receptor 2 (HER2),
lymph node (AJCC stage), lymph vascular invasion (LVI)
status, dermal invasion, perineural invasion, surgicalmethod,
radiotherapy, chemotherapy, and hormone therapy.The over-
all survival term of all participants with breast cancer was
tracked from the date of first diagnosis until participant death
or study conclusion. The proposed analysis procedure for
TBCC dataset is summarized in Figure 1.

2.2. Biogeography-BasedOptimization. TheBBOalgorithm is
a population-based optimization algorithm inspired by the
natural biogeographical distribution of species [28], which
simulates biogeographical species distribution in accordance
with the insular migration of species. In biogeography, an
area’s quality is evaluated by considering suitability index
variables (SIVs), including climate, temperature, and humid-
ity. The habitat suitability index (HSI) represents insular
quality. A high HSI value indicates that an area is a superior
habitat, whereas a low HSI value indicates that an area is
an unsuitable habitat. Higher HSI value areas are usually
saturated, which means that species encounter difficultly
in migrating to these areas and species currently living in
these areas are likely to migrate to other areas. By contrast,
low HSI value areas are likely to acquire many migrant
species come to here. In the BBOalgorithm, an unsatisfactory
solution results in an area with a low HSI value, whereas a
satisfactory solution results in an area with a high HSI value.
According to the BBO mechanism, satisfactory solutions are
likely to share their SIVs with other solutions and are unlikely
to accept SIVs from other solutions. The BBO migration
model depicts the migration of species in a habitat. I is
the maximum immigration rate (𝜆), E is the maximum
emigration rate (𝜇), 𝑆max is the maximum number of species
that an island can host, and S0 is the number of species that
causes the immigration rate to equal the emigration rate. The
immigration rate increases as the solution quality decreases,
whereas the emigration rate decreases with species quantity.
This linear model describes the way for simulating species
migration.TheBBOalgorithmcomprises two primary stages:
migration and mutation.

2.2.1. Migration. In migration, the probabilistic model can
be used to represent the concepts of emigration and immi-
gration. Consider the probability 𝑃

𝑠
that a habitat contains S

species; 𝑃
𝑠
changes from time t to time t + Δ𝑡, which can be

formulated as

𝑃𝑠 (𝑡 + �𝑡) = 𝑃𝑆 (𝑡) (1 − 𝜆𝑆�𝑡 − 𝜇𝑆�𝑡) + 𝑃𝑆−1 (𝑡) 𝜆𝑆−1�𝑡
+ 𝑃𝑆+1 (𝑡) 𝜇𝑆+1�𝑡

(1)
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Figure 1: Summary of the proposed analysis approaches for Taiwan Breast Cancer Consortium (TBCC) database.

where 𝜆𝑆 and 𝜇𝑆 are, respectively, the immigration and
emigration rates when S species are present in the habitat.
Equation (1) holds because, to have S species at time (t + Δt),
one of the following conditions must be true [28]:

(1) S species were present at time t, and no immigration
or emigration occurred between t and t + Δt.

(2) S − 1 species were present at time t, and one species
immigrated.

(3) S + 1 species were present at time t, and one species
emigrated.

Suppose that time Δt is sufficiently small; the probability
of more than one immigration or emigration occurring can
be ignored. Subsequently, taking the limit of (1) as Δt 󳨀→ 0
provides the following equation:

𝑃̇

=
{{{{
{{{{{

−(𝜆𝑆 + 𝜇𝑆) 𝑃𝑠 + 𝜇𝑆+1𝑃𝑆+1, 𝑆 = 0
− (𝜆𝑆 + 𝜇𝑆) 𝑃𝑠 + 𝜆𝑆−1𝑃𝑆−1 + 𝜇𝑆+1𝑃𝑆+1, 1 ≤ 𝑆 ≤ 𝑆𝑚𝑎𝑥 − 1
− (𝜆𝑆 + 𝜇𝑆) 𝑃𝑠 + 𝜆𝑆−1𝑃𝑆−1, 𝑆 = 𝑆𝑚𝑎𝑥

(2)
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1: For each habitat
2: For each SIV
3: Select habitat𝐻𝑖 with probability 𝜆𝑖
4: If U (0,1) < 𝜆𝑖 then
5: Select𝐻𝑗 with probability 𝜇𝑗
6: If U (0,1) < 𝜇𝑗 then
7: Replace𝐻𝑖(SIV) by 𝐻𝑗(SIV)
8: End
9: End
10: End
11: End

Algorithm 1: Pseudo code for migration of BBO.

From the migration operation curves, where k number
of species are present, the emigration 𝜇𝑘 and immigration 𝜆𝑘
rates can be formulated as (3) and (4), respectively:

𝜇𝑘 = 𝐸 𝑆𝑘
𝑆𝑚𝑎𝑥 (3)

𝜆𝑘 = 𝐼(1 − 𝑆𝑘
𝑆𝑚𝑎𝑥) (4)

where I and E are the maximal immigration and emigration
rates, respectively.The pseudo code of the migration operator
is depicted in Algorithm 1.

Consider the special case E = I; (3) and (4) can be
combined as

𝜇𝑘 + 𝜆𝑘 = 𝐸 (5)

2.2.2. Mutation. In the BBO algorithm, some events, such as
the wind carrying seeds or flotsam, provide more favorable
features that allow an island to generate superior solutions
with statistically significant enhancements. Through species
count probabilities Ps, the mutation rate 𝑚𝑖 can be deter-
mined as

𝑚𝑖 = 𝑚𝑚𝑎𝑥 (1 − 𝑃𝑠
𝑃𝑚𝑎𝑥) (6)

where 𝑚max is a user-defined maximal mutation rate that m
can reach, and 𝑃max = max(𝑃𝑠). The mutation scheme tends
to increase diversity among the population. Highly probable
solutions tend to be more dominant in the population. Thus,
the high HSI solutions likely mutate, which increases the
probability that they will improve even more than they
already have. The pseudo code of the mutation operator is
depicted in Algorithm 2.

The BBO algorithm can be described using the following
steps:

(1) Initialize the BBO parameters, which include a
problem-dependent method for mapping problem
solutions to SIVs and habitats, the modification
probability 𝑃mod, the maximal species count 𝑆max,
the maximal migration rates E and I, the maximal
mutation rate 𝑚max, and elite number p.

1: For each habitat
2: For each SIV
3: Select habitat𝐻𝑖 based on the mutation probability𝑚𝑖.
4: If U (0,1) < 𝑚𝑖 then
5: Replace𝐻𝑖(SIV) by a randomly generated SIV.
6: End
7: End
8: End

Algorithm 2: Pseudo code for mutation of BBO.

(2) Initialize the habitats, which depend on the popula-
tion size and problem to determine what habitat is a
potential solution.

(3) Calculate the HSI of each habitat, emigration rate 𝜇,
immigration rate 𝜆, and species S.

(4) Identify the elite habitats depending on the HSI value.
(5) Migration operation: Modify each nonelite habitat by

immigration and emigration rates. The probability
that a habitat 𝐻𝑖 is modified is proportional to its
immigration rate 𝜆𝑖, and the probability that the
source of the modification comes from a habitat 𝐻𝑗
is proportional to the emigration rate 𝜇𝑖. After mod-
ification of each nonelite habitat using the migration
operation, each HSI is recomputed.

(6) Update the species count probability within the
habitat according to (2). The mutation operation is
performed on each nonelite habitat, and compute
each HSI value.

(7) Go to step (3) for the next iteration. The BBO
operation is terminated if the criteria are satisfied.

The BBO parameters, habitats, and HSI value evaluations
for identifying the relationship between the clinicopathologic
variables of breast cancer are explained in Section 2.2.4.

2.2.3. Initializing the BBO Parameters and Habitats. In this
study, the BBO algorithm parameters were set as follows:
habitat size = 50, number of generation = 100, maximum
immigration and emigration rates for each island = 1, elite
number = 2, and mutation probability = 0.04 [30].

The solution H comprises ℎ𝑖 (i = 1 to population number)
as in (7), each habitat h consists of 𝑆𝐼𝑉𝑛 (n = 1 to number of
problem dimensions) as in (8), and each 𝑆𝐼𝑉𝑛 consists of a
randomly generated 0 or 1 as in (9).

𝐻 = {ℎ1, ℎ2, . . . , ℎ𝑖} (7)

ℎ = {𝑆𝐼𝑉1, 𝑆𝐼𝑉2, . . . , 𝑆𝐼𝑉𝑛} (8)

𝑆𝐼𝑉𝑗 ∈ {0, 1} , 𝑗 = 1, 2, 3, . . . , 𝑛 (9)

2.2.4. Evaluation of HSI Values. We use the C-statistic (or
“concordance” statistic) as the HSI values in the BBO algo-
rithm; the C-statistic value is calculated according to linear
prediction estimated through Cox proportional hazard (PH)
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regression. The C-statistic’s goodness of fit can be measured
for binary outcomes in a regression model. The value of the
C-statistic indicates the probability that a patient who had
experienced an event had a higher mortality risk than one
who had not experienced the event. C-statistics were used to
test the predictive accuracy of survival models. The value of
the C-statistic equals the area under the receiver operating
characteristic curve. A C-statistic value of 0.5 indicates that
a model predicts the outcome by chance, 0.7–0.8 indicates
acceptable discrimination, 0.8–0.9 indicates excellent dis-
crimination, 0.9–0.99 indicates outstanding discrimination,
and 1.0 is perfect prediction [34].

Harrell [35] defined the C-statistic as the ratio of all
sample pairs for which the predictions and real outcomes
are concordant. Assume a sample data of M items is
given. Let 𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑀 indicate the survival times,
and 𝑌1, 𝑌2, 𝑌3, . . . , 𝑌𝑀 indicate the predicted probabilities of
survival. Given that𝑋𝑖 ̸= 𝑋𝑗, each concordant pair is assigned
1 point, and each discordant pair is assigned 0 point [36].

𝑐𝑖𝑗

= {{
{
1, 𝑖𝑓𝑋𝑖 < 𝑋𝑗 𝑎𝑛𝑑 𝑌𝑖 < 𝑌𝑗 𝑜𝑟 𝑋𝑖 > 𝑋𝑗 𝑎𝑛𝑑 𝑌𝑖 > 𝑌𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(10)

Subsequently, the C-statistic is calculated using the following
equation:

C = 1
𝑢𝑖𝑗 ∑(𝑖,𝑗)∈𝑈𝑐𝑖𝑗 (11)

where 𝑢𝑖𝑗 is the number of all usable pairs, andU is a set of all
usable pairs of participants (i, j).

2.3. Statistical Analysis. The differences in the distribution
of the clinicopathologic variables between surviving and
deceased participants were estimated using chi-squared tests.
A univariate Cox PH regression model was used to evaluate
the hazard function of each clinicopathologic variable in
the overall survival of patients with breast cancer. A fully
adjusted multivariate Cox PH model was used to estimate
the association of all clinicopathologic variables in overall
survival among patients with breast cancer. We applied the
three stepwise selection Cox PH models by adjusting the
selective criteria where p < 0.05, 0.1, and 0.2 for clinicopatho-
logic variable inclusion. By contrast, the BBO–Cox PHmodel
included only the clinicopathologic variables selected using
the BBO algorithm. The performance of each Cox PH mul-
tivariate model was determined using the C-statistics value.
The hazard ratio (HR), 95% confidence interval (95%CI), and
p-value were computed. The overall survival function of the
statistically significant variables in the selected BBO model
was visualized using a Kaplan–Meier curve to establish the
effects of each individual clinicopathologic variable on overall
survival. The differences in overall survival function between
different strata were tested using the log-rank test; p = 0.05
indicated statistical significance for all results of statistical
analysis. The statistics were analyzed using SAS 9.3 software
(SAS Institute Inc., Cary, NC, USA).

3. Results

3.1. Clinicopathologic Characteristics and Survival of Patients
with Breast Cancer. A comparison of the clinicopathologic
variables between surviving and deceased patients is pre-
sented in Table 1; it shows that 1830 (96.52%) and 66 (3.48%)
of the 1896 patients with breast cancer survived and died,
respectively. Compared with the survival group, a greater
proportion of the death group wasHER2 positive (p = 0.040),
ER positive (p < 0.001), PR positive (p = 0.001), with tumor
size ≥ 2.0 cm (p < 0.001), lymph node positive (p < 0.001),
LVI positive (p < 0.001), with dermal invasion (p = 0.009),
with perineural invasion (p < 0.001), with total mastectomy
(p< 0.001), without chemotherapy treatment (p = 0.004), and
without hormone therapy (p < 0.001).

3.2. Univariate Clinicopathologic Variables. The 15 clinico-
pathologic variables included age, grade, tumor size, ER, PR,
HER2, lymph node, LVI, dermal invasion, perineural inva-
sion, surgery method, radiotherapy, chemotherapy, hormone
therapy, and target therapy. Each clinicopathologic variable
is dichotomized into low- and high-risk characteristics in
Table 2, which lists the clinical characteristics for low- and
high-risk breast cancer progression; these characteristics
were identical to those used in previous studies. The univari-
ate Cox regression analysis of the clinicopathologic variables
in overall survival of patients with breast cancer is presented
in Table 2. Grade (HR = 2.169, p = 0.002), ER (HR = 0.4, p
< 0.001), PR (HR 0.494, p = 0.005), tumor size (HR = 4.362,
p < 0.001), lymph node (HR = 2.689, p < 0.001), LVI (HR =
2.960, p < 0.001), dermal invasion (HR = 3.060, p = 0.003),
perineural invasion (HR = 2.558, p < 0.001), surgical method
(HR = 2.981, p < 0.001 ), and hormone therapy (HR = 2.666,
p < 0.001) were significantly associated with breast cancer
progression, including mortality and disease progression.

3.3. Multivariate Clinicopathologic Variables. We compared
the fully adjustedCoxPHmodel, three stepwise selectionCox
PH models with different p-value inclusion levels (0.05, 0.1,
and 0.2), and BBO–Cox PHmodel.The performance of each
model is summarized in Table 3. The fully adjusted Cox PH
model included all 15 clinicopathologic variables. The fully
adjusted Cox PHmodel indicated that older age (adjustedHR
= 0.515, p = 0.015) was correlated with a high risk of mortality
for patients with breast cancer, whereas tumor sizes greater
than 2 cm (adjusted HR = 2.430, p = 0.005) and LVI (adjusted
HR = 1.776, p = 0.046) were significantly correlated with a
high risk of breast cancer progression.

In the stepwise selection Cox PH model with inclusion
at p = 0.05, tumor sizes greater than 2 cm (adjusted HR
= 3.017, p < 0.005), LVI (adjusted HR = 1.878, p = 0.016),
dermal invasion (adjustedHR=2.152, p=0.048), andwithout
hormone therapy (adjusted HR = 2.231, p = 0.002) were
significantly correlated with a high risk of breast cancer
progression. In the stepwise selection Cox PH model with
inclusion at p = 0.1, older age (adjusted HR= 0.589, p = 0.036)
was correlated with a high risk of mortality for patients with
breast cancer, whereas grade III (adjusted HR = 1.830, p =
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Table 1: Comparison of clinicopathologic variables between the surviving and deceased patients.

Variable Total Survival Expired p-value∗
N % N % N %

Age (years) 0.123
≤ 50 719 37.92 688 37.60 31 46.97
> 50 1177 62.08 1142 62.40 35 53.03

Grade 0.122
I, II 1286 67.83 1247 68.14 39 59.09
III 610 32.17 583 31.86 27 40.91

Her 2 0.040
Negative 1230 64.87 1195 65.30 35 65.30
Positive 666 35.13 635 34.70 31 46.97

Estrogen receptor <0.001
Negative 510 26.90 476 26.01 34 51.52
Positive 1386 73.10 1354 73.99 32 48.48

Progesterone receptor 0.001
Negative 701 36.97 664 36.28 37 56.06
Positive 1195 63.03 1166 63.72 29 43.94

Tumor size (AJCC stage) <0.001
≤ 2 cm 1161 61.23 1142 62.40 19 28.79
> 2 cm 735 38.77 688 37.60 47 71.21

Lymph node (AJCC stage) <0.001
Negative 1265 33.72 1240 67.67 25 37.88
Positive 631 33.28 590 32.24 41 62.12

Lymphovascular invasion <0.001
Negative 1326 69.94 1293 70.66 33 50.00
Positive 570 30.06 537 29.34 33 50.00

Dermal invasion 0.009
Negative 1798 94.83 1740 95.08 58 87.88
Positive 98 5.17 90 4.92 8 12.12

Perineural invasion <0.001
Negative 1659 87.5 1610 87.98 49 74.24
Positive 237 12.50 220 12.02 17 25.76

Surgery method <0.001
Partial mastectomy 1133 59.76 1113 60.82 20 30.30
Total mastectomy 763 40.24 717 39.18 46 69.70

Radiotherapy (RT) 0.050
With RT 1194 62.97 1160 63.39 34 51.52
Without RT 702 37.03 670 36.61 32 48.48

Chemotherapy 0.004
With CT 1140 60.13 1089 59.51 51 77.27
Without CT 756 39.87 741 40.49 15 22.73

Hormone therapy <0.001
With HT 1265 69.13 28 42.42 1265 69.13
Without HT 565 30.87 38 57.58 565 30.87

Target therapy 0.232
With TT 302 15.93 288 15.74 14 21.21
Without TT 1594 84.07 1542 84.26 52 78.79

∗𝑝-value is estimated using the chi-squared test.
HER2: human epidermal growth factor receptor 2.
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0.026), tumor sizes greater than 2 cm (adjusted HR = 2.435,
p = 0.004), perineural invasion (adjusted HR = 1.994, p =
0.028), total mastectomy (adjusted HR 1.869, p = 0.031), and
without hormone therapy (adjusted HR = 1.918, p = 0.014)
were significantly correlated with a high risk of breast cancer
progression. In the stepwise selection Cox PH model with
inclusion at p = 0.2, age (adjusted HR = 0.523, p = 0.003), PR
(adjusted HR = 0.451, p = 0.003), tumor size (adjusted HR =
2.436, p = 0.004), and LVI (adjusted HR = 1.753, p = 0.038)
were significantly correlated with breast cancer progres-
sion.

The BBO–Cox PH model included tumor size, lymph
node, dermal invasion, surgery method, chemotherapy, and
hormone therapy as breast cancer progression predictors.
Tumor sizes greater than 2 cm (HR= 2.372, p = 0.006), lymph
nodemetastasis (HR= 1.301, p = 0.038), dermal invasion (HR
= 1.548, p= 0.028), andwithout hormone therapy (HR= 1.178,
p = 0.003) were significantly correlated with breast cancer
progression.

The C-statistic values were 76%, 78%, 78%,77%, and
80% in the fully adjusted Cox PH model, three stepwise
selection Cox PH (with inclusion at p = 0.05, 0.1, and
0.2) models, and BBO–Cox PH model, respectively. The
BBO–Cox PH model obtained the highest C-statistic value
of all the models, which indicated higher concordance
for predicting the overall survival of patients with breast
cancer.

We present the survival curves of various clinicopatho-
logic characteristic categories using Kaplan–Meier method.
The difference between each clinicopathologic variable in
the survival curves was estimated using the log-rank test.
The BBO–Cox PH model included tumor size, lymph
node, dermal invasion, surgery method, chemotherapy, and
hormone therapy as breast cancer progression predictors,
and the results revealed that all BBO-selected clinicopatho-
logic variables were statistically significant in different cate-
gories within each individual clinicopathologic variable. The
Kaplan–Meier curves are presented in Figure 2.

4. Discussion

Overfitting is a limitation that must be faced for conventional
statistical approaches, such as regression models. The princi-
pal reason is that regression-based selection approaches pro-
vide analysis results that depend mainly on the distribution
of a population in associated variables. BBO is similar to
evolutionary algorithms, such as the genetic algorithm (GA)
[37] and particle swarm optimization (PSO) [38]. GA, PSO,
and BBO are all inspired by nature and perform information
sharing between solutions (i.e., genes for GA, particles for
PSO, and habitats for BBO) [39]. A GA solution will “die”
at the end of each generation, and PSO and BBO solutions
will continue to exist as the optimization process progresses.
PSO solutions tend to be clustered together in similar groups,
whereas GA and BBO solutions do not necessarily have any
clustering tendencies. BBO has unique features, and a BBO
solution shares its content (SIV) directly with other solutions.
This feature leads to BBOhaving better performance than GA

and PSO in optimization problems [39]. BBO has been suc-
cessfully applied to several engineering problems, including
global benchmark functions and economic load scheduling
[33]. In this study, BBO was successfully applied to select
clinicopathologic variables that resulted in superior perfor-
mance compared with other Cox regression models (i.e.,
the fully adjusted Cox regression model and three stepwise-
selected Cox regression models). BBO is a mechanism of the
Cox regression model that improves the ability to explore
C-statistics and variables. By using BBO, the migration
operator shared more accurate information than with other
solutions, and including randomization for the mutation
operator at the mutation stage partly resolved the overfitting
problem.

The BBO-selected model included tumor size, lymph
node metastasis, lymphovascular invasion, perineural inva-
sion, dermal invasion, surgery method, hormone therapy,
and chemotherapy as predictors for the overall survival of
patientswith breast cancer.This optimizationmodel obtained
superior prediction results and concordance compared with
the fully adjusted Cox PH model in the assessment of C-
statistics. The fact that the BBO algorithm considers the
internal relationship between clinicopathologic variablesmay
explain why it increases the discriminant ability of the final
BBOmodel.

In addition, we reevaluated the individual HR for each
selected variable in the BBO model through multivariate
Cox PH regression analysis. The results revealed that not
all of the selected variables provided a significant individual
HR in the Cox PH model. Only tumor size, lymph node
metastasis, dermal invasion, and hormone therapy had a sig-
nificant correlation with the overall survival of patients with
breast cancer. These factors had been previously reported as
associated with the overall survival of patients with breast
cancer.

Tumor size and lymph node are frequently used to predict
the overall survival and prognosis of patients with breast
cancer [40]. The NPI index is a benchmark for breast cancer
prognoses that includes these two main factors [13, 41]. The
extended use of the NPI index for various breast cancer
prognostic purposes remained contributed and widespread
in recent studies such as including the hormone status
(ER, PR, and Her2) [42–44]. Dermal invasion, also known
as dermal lymphatic invasion, is generally associated with
inflammatory breast cancer [45]. Breast cancer characterized
by dermal invasion is generally correlated with inferior
overall survival. Hormone therapy is an effective therapy for
hormone-positive patients with breast cancer [46].Therefore,
the decision to commence hormone treatment mainly relies
on the ER and PR status of patients with breast cancer.
Although ER and PR were not included in the BBO-selected
model, hormone therapy (an effective treatment options for
patients with ER positive or PR positive breast cancer) could
partially explain the beneficial effect of ER and PR positive
case with hormone therapy in breast cancer overall survival.
However, the retrospective nature of our study might have
limited the analysis of various covariates that have been
previously reported as correlated with overall breast cancer
survival rates.
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Figure 2: Kaplan–Meier curve of BBO-selected clinicopathologic variables including (a) tumor size, (b) lymph node status, (c)
lymphovascular invasion status, (d) dermal invasion status, (e) perineural invasion status, (f) surgical methods, (g) chemotherapy status,
and (h) hormone therapy status.
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5. Conclusion

This study used the BBO algorithm to search for com-
binations of clinicopathologic variables that can facilitate
prediction of the overall survival of patients with breast
cancer. Compared with the fully adjusted multivariate Cox
regression model and stepwise selection Cox regression
model, the BBO-selectedmodel had a higher C-statistic value
for predicting overall survival. This study determined that the
BBO algorithm could select only 8 variables from 15 clinico-
pathologic variables, which is the minimum number of dis-
criminators required for optimal discriminant effectiveness
when predicting the overall survival of patients with breast
cancer accurately and with concordance. This model may
have vital implications for the selection of clinicopathologic
variables for breast cancer.
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