
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8043  | https://doi.org/10.1038/s41598-022-12027-5

www.nature.com/scientificreports

Language statistics as a window 
into mental representations
Fritz Günther1* & Luca Rinaldi2,3

Large-scale linguistic data is nowadays available in abundance. Using this source of data, previous 
research has identified redundancies between the statistical structure of natural language and 
properties of the (physical) world we live in. For example, it has been shown that we can gauge city 
sizes by analyzing their respective word frequencies in corpora. However, since natural language 
is always produced by human speakers, we point out that such redundancies can only come about 
indirectly and should necessarily be restricted cases where human representations largely retain 
characteristics of the physical world. To demonstrate this, we examine the statistical occurrence of 
words referring to body parts in very different languages, covering nearly 4 billions of native speakers. 
This is because the convergence between language and physical properties of the stimuli clearly 
breaks down for the human body (i.e., more relevant and functional body parts are not necessarily 
larger in size). Our findings indicate that the human body as extracted from language does not retain 
its actual physical proportions; instead, it resembles the distorted human-like figure known as the 
sensory homunculus, whose form depicts the amount of cortical area dedicated to sensorimotor 
functions of each body part (and, thus, their relative functional relevance). This demonstrates that the 
surface-level statistical structure of language opens a window into how humans represent the world 
they live in, rather than into the world itself.

Imagine a group of alien scientists in the distant future, specializing in research on humankind. Their only source 
material on the human species is a vast collection of text contained in digital documents, which they recovered 
from a capsule sent into space a long time ago. Other than that, they have no archeological sites, image material, 
or any other type of information. They have the ability to decode human language (that is, they know about 
individual word meanings, and could in principle read the entire text), but the sheer amount of data makes it 
virtually impossible to read the entire material and meticulously analyze its content. (Without the ability to 
also actually understand language, it remains doubtful whether a statistical analysis of text alone allows our 
hypothetical scientists to identify the meanings and referents of the symbols presented to them1). Therefore, to 
rapidly gain information about humankind and the way they experienced the world they live in, this group of 
alien scientists begins their endeavor with a statistical analysis of the language material. What can they learn from 
such an analysis? Despite arising from a thought experiment, the question about the very types of information 
that can be recovered from language has captivated philosophers, linguists and cognitive scientists for the past 
century (e.g.2; see also3,4 for recent overviews). This question has indeed very distant theoretical origins that 
can be traced back to the symbol grounding problem5 and to the subsequent debate in the scientific literature 
between symbolic and embodied accounts of cognition6, igniting fervent discussions in psychology7, artificial 
intelligence8 and linguistics9.

Previous research has shown that the type of knowledge that can be extracted from natural language data—
even from its surface-level statistical structure alone, without semantic analyses of its content—is surprisingly 
extensive. For example, word frequencies are positively correlated with the population sizes of cities10, and 
statistical analyses of natural language data even reveal the real geographical distances between places10,11 or the 
typical spatial arrangement of objects12. Even more striking evidence in this respect comes from congenitally 
blind individuals who never had any visual experience but can exploit linguistic information, which enables them 
to linguistically categorize colors and correctly assign colors to objects13 and to differentiate different kinds of 
“seeing”, such as peeking versus staring14.

At a first glance, this opens an interesting hypothesis on the type of information encoded in language data: 
Does natural language allow us to re-construct or at least make informed guesses about some proprieties of 
the (physical) world surrounding us, since speakers use language to communicate about this world? If natural 
language data allows us to predict the location of archeological sites11, can our hypothetical alien scientist use 
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statistical analyses to paint a picture of how Earth and the beings inhabiting it looked like? What is actually 
encoded in this data?

While this is an appealing prospect, we argue for caution. Language is after all an artefact produced by 
humans, and thus inherently subject to human biases and distortions. This is acknowledged in the aforemen-
tioned literature, where the findings are explained via redundancies between language and how humans perceive 
the world15. For instance, the relationship between population sizes of cities and word frequency may be triggered 
by the fact that “cities that are populated more are debated more” (i.e., because they are more salient and relevant 
than less populated cities10). However, despite the acknowledged interpretation that relevance could also be a 
factor, it has never been empirically tested. In fact, in the presented test cases (such as city sizes, geographical 
distances, and object colors), the physical properties of entities in the outside world on the one hand and the 
human representation of these entities on the other hand are typically highly conflated. As demonstrated in the 
study by Recchia and Louwerse11, this in principle still suggests the possibility of an indirect route, where the 
physical world can be re-constructed via (at least partially) structurally similar human representations of it that 
end up being encoded in language. The purpose of the present study is to demonstrate that this is not gener-
ally the case, but only works in a subset of cases. To this end, it is necessary to investigate a case where human 
representations of an entity are completely dissociated from the actual physical properties of the same entity.

As a prime example for such a dissociation, we take the human body (and more specifically, the size of indi-
vidual body parts), arguably one of the most salient stimuli we are exposed to throughout our lifetime. This is 
because the size of the different body parts is far from proportional to their (functional) relevance. This is promi-
nently testified by Penfield’s cortical homunculus, an emblematic figure that appears in nearly each textbook of 
biology, physiology, and neuroscience (16; see also 17). The homunculus depicts a stark contrast between the actual 
physical size of body parts (a stimulus our visual system is constantly exposed to) and their representational sizes, 
which are indicative about the density of receptors for those body parts (and, consequently, about the functional 
relevance of body parts). For instance, in the case of the somatosensory homunculus, the size of the anatomical 
body part would not be related to the amount of the cortex dedicated to that body part. The amount of the cortex 
assigned for one body part rather reflects the density of cutaneous tactile receptors: despite lips occupying a small 
surface area, they have a greater density of receptors compared to other body parts such as shoulders or forearms.

Here, we investigate surface-level language statistics in the form of word frequencies, likely the easiest and 
most accessible—yet also one of the most revealing—index we can extract from language18,19. Frequency is gener-
ally taken as a measure for familiarity with a word20 and even its referent21, and thus of how relevant the word/
concept is in our experience. As suggested in the study by Louwerse and Zwaan10, this might allow for (indirect) 
inferences about the physical magnitude of entities, as exemplified by the population sizes of cities. The main 
objective of the present study is to test whether word frequencies of body parts capture their physical size (the 
surface area of body parts) or rather their representational size (as indexed by the somatosensory homunculus). 
However, before turning to this test case, we first ensure the robustness and generalizability of the results by 
Louwerse and Zwaan10 by demonstrating that the possibility to recover physical size from language through an 
analysis of word frequencies is not restricted to city sizes only.

Study 1: Word frequencies encode the relevance of geographical entities
While previous studies focused on cities population size only, here we aimed at replicating this relationship and 
extending it also to other types of physical size, namely countries’ total population and rivers lengths. In all cases, 
we investigated the English (UK), French, German, and Italian languages, in order to mitigate the influence of idi-
osyncratic patterns specific to each language. We collected (a) lengths of the ten longest rivers and (b) the names 
and population sizes of the 40 most populous cities within each of the four countries (United Kingdom, France, 
Germany, and Italy), as well as (c) the population sizes of all European countries, and then tested whether these 
proxies for relevance (i.e., more relevant geographical entities will be mentioned more in language) predicted 
their respective word frequencies.

Methods.  All the data, materials and codes have been archived in the free Open Science Framework https://​
osf.​io/​6zk8s/?​view_​only=​1e7ea​e8fcf​534c3​2bbf7​96be7​e5993​0f. These files include all materials and specific 
instructions to retrace and replicate all measures described here and to reproduce the current findings.

For the river study, we collected lengths of the ten longest rivers within each of the four countries (United 
Kingdom, France, Germany, and Italy) and their names in the respective language (such as Donau for Danube) 
from the respective Wikipedia pages (https://​de.​wikip​edia.​org/​wiki/​Liste_​von_​Flüssen_​in_​Deuts​chland; https://​
it.​wikip​edia.​org/​wiki/​Fiumi_​d’Italia; https://​en.​wikip​edia.​org/​wiki/​Longe​st_​rivers_​of_​the_​United_​Kingd​om; 
https://​fr.​wikip​edia.​org/​wiki/​Liste_​des_​fleuv​es_​de_​France). The river Rhine appeared two times, in German 
and French. For the city study, we collected the names and population sizes of the 40 most populous cities in the 
UK, France, Italy, and Germany, respectively (all in their native spelling, such as Firenze for Florence). The data 
were collected from the Office for National Statistics 2011 Census (UK), Institut National de la Statistique et des 
Études Économiques 2006 Census (France), Istituto Nazionale di Statistica 2008 Census (Italy), and Statistische 
Landes- und Bundesämter 2010 Census (Germany). For the country study, we collected the population sizes of 
all European countries from the CIA 2008 world factbook22 (except for Kosovo, which is not listed in the 2008 
factbook). Since the distributions of these physical magnitude measures are heavily right-skewed, these predictor 
values were all log-transformed.

We collected population size data from the 2006 to 2011 timeframe to ensure a better overlap with the cor-
pora from which the word frequencies were derived: The large parsed and lemmatized web-collected WaCKy 
corpora23, which were constructed by crawling .uk, .fr, .it, and .de domains, respectively, using random search 
terms (see Table 1). Thus, employing the same algorithm for all four languages, these corpora were collected from 
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independent sources generated by different speaker populations. This is especially desirable for the between-item 
studies, as we expect speakers of a language to talk more about their own than other countries’ cities or rivers. 
The systematically evaluated WaCKy corpora are currently only available for these four languages (see https://​
wacky.​sslmit.​unibo.​it).

Word frequencies for the city names were extracted from their corresponding corpora (e.g., itWaC frequen-
cies for the 40 Italian cities). To account for corpus size differences, we computed word frequencies per million 
words, which were then logarithmized24.

Results.  Data were analyzed analogously to a behavioral experiment: The four languages (or the respec-
tive speaker populations) were considered as “participants” who produced a language corpus as a behavioural 
response. Thus, to analyze these data, we estimated Linear Mixed Effect Models (LMEMs) using the lme4 pack-
age for R25. The models included a fixed effect for the log-transformed physical magnitude predictor (popu-
lation size or river length), a random intercept for languages, as well as by-language random slopes for the 
predictor26. In the country study, due to the repeated-measures design, we additionally included a random inter-
cept for the countries. We found that the physical magnitude significantly predicted the corresponding word fre-
quency data across all studies (rivers: b = 1.31 , t(2.73) = 3.47 , CI0.95 = [0.57, 2.05] , p = 0.047 ; cities: b = 1.21 , 
CI0.95 = [1.06, 1.36] , t(17.55) = 15.71 , p < 0.001 ; countries: b = 0.28 , CI0.95 = [0.13, 0.42] , t(19.66) = 3.83 , 
p = 0.001 ; see Fig. 1).

In all models including only a single fixed effect parameter reported in this paper, a model comparison against 
an intercept-only model is significant exactly when the fixed effect parameter in the resulting model is significant. 
For all models reported in this paper, visual inspection of the model residuals revealed good fit of the models 
(see the Supplementary Material for more details).

Table 1.   The languages employed and the corpora from which the word frequencies were extracted. The 
languages investigated in Study 1 and 2 are displayed in boldface; all other languages were added in Study 3. 
Corpus Size refers to the number of tokens in the corpora after non-alphabetic characters andannotation tags 
have been removed.

Language family Sub-family Language Corpus size (mio.) Corpus name

Indo-European

Germanic

English 1909 ukWaC

German 1339 deWaC

Dutch 2539 nlTenTen14

Romance

French 1331 frWaC

Italian 1556 itWaC

Spanish 98 SpanishWaC

Portuguese 3896 ptTenTen11

Italic Latin 11 LatinISE

Slavic

Russian 14,554 ruTenTen11

Polish 7716 plTenTen12

Czech 10,502 csTenTen17

Croatian 1210 hrWaC

Baltic Latvian 530 LatvianWaC

Hellenic Greek 124 gkWaC

Indo-Aryan

Urdu 53 UrduWaC

Hindi 108 HindiWaC

Bengali 12 bnWaC

Uralic Finno-Ugric Hungarian 2573 huTenTen12

Turkic Oghuz Turkish 33 trWaC

Afro-Asiatic
Semitic

Arabic 7476 arTenTen12

Hebrew 48 hebWaC

Amharic 26 amWaC

Cushitic Somali 72 soWaC

Niger-Congo
Bantu Swahili 18 SwahiliWaC

Volta-Niger Yoruba 3 YorubaWaC

Dravidian Southern Tamil 27 TamilWaC

Austronesian Malayo-Polynesian
Malay 183 MalaysianWaC

Tagalog (Filipino) 198 tlTenTen19

Sino-Tibetan Sinitic Chinese (simplified) 13,531 zhTenTen17

Japonic – Japanese (Kanji) 337 jpWaC

https://wacky.sslmit.unibo.it
https://wacky.sslmit.unibo.it
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Discussion.  In line with earlier findings10, Study 1 shows that there are multiple different cases in which we 
can find correlations between physical magnitude and word frequency. However, as in earlier studies, we cannot 
clearly distinguish between the physical size of the investigated entities (i.e., properties of the physical outside 
world) and their representational size (i.e., their relevance). Typically, more populous cities and countries as 
well as longer rivers are also more relevant to speaker communities. In this analysis, the Vatican is a noteworthy 
outlier (see Fig. 1), most likely due to its disproportionally high political, social, historical, cultural and especially 
religious influence as the seat of the papacy. This already suggests a dissociation between physical size and word 
frequencies; however, all these other factors for relevance/representational size are typically very difficult to 
measure in an objective way.

We now therefore turn to the human body, which (as discussed earlier) presents an ideal case for pitching 
the two against each other, with these two variables are completely independent from one another. For such 
an analysis, the results of Study 1 indicate that physical size can in principle predict word frequencies, and is 
thus a relevant factor we need to consider and control for in such an analysis, even if we suspect that repre-
sentational size is the actual driving factor. Crucially, we measure both the physical size (as body surface area) 
and the representational size (as the “homunculus size”, i.e., the number of cortical stimulation points eliciting 
a response) in an objective and independent manner. We therefore don’t have to rely on behavioral measures 
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Figure 1.   Relation between physical magnitude (river length, city and country population size, which would 
account for the relevance of these geographical entities) and logarithmic word frequency per million. The solid 
lines indicates the model prediction, the grey bands around it the 0.95-confidence interval.
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such as relevance ratings (for which we wouldn’t know the factors influencing them) in order to predict the 
language behavior manifest in word frequencies. Importantly for this purpose, previous research has shown that 
the somatosensory homunculus provides a mental map of the body’s representation that influences judgments 
about our own and other’s bodies27,28, and can thus be used to approximate the mental representational size of 
the different body parts.

Study 2: Word frequencies for human body parts

Study 2a: Physical size of body parts.  Methods.  Body surface areas.  Physical sizes for 25 different 
body parts (see Table 2) included in the study by Penfield and Boldrey16 were estimated as their proportional 
surface areas of a standardized human body with values expressing the percentage of body surface area, obtained 
from the seminal Lund and Browder chart29. This chart was originally created as a reference chart for burn areas 
but found widespread use in the literature on the determination of body surfaces (e.g.30–32). Areas for body parts 
not included in this chart were obtained graphically using the SAGE II Burn Diagram software (https://​www.​
saged​iagram.​com), an online tool to quantify burn surface area that is based on the Lund and Browder chart 
attributes33. The SAGE Diagram is becoming increasingly used in the literature on burn injuries as it is particu-
larly useful when computing the burn surface area when more than one body part is involved. Values for lateral-
ized body parts (such as thumb or hand) were always extracted from the right body-side of the anterior view, 
and left body-side of the posterior view. Surface area estimates for body parts not available in neither of these 
sources were estimated from the literature (teeth34; tongue35, each averaged over males and females), and scaled 
to the surface area of the whole body (36; estimated using Mosteller’s formula37, with a normal-weight sample).

To ensure the robustness of our study and results, we applied different possible conceptualizations of body 
surface area: We calculated areas for all pairwise combinations of orientation (anterior surface only, except for 
elbow, where the posterior value was taken, versus anterior plus posterior surface) and lateralization (only the 
right body-side surface for paired body parts such as hand, versus the combined surface size for paired body 
parts). Additionally, two possible definitions of arm were considered: The standard anatomical definition applied 
by Penfield and Boldrey16 (the part between the shoulder and the elbow), and the common usage of the word 
(the part between shoulder and wrist).

Table 2.   The actual physical size, sensory and motor representational sizes, and average logarithmic word 
frequencies per million across all 30 languages for the 25 body parts investigated in this study (for detailed 
descriptions, see the Methods sections for Study 2 and 3).

Body part

Actual size Sensory representation Motor representation Word frequency

(% Body surface) # Cortical stimulation points log(WF per million)

Ankle 1.04 – 0.93 1.336

Arm 4.00 5.32 – 4.567

Back 13.00 – 0.47 4.090

Brow 0.08 – 0.80 1.829

Elbow 1.26 0.70 5.25 1.558

Eye 0.20 0.68 2.71 5.402

Face 2.14 4.12 – 5.152

Finger 0.86 7.65 3.77 3.822

Foot 3.50 0.92 – 4.897

Forearm 3.00 1.90 – 0.976

Hand 2.50 10.68 10.67 6.032

Hip 4.30 1.04 0.97 1.631

Jaw 1.12 – 3.45 1.480

Jaw and teeth 1.37 4.39 – 4.144

Knee 2.32 – 1.16 2.985

Leg 16.50 2.57 – 4.297

Lip 0.07 5.90 7.92 3.065

Nose 0.13 0.90 – 3.558

Shoulder 1.94 1.49 1.96 3.288

Throat 1.00 1.40 – 2.613

Thumb 0.30 3.79 2.34 1.687

Toe 0.62 0.64 0.94 2.268

Tongue 0.16 9.52 1.62 4.154

Trunk 13.00 2.04 – 2.058

Wrist 0.40 0.75 3.30 1.641

https://www.sagediagram.com
https://www.sagediagram.com


6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8043  | https://doi.org/10.1038/s41598-022-12027-5

www.nature.com/scientificreports/

Word frequencies.  Only single-word names were included in our study, in order to obtain reliable word fre-
quency estimates. For this purpose, we collapsed the values for the four fingers other than the thumb (little finger, 
ring finger, middle finger, and index finger) into a single item (finger). The English word labels for these body parts 
were translated into French, Italian, and German by native speakers. Not all words have single-word translations 
in all languages; these cases were handled as missing values. We chose not to consider the word contexts (for 
example, whether the words were used in a literal or figurative manner, as in on the other hand), to not introduce 
degrees of freedom in our analysis that ultimately depend on researcher intuition.

As in Study 1, word frequencies for English, German, French, and Italian were extracted from the large-scale 
WaCKy web corpora23. We considered word frequencies at the lemma level, that is, independent of morpho-
logical inflections. To capture possible parsing errors, we also extracted word frequencies for the words’ plural 
forms, where applicable. The frequency for the item jaw and teeth16 was estimated as the sum of the frequencies 
for jaw and teeth.

Results and discussion.  We analyzed the data using an analogous model to the ones reported in Study 1: Word 
frequencies were predicted with a LMEM including random intercepts for body parts, random intercepts for the 
four languages, as well as by-language random slopes for the physical surface size26. Here, we are reporting the 
analysis for the anterior orientation, considering the combined area of paired body parts, and the anatomical 
shoulder-to-elbow definition of arm.

In this model, we found no significant relationship between the physical size of the body parts and their word 
frequency ( b = 0.05 , CI0.95 = [− 0.08, 0.19] , t(25.80) = 0.81 , p = 0.426 ). This pattern of results reported remains 
the same for all eight possible conceptualizations of actual body size (ps between 0.355 and 0.718; this pattern 
also remains unchanged if we additionally considered the words breast and stomach which are not included in 
the study by Penfield and Boldrey16).

These results demonstrate that, unlike for the examples in Study 1, information about the physical size of 
human body parts is not encoded in word frequencies. Thus, not all types of information about the physical world 
can simply be decoded from language statistics, which importantly restricts the domain of previous results and 
conclusions10,11. However, this does not imply that our use of body part words follows an arbitrary distribution. 
In the second part of this study, we will demonstrate that the distortions observed so far are indeed systematic, 
and retrace the iconic cortical homunculus16, indicating therefore that word frequency encodes the functional 
relevance of body parts.

Study 2b: Functional relevance and word frequencies of body parts.  Methods.  This study em-
ploys the same measures for word frequencies and actual physical sizes of the body parts as described in Study 
2a. In addition, we obtained the following measures for representational body part sizes.

Representational body part size: number of cortical stimulations eliciting a response.  The sensory represen-
tational sizes for the body parts, measured as the proportional number of cortical stimulations points (anterior 
as well as posterior to the fissure of Rolando) eliciting tactile sensation in the corresponding body parts, were 
extracted from the seminal study by Penfield and Boldrey16. While there surely are limitations to the original 
homunculus measures, current alternatives such as transcranial magnetic stimulation or high field functional 
magnetic resonance imaging come with their own limitations and do not necessarily provide better measures17. 
In addition to this, we focused on the measures by Penfield and Boldrey16 as it is the one simultaneously targeting 
the largest number of body parts in humans. Because there are some inconsistencies between the text and the 
figures of this article17, the values were extracted from Fig. 27 of the article, using graphical methods (overlaying 
them with colored bars and automatically determining their lengths). Because taste is not a body part, this item 
was omitted from our dataset.

Using the same graphical method, we also extracted the motor representational sizes for the body parts from 
Fig. 26 of 16, in this case measured as the proportional number of cortical stimulations points eliciting motor 
responses in the corresponding body parts. Since swallow and vocalization are not body parts, these items were 
omitted from our dataset.

Results and discussion.  We found no significant relationship between the sensory representational body part 
sizes and the real body part surface areas, irrespective of all the possible definitions of the latter (i.e., ante-
rior surface vs. anterior and posterior surface; midsagittal half vs. whole body) ( r = − 0.08 to − 0.12 , 
p = 0.621 to 0.729 ), highlighting the clear contrast between the two. The same was the case for motor represen-
tational body part sizes ( r = − 0.15 to − 0.23 , p = 0.392 to 0.592).

The LMEMs to analyze this data included random intercepts for body parts, random intercepts for the four 
languages, as well as by-language random slopes for the representational size and actual surface size26. Here, we 
again report the analysis for the anterior orientation, considering the combined area of paired body parts, and 
the anatomical shoulder-to-elbow definition of arm; however, the pattern of results reported remains highly 
similar for all eight possible conceptualizations of actual body size.

When analyzing data for the 20 items for which sensory representational sizes are available, a fixed effect 
for actual surface size did again not predict the word frequency data ( b = − 0.002 , CI0.95 = [− 0.15, 0.14] , 
t(19.97) = − 0.03 , p = 0.974 ), as reported for the complete item set of 25 words in Study 2a. This parameter 
was included here as a baseline parameter, to ensure that any effects of representational size cannot be attributed 
to a residual correlation with physical body size. Additionally including such a fixed effect parameter for sensory 
representational size indeed significantly improved this baseline model, ( χ2(1) = 5.40 , p = 0.020 ; with b = 0.23 , 
CI0.95 = [0.05, 0.41] , t(20.01) = 2.49 , p = 0.022 for its parameter in the resulting model). As a control analysis, 
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we ran the same analysis without the models including any parameters for physical body size; the results stayed 
the same ( χ2(1) = 5.33 , p = 0.021 ; with b = 0.22 , CI0.95 = [0.05, 0.40] , t(20.01) = 2.47 , p = 0.023 for the sensory 
representational size parameter). These results indicate that the statistical structure of language resembles the 
functional relevance of body parts.

For the 16 items for which motor representational sizes are available, a fixed effect for actual surface size does 
also not predict word frequencies ( b = 0.14 , CI0.95 = [− 0.12, 0.39] , t(17.15) = 1.06 , p = 0.306 ). In this case, 
however, additionally including a fixed effect for motor representational size did not significantly improve this 
model, although the p-value approached the borderline of the significance level ( χ2(1) = 3.64 , p = 0.057 ; with 
b = 0.23 , CI0.95 = [0.01, 0.46] , t(15.88) = 2.02 , p = 0.060 , for its parameter in the resulting model). In the control 
analysis without any parameters for physical body size, however, the results more clearly indicate non-significance 
of the motor representational size parameter ( χ2(1) = 2.25 , p = 0.134 ; with b = 0.19 , CI0.95 = [− 0.05, 0.43] , 
t(16.00) = 1.55 , p = 0.140 for the parameter).

When analyzing the 11 items for which both sensory and motor representational sizes are available, a fixed 
effect for actual surface size does again not predict word frequencies ( b = − 0.07 , CI0.95 = [− 0.78, 0.60] , 
t(11.54) = − 0.245 , p = 0.811 ). Additionally including a parameter for sensory representational size improved 
this model ( χ2(1) = 4.61 , p = 0.032 ; and χ2(1) = 4.87 , p = 0.027 in a model without an actual surface size 
parameter); on the other hand, additionally including a parameter for motor representational size did not 
improve this model ( χ2(1) = 1.99 , p = 0.158 ; and χ2(1) = 2.04 , p = 0.153 in a model without an actual surface 
size parameter). Including both representational size parameters did not improve any of the previously described 
models. Thus, when both representational sizes are considered, only the sensory parameter is predictive.

Study 3: A large cross‑linguistic validation
Up to this point, the languages we considered are very similar, both linguistically (two Germanic and two 
Romance languages) and culturally (Central Western Europe). To increase the generalizability and robustness 
of our results, we thus extended our analysis to a large number of languages from very different families and 
sub-families from all around the world, reaching a total of 30 languages. Since these languages include the world’s 
most-spoken native languages (such as Chinese, Hindi, Arabic, English, and Spanish), their combined native 
speaker populations cover more than 4 billion speakers (i.e., more than half of the world population). Correla-
tions between the frequencies of words referring to body parts are generally very high across all languages, with a 
few pair-wise exceptions (see Fig. 2). This already suggests that common language- and culture-invariant factors 
affect the frequencies of words referring to body parts (with representational size being one such candidate). 
Besides the commonalities however, there are still structural differences and certain language clusters, which 
can be explored in more detail in future dedicated studies.

Methods.  In addition to the four languages described in Study 1 and 2, in Study 3 we considered word fre-
quencies from 26 languages from all around the world and from different families and sub-families. These were 
all the languages for which (a) structurally comparable WaCKy or TenTen corpora were available (see the next 
paragraph), an (b) for which we were able to find a reliable native-speaking informant. An overview of these lan-
guages is provided in Table 1. All body part labels were translated by native speakers, except for Latin. All items 
were back-translated and checked by the authors using online dictionaries.

The systematically evaluated WaCKy corpora23 are not available in these languages; however, Kilgarriff et al.38 
present a framework that produces web corpora using an extremely similar algorithm, thus extending the core 
set of WaCKy corpora (providing us with Spanish, Croatian, Latvian, Greek, Turkish, Urdu, Hindi, Bengali, 
Hebrew, Amharic, Somali, Swahili, Yoruba, Tamil, Malaysian, and Japanese corpora). In cases where these were 
not available (Dutch, Portuguese, Russian, Polish, Czech, Hungarian, Arabic, Tagalog, and Chinese), we instead 
employed the corpora from the TenTen family, collected using an extension of the WaCKy algorithm39. Thus, 
all modern-language corpora were collected from structurally similar sources (websites), using very similar 
algorithmic frameworks. For Latin, we employed the historical LatinISE corpus40. Word frequencies for these 
26 additional languages were collected using the Sketch Engine tool41. Not all words have single-word transla-
tions in all languages, and in some cases translations were not found in the respective language corpora; in 
order to obtain reliable and comparable frequency estimates for all words, these cases needed to be handled as 
missing values. Again, we computed (for all 30 languages) word frequencies per million words, which were then 
logarithmized24. To ensure that these values are similarly reliable for these corpora of very different size (see 
Table 1), we derived them for the first 3 million words (the size of the smallest corpus, YorubaWaC) in the four 
WaCKy corpora used in Study 1 and 2, and compared them to the values derived from the whole corpora. We 
consistently observed correlations of r > 0.967.

Results.  Some languages use the same word for different body parts (e.g. ruka for hand and arm in Croatian). 
The results reported in this section remain unchanged if such cases are excluded from the analysis.

For the 20 items for which sensory data is available, a fixed effect for actual surface size did not predict the 
word frequency data across all 30 languages ( b = − 0.01 , CI0.95 = [− 0.16, 0.14] , t(20.73) = − 0.13 , p = 0.898 ; 
see Fig. 3) in a LMEM including random intercepts for the languages, by-language random slopes for the repre-
sentational size and actual surface size, and random intercepts for the body parts. Yet, additionally including a 
fixed effect for sensory representational size again significantly improved the model ( χ2(1) = 5.34 , p = 0.021 ; 
with b = 0.23 , CI0.95 = [0.05, 0.42] , t(20.00) = 2.47 , p = 0.023 for its parameter in the resulting model; see Fig. 3). 
This pattern is invariant against the concrete operationalization of physical body part size. It also remains the 
same for a model that does not contain parameters for actual surface size ( χ2(1) = 5.20 , p = 0.023 ; with b = 0.23 , 
CI0.95 = [0.04, 0.41] , t(20.00) = 2.44 , p = 0.024 for the sensory representational size parameter).
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For the 16 items for which motor data is available, a fixed effect for actual surface size again does not pre-
dict word frequencies ( b = 0.09 , CI0.95 = [− 0.13, 0.32] , t(16.46) = 0.82 , p = 0.427 ). Additionally including a 
fixed effect for motor representational size significantly improved this model ( χ2(1) = 3.98 , p = 0.046 ; with 
b = 0.25 , CI0.95 = [0.02, 0.47] , t(16.01) = 2.12 , p = 0.0496 , for its parameter in the resulting model). This analy-
sis is mostly invariant against the different conceptualizations of body surface area, except for the anterior plus 
posterior orientation considering the combined area of paired body parts: With this operationalization, the effect 
of motor representational size fails to reach significance ( p = 0.056 ). In addition, the motor representational 
size parameter is not significant when the model does not already contain parameters for actual surface size 
( χ2(1) = 2.89 , p = 0.089 ; with b = 0.21 , CI0.95 = [− 0.02, 0.45] , t(16.00) = 1.78 , p = 0.0946 , for its parameter 
in the resulting model. Hence, in line with Study 2, there is no solid empirical evidence suggesting an effect of 
motor representational size.

For the 11 items for which both sensory and motor representational sizes are available, a fixed effect for actual 
surface size does again not predict word frequencies ( b = − 0.08 , CI0.95 = [− 0.79, 0.63] , t(11.01) = − 0.225 , 
p = 0.826 ). We again observe the same pattern as in Study 2: Including a parameter for sensory representational 
size improved this model ( χ2(1) = 4.81 , p = 0.028 ; and χ2(1) = 4.85 , p = 0.028 in a model without an actual 
surface size parameter), while additionally including a parameter for motor representational size did not improve 
this model ( χ2(1) = 2.45 , p = 0.117 ; and χ2(1) = 2.42 , p = 0.120 in a model without an actual surface size 
parameter). Again, including both parameters did not improve any of the previously described models.

For a graphical display of the actual body proportions, the proportions according to sensory representa-
tional sizes (i.e., the somatosensory homunculus), and the word frequency proportions (aggregated across all 30 
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Figure 2.   Between-language correlations of the logarithmic word frequencies per million, for the 25 words 
referring to body parts in Penfield and Boldrey16. The dendogram on the left side groups languages by their 
correlational patterns with other languages.
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languages), as displayed in Table 2, see Fig. 4. As can be seen in this figure, the language-based body retains many 
of the distortions of the sensory homunculus, thus suggesting that linguistic frequency encodes the functional 
relevance of body parts rather than their size.

General Discussion
The first study presented here initially seems to corroborate the view that physical properties of the outside 
world can be retrieved from statistical patterns of language use, namely word frequencies, replicating earlier 
results on city sizes10 and extending them to other domains (country sizes and river lengths). However, employ-
ing the human body as an ideal test case, the second study clearly demonstrates the limitations of this relation: 
Here, word frequencies are heavily distorted with respect to actual physical properties. Critically, they instead 
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Figure 3.   Relation between logarithmic word frequency per million and body surface area (upper panel) or 
sensory representational size (lower panel), as measured by the number of stimulation points eliciting a tactile 
senstation (Penfield and Boldrey16). For visual clarity, the x-axes are displayed on a logarithmic scale. The solid 
lines indicate model predictions, the gray bands around it 0.95-confidence intervals.
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systematically align with the way in which our cortical and cognitive representations of our own body, as illus-
trated by the somatosensory homunculus16, are themselves heavy distortions of its physical dimensions.

Thus, we identified a counter-example demonstrating that a general connection between language statistics 
and the physical outside world does not exist. Cases in which such information can be decoded from language11 
rely on the fact that properties of the physical world are often to some degree retained in our representations of 
it, and thus indirectly transmitted to language. However, as shown in the present study, not even this indirect 
connection is reliable: Generally speaking, one cannot re-construct the world humans live in from statistical 
analyses of their vast collections of text—only the way in which it is filtered, distorted and biased through the 
minds of speakers. However, the present results—that human representations of the world rather than physical 
realities are reflected in surface-level language statistics—are not necessarily restricted to body parts. This is 
already exemplified in our first study by the frequency of the Vatican city: the high political, social, historical, 
cultural and especially religious influence of the Vatican would likely determine its high frequency in language, 
despite its very small population size.

Note that, despite one may wonder whether representational size is just another type of physical size, this 
variable actually measures the number of cortical stimulation points eliciting a (sensory) response. Thus, the 
variable is defined in functional terms, as a relation between brain tissue and behavior—and just by looking 
at the brain tissue alone, it would not be possible to determine the representational size in the somatosensory 
homunculus. Even if this was possible by inspecting all neural pathways between the respective body parts and 
the cortex, one would still need to assume that there is a fundamental difference at all between mental repre-
sentations on the one hand and the brain on the other hand—an intensely debated question in the controversy 
over the mind-body problem43.

In the present study, we examined both sensory and motor representational sizes as measured by Penfield 
and Boldrey16. Our findings indicate a clear pattern for sensory representational sizes, which consistently predict 
word frequencies on their own, and emerge as the only predictive variable when analysed simultaneously with 
motor representational sizes. On the contrary, the results for motor representational sizes do not clearly indicate 
an effect of this variable. While it should be noted that the item set for motor representational sizes is smaller, 
and especially the direct comparisons between sensory and motor sizes run on a fairly restricted set of 11 items, 
motor representational size cannot be interpreted to reliably predict word frequencies. In this context, we want 
to note that a direct comparison between sensory and motor representational size was not the aim of the present 
study, which focused on the divergence between physical size and (functional) relevance.

Of course, sensory and motor representational size is not the only factor establishing the relevance of a body 
part, and not the only predictor of word frequency. For example, the eyes in Study 2 and 3 have the second-highest 

Figure 4.   Left Actual human body proportions. Middle Sensory representational size proportions (i.e., the 
sensory homunculus (1)). Right Word frequency proportions. These figures were created by computing the 
relative (distorted) surface area of each body part for stimulations (Homunculus) and word frequencies 
(Language-based body), and mapping them on the “Genesis 2 Male” model in Daz 3D (https://​www.​daz3d.​
com/). Yet, because the morphing software used is based on volume rather than on surface area, we further 
adjusted our computation to the different ratios of surface area to the volume of distinct body parts42.

https://www.daz3d.com/
https://www.daz3d.com/
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word frequency (after hand), even though they are very small both physically as well as in terms of sensory repre-
sentational size. However, eyes are very relevant to humans both as the organ responsible for our most important 
perceptual sense—vision—and for social interaction (a similar argument can be made for face). Another case can 
be made for the high frequency associated with foot. Feet can be in fact literally considered as the foundation of 
the human body: they allow balance and posture, and constitute the lowest extremity of the body’s vertical axis 
of reference imposed by gravity (e.g., head–foot). This is also reflected in language, as many metaphorical projec-
tions are not arbitrary but rather constrained by our prototypical bodily posture (e.g., land on one’s feet means 
to be in good condition after having a difficult experience44). Perhaps more importantly, beyond their central 
role in postural balance, feet also enable us to navigate the surrounding environment. As another example for 
potentially relevant factors beyond sensory relevance, the human body has a strong power to orient and attract 
visual attention. Faces and body parts are stimuli of great biological and social significance: eye movements in 
natural viewing conditions are often directed to human faces, with the eye region being particularly crucial for 
face recognition45. Not only the face, but also other body parts attract the viewer’s attention, especially when 
the exploration pattern involves the simulations of actions46. As such, the distribution of attentional resources 
over different body parts in natural scene perception may be another factor contributing to word relevance and 
consequently frequency. Hence, sensory relevance may be just one among other factors contributing to word 
relevance, and there is much room for future research on other possible factors.

Notably, terms referring to body parts—which provide a highly salient piece of common ground for all 
speakers47—are especially prone to various types of polysemy, such as metaphorical or metonymic extension (for 
example, in expressions such as on the other hand, head of state, or a shoulder to cry on48). The human body is 
indeed a very important source for linguistic expressions such as metaphors49: For instance, across many cultures 
and languages human emotions are normally referred to by metaphors derived from names for various body 
parts. Similarly, metaphors in English or German connect human body parts and their physiological functions 
with the sphere of politics50. This affinity for polysemy is a plausible factor contributing to the observed relation 
between representational size and word frequency, when terms for particularly salient body parts (such as hand 
or face) are also more frequently used in such non-literal meanings. To our knowledge, we currently do not have 
high-performing fully-automated tools to reliably identify literal versus non-literal word uses in all language 
corpora, which is why we considered all instances of a word for computing word frequencies. Empirically 
investigating to what extent the relation between relational size and word frequency is driven by literal versus 
non-literal word uses thus remains an interesting question for future research.

Our results are also relevant in light of the distinction between “primary” sensorimotor representations of 
one’s own body on the one hand, and language as a secondary representation system51,52. While these have tra-
ditionally been studied independently from one another, researchers from different fields have started to close 
this gap by showing links between the two systems47. As stated by Dingemanse47,

What is interesting about this specific case however is that something that is in essence private (namely, 
sensory-motor representation) can apparently be of joint salience to speaker and hearer. This really reveals 
the power of the secondary representation system, in that it affords its users the possibility to tap into the 
resources of personal experience. Body-part terms thus are a special kind of linguistic sign: they represent 
the intertwining of the private system of sensory-motor representation on the one hand, and the public, 
socially constituted system of human language on the other hand. (p. 2133)

With our large-scale quantitative approach, we are able to provide clear quantitative empirical evidence about 
the extent to which these systems are intertwined.

To conclude this article, we hark back to our initial thought experiment: what would the group of alien sci-
entists be able to learn solely from the statistical structure of language? Which type of information is encoded in 
this surface-level language data? We argued that, as the direct product of the brains and minds of speakers, the 
statistical structure of language is necessarily subject to their biases and representational distortions. Thus, the 
alien scientists would learn about the human representation of the world rather than about the world itself (of 
course, whether or not the alien scientists would be aware of this depends on them having at least some independ-
ent mean of verification, such as presented in this study). In this respect, our findings are in line with others53,54, 
showing how patterns of language use capture mental representations and cognitive biases in other domains, 
such as stereotypes towards social groups53,54. As a direct consequence however, this also means that an outside 
observer can learn about human representations of the world from a directly-observable human artefact (here, 
corpora of written text), without the need to actually encounter humans, talk to them, or perform psychological 
studies with them. Thus, patterns of language use open a window into the brain and mind of language users, with 
recorded or written language providing this opportunity even without requiring the synchronical presence of 
actual speakers. Therefore, in a period of time where producing and making publicly available large amounts of 
text via digital platforms is becoming standard practice for a large portion of the human population, we speakers 
need to be aware that we are more and more pushing this window open.

Received: 3 December 2021; Accepted: 20 April 2022

References
	 1.	 Bender, E. M. & Koller, A. Climbing towards NLU: On meaning, form, and understanding in the age of data. In Proc. 58th Annual 

Meeting of the Association for Computational Linguistics, 5185–5198 (2020).
	 2.	 Louwerse, M. M. Symbol interdependency in symbolic and embodied cognition. Top. Cogn. Sci. 3, 273–302 (2011).



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8043  | https://doi.org/10.1038/s41598-022-12027-5

www.nature.com/scientificreports/

	 3.	 Günther, F., Rinaldi, L. & Marelli, M. Vector-space models of semantic representation from a cognitive perspective: A discussion 
of common misconceptions. Perspect. Psychol. Sci. 14, 1006–1033 (2019).

	 4.	 Rinaldi, L. & Marelli, M. Maps and space are entangled with language experience. Trend Cogn. Sci. 24, 853–855 (2020).
	 5.	 Searle, J. R. Minds, brains, and programs. Behav. Brain Sci. 3, 417–424 (1980).
	 6.	 De Vega, M., Glenberg, A. & Graesser, A. Symbols and Embodiment: Debates on Meaning and Cognition (Oxford University Press, 

2012).
	 7.	 Vega, M. D. et al. (eds) Symbols and Embodiment: Debates on Meaning and Cognition 245–283 (Oxford University Press, 2008).
	 8.	 Cangelosi, A. & Riga, T. An embodied model for sensorimotor grounding and grounding transfer: Experiments with epigenetic 

robots. Cogn. Sci. 30, 673–689 (2006).
	 9.	 Lakoff, G. & Johnson, M. Metaphors We Live By (University of Chicago Press, 1980).
	10.	 Louwerse, M. M. & Zwaan, R. A. Language encodes geographical information. Cogn. Sci. 33, 51–73 (2009).
	11.	 Recchia, G. L. & Louwerse, M. M. Archaeology through computational linguistics: Inscription statistics predict excavation sites 

of Indus valley artifacts. Cogn. Sci. 40, 2065–2080 (2016).
	12.	 Louwerse, M. M. Embodied relations are encoded in language. Psychon. Bull. Rev. 15, 838–844 (2008).
	13.	 Connolly, A. C., Gleitman, L. R. & Thompson-Schill, S. L. Effect of congenital blindness on the semantic representation of some 

everyday concepts. Proc. Natl. Acad. Sci. 104, 8241–8246 (2007).
	14.	 Lenci, A., Baroni, M., Cazzolli, G. & Marotta, G. BLIND: A set of semantic feature norms from the congenitally blind. Behav. Res. 

Methods 45, 1218–1233 (2013).
	15.	 Johns, B. T. & Jones, M. N. Perceptual inference through global lexical similarity. Top. Cogn. Sci. 4, 103–120 (2012).
	16.	 Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimula-

tion. Brain 60, 389–443 (1937).
	17.	 Catani, M. A little man of some importance. Brain 140, 3055–3061 (2017).
	18.	 Piantadosi, S. T. Zipf ’s word frequency law in natural language: A critical review and future directions. Psychon. Bull. Rev. 21, 

1112–1130 (2014).
	19.	 Zipf, G. K. Human Behavior and the Principle of Least Effort (Addison-Wesley, 1949).
	20.	 Brysbaert, M., Mandera, P. & Keuleers, E. The word frequency effect in word processing: An updated review. Curr. Dir. Psychol. 

Sci. 27, 45–50 (2018).
	21.	 Bates, E. et al. Timed picture naming in seven languages. Psychon. Bull. Rev. 10, 344–380 (2003).
	22.	 Central Intelligence Agency. The World Factbook (Central Intelligence Agency, 2008).
	23.	 Baroni, M., Bernardini, S., Ferraresi, A. & Zanchetta, E. The WaCky wide web: A collection of very large linguistically processed 

web-crawled corpora. Lang. Resour. Eval. 43, 209–226 (2009).
	24.	 Van Heuven, W. J., Mandera, P., Keuleers, E. & Brysbaert, M. SUBTLEX-UK: A new and improved word frequency database for 

British English. Q. J. Exp. Psychol. 67, 1176–1190 (2014).
	25.	 Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
	26.	 Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. 

Mem. Lang. 68, 255–278 (2013).
	27.	 Linkenauger, S. A. et al. The perceptual homunculus: The perception of the relative proportions of the human body. J. Exp. Psychol. 

Gen. 144, 103–113 (2015).
	28.	 Longo, M. R., Azañón, E. & Haggard, P. More than skin deep: Body representation beyond primary somatosensory cortex. Neu-

ropsychologia 48, 655–668 (2010).
	29.	 Lund, C. C. & Browder, N. C. The estimation of areas of burns. Surg. Gynecol. Obstetr. 79, 352–358 (1944).
	30.	 Prieto, M. F., Acha, B., Gómez-Cıa, T., Fondón, I. & Serrano, C. A system for 3D representation of burns and calculation of burnt 

skin area. Burns 37, 1233–1240 (2011).
	31.	 Wachtel, T. L., Berry, C. C., Wachtel, E. E. & Frank, H. A. The inter-rater reliability of estimating the size of burns from various 

burn area chart drawings. Burns 26, 156–170 (2000).
	32.	 Yu, C.-Y., Lin, C.-H. & Yang, Y.-H. Human body surface area database and estimation formula. Burns 36, 616–629 (2010).
	33.	 Richard, R., Jones, J. A. & Parshley, P. Hierarchical decomposition of burn body diagram based on cutaneous functional units and 

its utility. J. Burn Care Res. 36, 33–43 (2015).
	34.	 Collins, L. & Dawes, C. The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral 

mucosa. J. Dent. Res. 66, 1300–1302 (1987).
	35.	 Liégeois, F., Albert, A. & Limme, M. Comparison between tongue volume from magnetic resonance images and tongue area from 

profile cephalograms. Eur. J. Orthod. 32, 381–386 (2009).
	36.	 Verbraecken, J., Van de Heyning, P., De Backer, W. & Van Gaal, L. Body surface area in normal-weight, overweight, and obese 

adults. A comparison study. Metabolism 55, 515–524 (2006).
	37.	 Mosteller, R. Simplified calculation of body surface area. N. Engl. J. Med. 317, 1098 (1987).
	38.	 Kilgarriff, A., Reddy, S., Pomikálek, J. & Avinesh, P. A Corpus factory for many languages. In Proc. 7th Conference on International 

Language Resources and Evaluation (LREC’10), 904–910 (ELRA, 2010).
	39.	 Jakubıček, M., Kilgarriff, A., Kovář, V., Rychl, P. & Suchomel, V. The TenTen corpus family. In Proc. 7th International Corpus Lin-

guistics Conference, 125–127 (2013).
	40.	 McGillivray, B. & Kilgarriff, A. Tools for Historical Corpus Research, and a Corpus of Latin in New Methods in Historical Corpora 

247–256 (Narr Verlag, 2013).
	41.	 Kilgarriff, A. et al. The Sketch Engine: Ten years on. Lexicography 1, 7–36 (2014).
	42.	 Tikuisis, P., Meunier, P. & Jubenville, C. Human body surface area: Measurement and prediction using three dimensional body 

scans. Eur. J. Appl. Physiol. 85, 264–271 (2001).
	43.	 Robinson, H. Dualism. In The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Metaphysics Research Lab, Stanford University, 

2020).
	44.	 Škara, D. Body metaphors-reading the body in contemporary culture. Coll. Antropol. 28, 183–189 (2004).
	45.	 Royer, J. et al. Greater reliance on the eye region predicts better face recognition ability. Cognition 181, 12–20 (2018).
	46.	 Massaro, D. et al. When art moves the eyes: A behavioral and eye-tracking study. PLoS ONE 7, e37285 (2012).
	47.	 Dingemanse, M. The selective advantage of body-part terms. J. Pragmat. 41, 2130–2136 (2009).
	48.	 Kraska-Szlenk, I. Semantic extensions of body part terms: Common patterns and their interpretation. Lang. Sci. 44, 15–39 (2014).
	49.	 Swan, T. Metaphors of body and mind in the history of English. Engl. Stud. 90, 460–475 (2009).
	50.	 Musolff, A. The embodiment of Europe: How do metaphors evolve. Body Lang. Mind 2, 301–326 (2008).
	51.	 Tomasello, M. The Cultural Origins of Human Cognition (Harvard University Press, 1999).
	52.	 Keller, R. A Theory of Linguistic Signs (Oxford University Press, 1998).
	53.	 Bhatia, S. The semantic representation of prejudice and stereotypes. Cognition 164, 46–60 (2017).
	54.	 Caliskan, A., Bryson, J. J. & Narayanan, A. Semantics derived automatically from language corpora contain human-like biases. 

Science 356, 183–186 (2017).



13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8043  | https://doi.org/10.1038/s41598-022-12027-5

www.nature.com/scientificreports/

Author contributions
F.G.: Statistical analysis; Collecting geographical and language data. L.R.: Collecting data on physical and repre-
sentational sizes of body parts. All authors: Conceptualizing the study and methodology, writing and reviewing 
the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was supported by an Emmy-Noether 
Grant (No. 459717703) from the German Research Foundation (DFG), awarded to Fritz Günther and by fund-
ing from Italian Ministry of Health (Ricerca Corrente 2021) to Luca Rinaldi. We wish to thank Shady Abdel-
gawad, Raheel Ahmed, Nora Bastian Dionyzio, Angelika Berndt, Jan Bím, Andrea Ibarra Chaoul, Eleftherios 
Charalampidis, Tanaya Chatterjee, Simge Hamaloglu, Minara Khatun, Irina Klippert, Yuki Kobayashi, Vishruti 
Kochar, Hamutal Kreiner, Julia Mermier, Lukas Paun, Dominique Peeters, Stephan Pfeiffer, Katrina Quinn, 
Miriam Siegfried, Eva Smolka, and six other informants who wish to remain anonymous for their help with the 
item translations. Direct human participants are not present in this study. All the data, materials and codes have 
been archived in the free Open Science Framework: (https://​osf.​io/​6zk8s/?​view_​only=​1e7ea​e8fcf​534c3​2bbf7​
96be7​e5993​0f).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​12027-5.

Correspondence and requests for materials should be addressed to F.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://osf.io/6zk8s/?view_only=1e7eae8fcf534c32bbf796be7e59930f
https://osf.io/6zk8s/?view_only=1e7eae8fcf534c32bbf796be7e59930f
https://doi.org/10.1038/s41598-022-12027-5
https://doi.org/10.1038/s41598-022-12027-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Language statistics as a window into mental representations
	Study 1: Word frequencies encode the relevance of geographical entities
	Methods. 
	Results. 
	Discussion. 

	Study 2: Word frequencies for human body parts
	Study 2a: Physical size of body parts. 
	Methods. 
	Body surface areas. 
	Word frequencies. 

	Results and discussion. 

	Study 2b: Functional relevance and word frequencies of body parts. 
	Methods. 
	Representational body part size: number of cortical stimulations eliciting a response. 

	Results and discussion. 


	Study 3: A large cross-linguistic validation
	Methods. 
	Results. 

	General Discussion
	References


