
R E V I EW AR T I C L E

Mouse models of porcine circovirus 2 infection

Ting Ouyang | Xiao-hui Liu | Hong-sheng Ouyang | Lin-zhu Ren

Science and Technology Innovation Center

for Animal Genome Editing of Jilin

Province, College of Animal Sciences, Jilin

University, Changchun, Jilin, China

Correspondence

Lin-zhu Ren, Science and Technology

Innovation Center for Animal Genome

Editing of Jilin Province, College of Animal

Sciences, Jilin University, Changchun, China.

Email: renlz@jlu.edu.cn

Funding information

National Key Research and Development

Program of China, Grant/Award Number:

2017YFD0500103; National Natural Science

Foundation of China, Grant/Award Number:

31772747, 31272385; Jilin Province Science

Abstract

PCV2 is considered the main pathogen of porcine circovirus diseases and porcine

circovirus-associated diseases (PCVD/PCVAD). However, the exact mechanism

underlying PCVD/PCVAD is currently unknown. Mouse models of PCV2 are valu-

able experimental tools that can shed light on the pathogenesis of infection and will

enable the evaluation of antiviral agents and vaccine candidates. In this review, we

discuss the current state of knowledge of mouse models used in PCV2 research that

has been performed to date, highlighting their strengths and limitations, as well as

prospects for future PCV2 studies.
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1 | INTRODUCTION

Porcine circovirus (PCV) belongs to the genus Circovirus of the family

Circoviridae and contains a single-stranded 1.7-kb circular DNA.1-4

There are two types of PCV: porcine circovirus type 1 (PCV1) and

porcine circovirus type 2 (PCV2). PCV1 is nonpathogenic, whereas

PCV2 is considered the main pathogen of porcine circovirus diseases

and porcine circovirus-associated diseases (PCVD/PCVAD), including

a number of different syndromes and diseases in pigs, such as post-

weaning multisystemic wasting syndrome (PMWS), porcine respira-

tory disease complex (PRDC), reproductive failure, granulomatous

enteritis, necrotizing lymphadenitis, exudative epidermitis, and con-

genital tremor.1,4-6 Furthermore, many of the syndromes associated

with PCVD/PCVAD are a result of coinfection with PCV2 and other

swine pathogens, such as porcine reproductive and respiratory syn-

drome virus (PRRSV), porcine parvovirus (PPV), Mycoplasma hyopneu-

moniae, bacterial septicemia or pneumonia, and swine influenza virus

(SIV).4,7-9

To date, the exact mechanism of PCVD/PCVAD is currently

unknown, and there are no approved effective therapeutics for

PCV2 infection. Although several commercial vaccines based on

PCV2a are effective in protecting pigs against challenge with

PCV2a,9 they cannot protect pigs against the PCV2b genotype that

is prevalent worldwide, as well as other PCV2 genotypes. Moreover,

some PCV2-infected pigs can develop severe disease while many

pigs in the same herd and farm remain asymptomatic. Therefore, an

in vivo infection model is critical for understanding the pathogenesis

during PCV2 infection and coinfection with other swine pathogens.

The mouse has been widely used as an infection model to eluci-

date the in vivo behaviors of virus-host interactions.10-12 Although

some research groups have reported that mouse models provide

only limited utility in advancing the understanding of PCVD/

PCVAD13-15 and that the ORF3 protein has very limited pathogenic-

ity in its primary host,16 mouse models are useful for the study of

cellular responses to PCV2 in the context of an animal host. The

purpose of this review is to discuss the current state of knowledge
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of mouse models used in PCV2 research that has been performed to

date, highlighting their strengths and limitations as well as prospects

for future PCV2 studies.

2 | PATHOGENESIS OF PCV2 IN MICE

PCV2 has been shown to replicate and spread in BALB/c14,17-19

and Kunming mice.20,21 PCV2 nucleic acids can be detected in lym-

phoid tissues, the liver, epithelial cells, and the thymus.17 Further-

more, the virus can be transmitted directly from mouse to mouse

by contact, and it causes vertical infection through the pla-

centa.20,22-24 Microscopic lesions in PCV2-infected mice are charac-

terized by the expansion of germinal centers in lymphoid organs,

with large numbers of histiocytic cells and lymphoblasts, apoptosis

of histiocytic cells in germinal centers, and mild lymphoid depletion

of the paracortex.17 Moreover, PCV2 can also cause lesions of

spermatocytes and oocytes prior to zygote formation; Leydig cells

in the testes and granulosa cells in the ovaries were degenerated,

and a small number of spermatocytes and oocytes underwent

apoptosis.25

It was reported that the ORF3 protein of PCV2 is critical in viral

pathogenesis and apoptosis in vitro.4 Using a mouse model, the role

of the ORF3 protein in viral pathogenesis were evaluated in vivo. The

results showed that the ORF3 protein plays an important role in viral

pathogenesis.26 Furthermore, ORF3 expedites the spread of the virus

by inducing the early release of the virus from the infected cells.27

ORF3 protein activates caspases 8 and 3 by interacting with pPirh2,

resulting in apoptosis in the spleens of infected mice.19,26,28,29 ORF3-

induced apoptosis also aids in recruiting macrophages to phagocytose

the infected apoptotic cells, leading to the systemic dissemination of

the infection in PCV2-infected mice, which promotes the spread of

the virus.27

3 | IMMUNOLOGY OF PCV2 IN MICE

Compared with control mice, PCV2 infection significantly enhanced

TNF-a secretion and markedly decreased IFN-a secretion.30 MHCII+

CD40� and CD137L� CD80+/CD86+ DCs increased significantly in

PCV2-infected mouse spleens.30 Secretion of IFN-c by CD4+ and

CD8+ T cells and of IL-12 by CD8+ T cells was significantly lower in

PCV2-infected mice, while secretion of IL-4 by CD4+ T cells was

remarkably higher.30 These results indicate that PCV2 modulates

cytokine secretion and costimulatory molecule expression by DCs

and alters the activation of CD4+ and CD8+ T cells by DCs, which

might be related to the host’s immune dysfunction and persistent

infection with PCV2.30 Moreover, the Rep and ORF3 proteins of

PCV2 may interfere with the cellular, humoral, and protective immu-

nity of the Cap protein in vivo.31 ORF4 from PCV2 is not essential

for the viral replication but inhibits caspase activity and regulates

CD4+ and CD8+ T lymphocytes during viral infection in mice.32 In

contrast, the relative proportions of CD4+ and CD8+ T cells were

more greatly decreased in ORF4-deficient PCV2-infected mice com-

pared with wild-type PCV2-infected mice.33

CD44 is a widely expressed class I transmembrane glycoprotein

in immunological and inflammatory responses.34 Upon infection with

PCV2, the CD44 mRNA level in the lung tissue was upregulated,

while CD44 deficiency resulted in decreased proinflammatory cyto-

kine production in lungs of the PCV2-infected mice, suggesting that

CD44 plays a role in the development of the pneumonia response to

PCV2 infection.34

4 | VACCINE EVALUATION IN MICE

PCV2 is divided into 5 genotypes according to the Cap gene

sequence: PCV2a, b, c, d, and e.35 Additionally, genotype PCV2b is

subclassified into 3 clusters, 1A-1C, and genotype PCV2a is subdi-

vided into 5 clusters, 2A-2E.35-37 Although vaccination is the main

method to prevent and control PCV2, few vaccines are available for

these genotypes. Therefore, it is urgent to develop effective PCV2

vaccines.

Cap protein, encoded by the ORF2 gene of PCV2, is the only

structural protein of PCV2, and thus it contains the main antigenic

determinant of the virus.4 Thus, recombinant Cap protein expressed

in baculovirus/insect cell, yeast, adenovirus and Escherichia coli

expression systems were purified and injected into mice to produce

antibodies against PCV2. Importantly, mice inoculated with secreted

Cap developed a significantly higher level of neutralizing antibod-

ies.38 Furthermore, a transcriptional enhancer element consisting of

the largest intron of the human cytomegalovirus (Intron A) and

woodchuck hepatitis virus post-transcriptional regulatory element

(WPRE) significantly improved the expression of the Cap protein in

an adenovirus vector system and enhanced the immune responses in

mice.39 Moreover, the flagellin-Cap fusion protein elicited a

stronger PCV2-specific IgG antibody response, higher neutralizing

antibody levels, milder histopathological changes and lower viremia,

as well as increased secretion of cytokines such as TNF-a and IFN-c

that conferred better protection against PCV2 challenge than those

in the mice inoculated with recombinant Cap alone.40 Additionally,

the efficacy of a DNA vaccine expressing Cap protein can be

improved by the simultaneous expression of porcine cytokines such

as IL-6, IL-15, IL-2, GM-CSF, and IFN-c, resulting in significantly

higher humoral and cellular immune responses in mice.41-44

Virus-like particles (VLPs) constitute versatile tools in vaccine

development due to their favorable immunological characteristics,

such as their size, repetitive surface geometry, and ability to induce

both innate and adaptive immune responses.45 The full-length PCV2

Cap protein expressed in E. coli can self-assemble into VLPs 25-

30 nm in diameter that can stimulate specific immune responses to

PCV2 in mice.46 Aguilera and colleagues constructed chimeric VLPs

using papaya ringspot virus (PRSV) as an epitope presentation scaf-

fold.47 They found that the chimeric VLPs induced high levels of

immunoglobulin G against PCV2 epitopes in immunized BALB/c

mice.47 Furthermore, VLPs can be used as transfer vehicles carrying

24 | OUYANG ET AL.



foreign proteins or antigenic epitopes to produce chimeric VLPs.48

The GP5 epitope B from PRRSV was inserted into loop CD of the

PCV2 Cap, resulting in chimeric PCV2 VLPs.48 The results showed

that chimeric PCV2 VLPs induced strong humoral (neutralizing anti-

bodies against PCV2 and PRRSV) and cellular immune responses in

mice.48 The somatostatin (SS) gene was fused to the 30-terminal of

the Cap protein, self-assembled into VLPs in Sf9 cells, and immu-

nized into mice, followed by challenge with PCV2.49 The results

demonstrated that body weight gain and anti-SS antibody in the

rCap-SS group was obviously higher than that of the control group

28 and 42 days postinoculation (dpi).49

In addition to vaccines, different adjuvants have also been inves-

tigated for the production of antibodies from PCV2 vaccine-immu-

nized mice. Inactivated PCV2 vaccine conjugated with chitosan

oligosaccharide, Lycium barbarum polysaccharides or Epimedium

polysaccharide-propolis flavone liposomes can remarkably enhance

both humoral and cellular immunity against PCV2 by promoting T

lymphocyte proliferation, initiating a Th1/Th2 response, and increas-

ing the production of PCV-2-specific antibodies and the secretion of

inflammatory cytokines in mice.50-52 These natural polysaccharides

from plant, bacterial, yeast, and synthetic sources are safer and

biodegradable, without the tissue deposits observed for aluminum

adjuvants.53 Moreover, adjuvant cytokines or DNA, such as porcine

CD40 ligand (CD40L), granulocyte-macrophage colony-stimulating

factor (GM-CSF), ubiquitin, the N-terminus of porcine heat shock

protein Gp96, and a CpG motif could also significantly enhance

humoral immune responses, PCV2-specific antibody titer, and neu-

tralizing activities in mice.54-57 Additionally, a CpG motif can also

reduce immune organ damage in mice,55 while CD40L and GM-CSF

could synergistically enhance the protective immune responses of

PCV2 adenovirus vaccine.54

5 | EVALUATING PROTECTIVE CHEMICALS
AND ANTIVIRAL AGENTS IN MICE

To determine whether dietary supplementation with protective

chemicals or antiviral agents can offer protection against virus

infection, mice were treated with different chemicals or antivirals,

followed by PCV2 infection. The results showed that dietary sup-

plementation with aluminosilicate,58 selenium yeast,59 arginine,60

proline,61 and L-glutamine62,63 can enhance the immune system

and confer mice with antiviral protection against PCV2.4 More-

over, dietary supplementation with arginine, L-glutamine, and pro-

line can also improve pregnancy outcomes in PCV2-infected

mice.4,61-63

Previously, we found that statin, an inhibitor of HMG CoA

reductase (HMGCR), significantly stimulated PCV2 replication

in vitro.64 Using the mouse models, we further evaluated the effect

of statin on PCV2 infection in mice. The results showed that mice

treated with atorvastatin during PCV2 infection had reduced body

weights.18 PCV2 antigens were mainly immunolocalized to the

cytoplasms and plasma membranes of cells in the lymph nodes of

PCV2-inoculated mice.18 These results further confirmed that

HMGCR is negatively associated with PCV2 infection.18,64 Further-

more, CD44 has been reported to play an antiviral role in response

to PCV2 infection.34 Astragalus polysaccharide (APS) treatments

can reduce the pathological injury of tissues, inhibit PCV2 infection

and decrease glucose-regulated protein 78 and GADD153/CHOP

gene mRNA and protein expression significantly by inhibiting endo-

plasmic reticulum stress.65 Additionally, intraperitoneal injection of

200 lg/kg arctigenin (ACT) significantly inhibited PCV2 proliferation

in the lungs, spleens, and inguinal lymph nodes of mice, demon-

strating the effectiveness of ACT as an antiviral agent against

PCV2 in vivo.66 17-Dimethylaminoethylamino-17-demethoxygelda-

namycin (17-DMAG), an inhibitor of Hsp90, is highly effective in

suppressing PCV2 replication in BALB/c mice.67 Nitric oxide-gener-

ating compound S-nitrosoglutathione (GSNO) treatment reduced

the percentages of PCV2-positive serum and tissue samples, as well

as the viral DNA copies in the serum samples, indicating the reduc-

tion of PCV2 infection progression in mice.68 GSNO also improved

the growth performance and immune organs (spleens and thy-

muses) of the PCV2-infected mice.68 Lactobacillus reuteri signifi-

cantly decreased the amount of PCV2 in the feces and in the

ileum in mice, upregulated the gene expression of chemokines,

interferon (IFN)-c, IgA and PIgR in the ileum, and significantly

increased the percentage of CD19+ lymphocytes in the mesenteric

lymph nodes and natural killer cells, indicating that probiotic L. reu-

teri has an antiviral effect on PCV2 in the intestine via stimulation

of the local gut immune response.69 Therefore, these compounds

may have the potential to serve as drugs for protection of pigs

against PCV2 infection.66

PCV2 infection leads to a significant decrease in the thymus

and spleen indices, elevation of xanthine oxidase (XOD) and

myeloperoxidase (MPO) activities, reduction of the glutathione

(GSH) level and GSH to oxidized glutathione (GSSG) ratio, and

decreased superoxide dismutase (SOD) activity, indicating the for-

mation of immunosuppression and oxidative stress.70 It has been

reported that oxidative stress plays an important role in the patho-

genesis of virus infection, and antioxidants are becoming promising

candidates as therapeutic agents.70 Total flavonoids of Spatholobus

suberectus Dunn (TFSD) treatment recovered the alteration of the

viscera index, antioxidant content and activities of oxidative-asso-

ciated enzymes to a level similar to controls.70 Carboxymethyl-

pachymaran (CMP) can significantly improve the spleen or thymus

index, promote the proliferation of T or B lymphocytes, and

increase the production of glutathione, the superoxidase dismutase

capacity, and the total antioxidant capacity in the spleen or thymus

of PCV2-infected mice.71 Treatment of PVC2-inoculated mice with

CMP resulted in the upregulation of IL-2 and IFN-a or the down-

regulation of IL-10 levels in the serum, suggesting that CMP has

potential applications in regulating immunological functions to over-

come the immunosuppression caused by PCV2 infection in mice.71

Therefore, the critical role of these chemicals against PCV2 infec-

tion is to regulate immune function and inhibit oxidative stress in

mice.66-68,70,71
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6 | CONCLUSIONS AND FUTURE
PERSPECTIVES

Some groups have reported that infection of mice with PCV2 results

in different diseases that vary in severity depending on the virus

dose and viral genotype, mouse strain, and age, indicating differ-

ences in the pathogenesis of PCV2, as well as innate and adaptive

immune response, between pigs (the natural host) and mice (an

unnatural animal model).6,14,22,72 However, mouse models might be

useful for antiviral agent and vaccine research due to the commercial

availability of mouse-specific immunological reagents and the ease of

genetic manipulation in mice. Furthermore, mouse-adapted virus

strains may improve our understanding of the pathogenesis and

mechanisms of immunity to PCV2.

In many cases, PCV2 evokes a subclinical infection, without any

obvious symptoms, in pigs.73 PCVD/PCVAD and PCV2 infection are

often accelerated by concurrent viral or bacterial infections.72 How-

ever, the mechanisms involved are poorly understood. Therefore,

mouse models for coinfections of PCV2 with other swine pathogens

still need more research.
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