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Childhood adversity is associated with altered or dysregulated stress reactivity; these
altered patterns of physiological functioning persist into adulthood. Evidence from both
preclinical animal models and human neuroimaging studies indicates that early life
experience differentially influences stressor-evoked activity within central visceral neural
circuits proximally involved in the control of stress responses, including the subgenual
anterior cingulate cortex (sgACC), paraventricular nucleus of the hypothalamus (PVN),
bed nucleus of the stria terminalis (BNST) and amygdala. However, the relationship
between childhood adversity and the resting-state connectivity of this central visceral
network remains unclear. To this end, we examined relationships between childhood
threat and childhood socioeconomic deprivation, the resting-state connectivity between
our regions of interest (ROIs), and affective symptom severity and diagnoses. We
recruited a transdiagnostic sample of young adult males and females (n = 100; mean
age = 27.28, SD = 3.99; 59 females) with a full distribution of maltreatment history
and symptom severity across multiple affective disorders. Resting-state data were
acquired using a 7.2-min functional magnetic resonance imaging (fMRI) sequence;
noted ROIs were applied as masks to determine ROI-to-ROI connectivity. Threat was
determined by measures of childhood traumatic events and abuse. Socioeconomic
deprivation (SED) was determined by a measure of childhood socioeconomic status
(parental education level). Covarying for age, race and sex, greater childhood threat
was significantly associated with lower BNST-PVN, amygdala-sgACC and PVN-sgACC
connectivity. No significant relationships were found between SED and resting-state
connectivity. BNST-PVN connectivity was associated with the number of lifetime
affective diagnoses. Exposure to threat during early development may entrain altered
patterns of resting-state connectivity between these stress-related ROIs in ways that
contribute to dysregulated neural and physiological responses to stress and subsequent
affective psychopathology.

Keywords: childhood trauma, subgenual anterior cingulate cortex, amygdala, bed nucleus of stria terminalis,
extended amygdala, hypothalamus, affective disorders
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INTRODUCTION

Due to its high prevalence (Hillis et al., 2016; Merrick et al., 2018;
Cuartas et al., 2019) and importance as a predictor of affective
risk, childhood adversity is at the forefront of psychiatry’s
public health burden (Sara and Lappin, 2017). One sensitivity
analysis of global past year violence against children found that
a minimum of 1.4 out of 2 billion children aged 2–17 experienced
physical, sexual or emotional violence (Hillis et al., 2016). Further,
the COVID-19 pandemic has exacerbated systemic challenges,
increasing children’s risk of violence exposure (M’jid, 2020;
Pereda and Díaz-Faes, 2020). Childhood adversity is a risk factor
for and prospective predictor of greater affective symptoms and
disorders (Danese et al., 2009; Nanni et al., 2012; Baldwin et al.,
2021; Mayer et al., 2021; Russotti et al., 2021). Thus, greater
mechanistic understanding of childhood adversity-related neural
and physiological differences is necessary to mitigate these risks
and guide treatment efforts.

Childhood adversity is associated with dysregulated
(heightened or diminished) stress reactivity in childhood
and later in life (Al’Absi et al., 2021), with alterations in both
neuroendocrine and autonomic physiology and stress reactivity
(Heim et al., 2000, 2001; Chen et al., 2004; Koopman et al.,
2004; Carpenter et al., 2007, 2011; Gunnar et al., 2009; Lovallo
et al., 2011; Hackman et al., 2012). There is evidence to suggest
that there may be differential influences of childhood adversity
dimensions, threat (e.g., abuse, traumatic events) and deprivation
(e.g., neglect, socioeconomic deprivation, institutional rearing)
(McLaughlin et al., 2014; Sheridan and McLaughlin, 2014) on
stress reactivity, with threat blunting (Carpenter et al., 2007,
2011; Doom et al., 2014; Peckins et al., 2015; Bernard et al., 2017)
and deprivation (i.e., low socioeconomic status, SES) heightening
reactivity (Lupien et al., 2001; Cohen et al., 2006; Chen et al.,
2009; Lê-Scherban et al., 2018). Despite evidence linking
childhood threat and deprivation to altered physiological stress
systems, how childhood adversity shapes specific, proximally
stress-responsive neural circuits remains unclear.

The subgenual anterior cingulate cortex (sgACC),
paraventricular nucleus of the hypothalamus (PVN), bed nucleus
of the stria terminalis (BNST) and amygdala form a stress-
responsive, central visceral network. These limbic forebrain
and hypothalamic regions are central to reciprocal descending
preautonomic/visceromotor and ascending viscerosensory
(i.e., central visceral) pathways (see Figure 1) that control and
modulate autonomic outflow and neuroendocrine function
(Banihashemi and Rinaman, 2006; Card and Sved, 2011;
Rinaman et al., 2011). Further, connections between these
regions are important for stress regulation; the PVN, a gateway
of hypothalamic-pituitary-adrenal (HPA)/neuroendocrine and
autonomic regulation (Luiten et al., 1985; Herman et al., 2002),
is directly innervated and influenced by the BNST (Dong et al.,
2001b; Povysheva et al., 2021). With little to no innervation
of the PVN (Freedman et al., 2000), the sgACC/Brodmann
area 25 may access the PVN via direct connections to the
BNST (Freedman et al., 2000; Vertes, 2004). The amygdala also
has reciprocal connections to the sgACC (Heilbronner and
Haber, 2014; Oler and Fudge, 2019; Sharma et al., 2019) and

BNST (Dong et al., 2001a; Bienkowski et al., 2013; deCampo
and Fudge, 2013; Oler et al., 2017; Figure 1). Further, the
intrinsic functional connectivity of the extended amygdala
(BNST/amygdala) appears to align with known anatomical
connectivity; Tillman et al. (2018) showed that compared
to the central nucleus of the amygdala, the BNST displayed
stronger coupling with anterior cortical areas, including
ventromedial prefrontal cortex/sgACC and brainstem/dorsal
periaqueductal gray. This network (along with its central
visceral connections) is involved in affective processes (e.g.,
emotional memory, threat responses, fear and anxiety) (Fendt
et al., 2005; Schweimer et al., 2005; Somerville et al., 2010;
Avery et al., 2014, 2016; Herrmann et al., 2016), implicated
in psychopathology (e.g., depression, anxiety, trauma-related
disorders) (Thayer and Lane, 2000; Gotlib et al., 2005; Drevets
et al., 2008b; Lebow and Chen, 2016; Clauss, 2019; Clauss
et al., 2019), and targeted for affective disorder treatments
(e.g., deep brain stimulation for depression and obsessive
compulsive disorder) (Johansen-Berg et al., 2008; Gutman et al.,
2009; Drobisz and Damborská, 2018; Fitzgerald et al., 2018;
Mosley et al., 2021).

Previous research in preclinical animal models (Banihashemi
and Rinaman, 2010; Banihashemi et al., 2011) and human
neuroimaging (Banihashemi et al., 2015) indicates that early
life experience differentially influences stressor-evoked activity
within this visceral, stress-responsive network. In physically and
mentally healthy adults, childhood threat (i.e., physical abuse)
is significantly associated with greater stressor-evoked activity
across this central visceral, limbic forebrain-hypothalamic
network (Banihashemi et al., 2015). Yet, how childhood adversity
may influence resting-state connectivity of this central visceral
network is virtually unknown.

Studies focused on childhood adversity and resting-state
connectivity have spanned development and have primarily
focused on amygdala-related or large-scale network connectivity
(Teicher et al., 2020). In youth, findings tend to indicate that
greater childhood maltreatment or trauma exposure is associated
with greater amygdala-related connectivity (amygdala-sgACC
cortex, amygdala-hippocampus, amygdala-salience network)
(Marusak et al., 2015; Thomason et al., 2015; Rakesh et al.,
2021b), while late adolescents/adults tend to display an
opposing trend with greater maltreatment associated with less
amygdala-related connectivity (amygdala-sgACC, amygdala-
ventromedial prefrontal cortex, amygdala-orbitofrontal
cortex/insula/hippocampus, amygdala-cuneus/precuneus)
(Werff et al., 2012; Herringa et al., 2013; Souza-Queiroz
et al., 2016). Rabellino et al. (2018) investigated BNST
resting-state connectivity in PTSD and its dissociative
subtype; however, they found no significant relationship
between childhood maltreatment and BNST resting-state
connectivity in subsequent analyses. To our knowledge, no
studies of childhood adversity have focused exclusively on
the resting-state connectivity of the central visceral network
described. Thus, the current study is unique in examining this
network in a transdiagnostic sample recruited specifically to
represent a spectrum of severity across self-reported childhood
physical abuse.
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FIGURE 1 | Central Visceral Network. The brain image depicts the regions of interest utilized in our resting-state analyses, the subgenual anterior cingulate cortex
(sgACC, red), bed nucleus of the stria terminalis (BNST, violet), paraventricular nucleus of the hypothalamus (PVN, green) and amygdala (blue). Simplified
connections are depicted (black arrows; not specific with respect to subnuclei). Ascending viscerosensory and descending preautonomic/visceromotor pathways
course through the medial forebrain bundle (BNST and PVN connections depicted). Amygdala, BNST and PVN are connected via the stria terminalis. BNST
projections to PVN and sgACC innervation of the BNST are displayed, as well as reciprocal connections between the sgACC and amygdala. The amygdalofugal
pathway is also integral to this network (not depicted here). (Unilateral representations are shown).

Our recent work discovered opposing relationships of
childhood threat (both abuse and traumatic events) and
socioeconomic deprivation with white matter structural integrity
(i.e., generalized fractional anisotropy, gFA) of the stria
terminalis (Banihashemi et al., 2021), which connects several
of our regions of interest (ROIs) (caudomedial amygdala,
BNST and hypothalamus) (Rafal et al., 2015; Oler et al.,
2017; Weiss et al., 2021). Greater threat was associated with
less, while greater deprivation was associated with greater,
stria terminalis gFA. Thus, we hypothesized that threat and
deprivation would have congruent, opposing effects on resting-
state connectivity within this central visceral network (i.e.,
threat would be associated with lower, while deprivation would
be associated with greater, resting-state connectivity). To this
end, our goal was to examine differential relationships of
threat and deprivation with resting-state connectivity between
our central visceral ROIs, as well as to examine how their
functional connectivity may contribute to affective symptoms
or disorders. These findings may contribute to a greater
understanding of how childhood-adversity shapes this central
visceral network at rest, how these resting state dynamics
may prime functional activity in response to emotionally
salient stimuli and how this network may contribute to

childhood adversity-related differences in affective symptoms
and disorders.

MATERIALS AND METHODS

Participants
Participants were recruited from Allegheny County, Pittsburgh,
PA, United States, using various methods (e.g., referrals from
other research studies, and online and bus advertisements).
Of the 1,020 contacts made, 111 (18.5%) underwent informed
consent and were enrolled in the study. Of those consented,
100 (90%) participants completed study procedures. Participants
were 59 female and 41 male young adults (n = 100,
mean age = 27.28, SD = 3.99). Of the 100 participants
that completed the study, 45% self-reported their race as
White, 36% as Black or African American, 13% as Asian,
4% as multiracial, and 2% as biracial. Within this sample,
7 individuals reported their ethnicity as Hispanic or Latin
American. All participants provided informed consent after
receiving an explanation of study protocols and were examined
with the approval of the University of Pittsburgh Institutional
Review Board.
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Exclusion criteria were: Magnetic resonance imaging (MRI)
contraindications (e.g., claustrophobia, metal in the body, severe
visual or auditory impairment), pregnancy, left-handedness,
cardiovascular disease and diabetes, neurological disorders
(including seizure disorders, migraine disorder, traumatic
brain injury, or neurodegenerative disorders), psychotropic
medications or any medications affecting cardiovascular or
neural function, suicidality or marked functional impairment,
and current psychiatric disorders (bipolar, psychotic disorders,
substance abuse or dependence) except for depression, anxiety or
trauma-related disorders.

Individuals were also screened using the five childhood
physical abuse items from the Childhood Trauma Questionnaire
(CTQ) with the goal of achieving an even distribution of
participants across four physical abuse severity classifications as
defined by CTQ guidelines (Bernstein et al., 1994). The following
distribution of physical abuse severity was achieved in the final
sample (n= 100): 29% None-Minimal, 23% Low-Moderate, 21%
Moderate-Severe, 27% Severe-Extreme. A balanced distribution
was also achieved across childhood SES (as assessed by maximum
parental education level), 31% Low (GED – some college, no
degree), 34% Middle (Associate or Bachelor’s), and 35% High
(Master’s or Doctorate). All participants had at least one parent
with a GED or higher education level.

Study Protocol and Measures
The study comprised two visits completed within one month
(mean number of days between visits: 14.39 ± 10.96), an
intake visit followed by an MRI scan visit at the University of
Pittsburgh Magnetic Resonance Research Center. At the first
visit, eligibility was determined using medical history, two-
week medication history, current substance use and traumatic
brain injury inventories. Participants were excluded if deemed
ineligible by these assessments.

Childhood Threat
Childhood Threat was assessed with the Childhood Trauma
Questionnaire (CTQ) and the Trauma History Questionnaire
(THQ). The CTQ is a 28-item Likert-type scale that examines
five subscales of maltreatment: physical, emotional and sexual
abuse, and physical and emotional neglect (Bernstein et al., 1994).
Each subscale contains five items with scores ranging from 1-
Never to 5-Very Often True. A sum of the three abuse subscales
represented our CTQ Threat variable (with 15 indicating no
abuse and 75 indicating extreme abuse). (A sum of the two neglect
subscales represented our CTQ Deprivation variable, which was
used in secondary analyses. See section “Variable Selection”).

The THQ is a 24-item questionnaire that assesses the
occurrence of traumatic events throughout the life course
(Stamm, 1996). An adapted version of the THQ was used in
which participants responded yes or no to indicate whether
a particular event occurred and then selected the relevant
age range(s): age 0–11, age 12–17, and age > 18 (Insana
et al., 2012). Traumatic events included experiences with crime,
environmental disasters, injury or death, as well as physical or
sexual abuse. THQ 0-11 was used as a primary measure of

childhood threat and THQ > 18 was used as a covariate (see
sections “Variable Selection” and “Data Analysis”).

Childhood Socioeconomic Deprivation
A sociodemographic inventory was used to assess childhood and
adulthood SES. Maximum parental education level was used to
determine childhood SES; the participants’ own educational level
determined adulthood SES. Both were presented as a 9-point
education level scale (0 - No high school diploma, 1 – GED,
2 – High school diploma, 3 – Technical training, 4 – Some
college, no degree, 5 – Associate degree, 6 – Bachelor’s degree,
7 – Master’s degree, 8 – MD/PhD/JD/PharmD). The Childhood
Deprivation construct encompasses low SES, socioeconomic
disadvantage or neighborhood deprivation (McLaughlin et al.,
2014; Webb et al., 2017; Berti and Pivetti, 2019; Morris et al.,
2019). Further, education level is often used as a measure of SES
and is associated with mental health inequalities (Reiss, 2013),
physiological stress (Ursache et al., 2017) and physical health,
especially cardiovascular disease risk (Winkleby et al., 1992).
Thus, we used maximum parental education level (reverse coded)
as our primary measure of childhood socioeconomic deprivation
(SED). Adulthood SES was used as a covariate.

Negative Life Events
The 24-item Life Events List assesses significant life events
experienced by the participant within the past 12 months (e.g.,
unemployment, separation or divorce, serious illness, death
of someone close) (Cohen et al., 1991). Participants indicate
whether or not they have experienced an event in the past
year with follow up questions assessing valence and/or details if
endorsed. This inventory was used to assess the total number of
negative life events, which was used as a covariate.

Affective Symptom Severity
Depression and post-traumatic stress symptom severity were
assessed using the Beck’s Depression Inventory (BDI-II) and
the PTSD Checklist - Civilian Version (PCL-C), respectively.
The BDI-II is a 21-item questionnaire that assesses the presence
and severity of depression within the past two weeks; it probes
whether participants have experienced a thought or behavior
related to depressive symptoms on a scale of 0 to 3, with
scores > 20 considered moderate-to-severe (Beck et al., 1996).
The PCL-C is a 20-item measure that reliably assesses post-
traumatic stress symptom severity in the last month on a
5-point Likert scale ranging from not at all (Cuartas et al.,
2019) to extremely (M’jid, 2020), with scores > 30 considered
moderate-to-severe. It includes assessment of re-experiencing,
avoidance and arousal symptoms, as well as negative cognitions
(Wilkins et al., 2011).

Diagnostic Assessment
Psychiatric diagnoses of mood, anxiety or trauma-related
disorders were evaluated and confirmed via in-person interview
using the Structured Clinical Interview for DSM-IV Axis I
Disorders by a trained interviewer. Of the 100 participants who
completed the study, 29% were healthy (had no history of the
affective disorders evaluated), whereas 71% had a history of
affective diagnosis (47 participants had one or more current
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affective diagnoses). Of those with a diagnostic history, 30 had
a trauma-related disorder, 24 had a depressive disorder and 17
had an anxiety disorder, as their primary lifetime diagnosis.
Posttraumatic stress disorder was the most frequent diagnosis
(30% of the sample) followed by major depressive disorder (15%
of the sample). Further, 37% had comorbid lifetime mood and
anxiety/trauma-related disorders.

Sample Characterization
Participants also completed questionnaires to characterize the
sample, including the Perceived Stress Scale (PSS, 10-item
version) to assess frequency of stress-related feelings (Cohen
et al., 1983), the State Trait Anxiety Inventory (STAI-Y2) to assess
presence and severity of trait anxiety (Spielberger et al., 1983)
and the NEO Five-Factor Inventory-3 (NEO-FFI-3, 60 items) to
assess personality (McCrae and Costa, 2007). See Supplementary
Table S1 for Participant Characteristics.

Magnetic Resonance Imaging Protocol
and Data Acquisition
Magnetic resonance imaging data were collected on a 3-
Tesla Trio TIM whole-body MRI scanner (Siemens, Erlangen,
Germany), equipped with a 32-channel head coil. Prior to the
resting-state sequence, participants were instructed to “gaze
at the fixation cross and rest” and reminded to remain as
still as possible. A custom, localized shimming procedure was
implemented that extended from the bottom-most slice to the
ventral aspect of the corpus callosum. Resting-state functional
MRI data were acquired using a 7.2-min, T2∗-weighted gradient-
echo echoplanar imaging (EPI) sequence (TR = 2000 ms,
TE = 29 ms, flip angle = 65◦, slices = 22, Multiband Factor = 3,
FoV = 220 × 220 mm2, voxel size = 2 × 2 × 2.0 mm3). The
FOV was angled 15–20◦ to ensure visualization of our ROIs. For
registration purposes, anatomical images were acquired using a
4.8-min T1-weighted sagittal MPRAGE sequence (TR= 1500 ms,
TE = 3.19 ms, flip angle = 8◦, 176 slices, FoV = 256 × 256
mm2, voxel size = 1 × 1 × 1.0 mm3). The resting-state
sequence followed the MPRAGE acquisition, which was the first
sequence in the protocol. Additional sequences were collected
during the MR (not reported here) with a total duration of
approximately 50–55 min.

Resting-State Functional Magnetic Resonance
Imaging Preprocessing and Analysis
Resting state fMRI data were preprocessed using Statistical
Parametric Mapping software (SPM121). Motion correction
was applied through realignment of each blood-oxygen-level
dependent (BOLD) image to the mean reference image. The
structural image was then co-registered to the mean functional
image. Segmentation was performed on the structural image
using probability maps for six tissue classes, generating a
deformation field that was then applied to the functional
images during normalization of all images to standard Montreal
Neurological Institute (MNI) space (2 mm isotropic resolution).
Smoothing was applied to functional images using a 4 mm
full-width-at-half-maximum Gaussian kernel.
1http://www.fil.ion.ucl.ac.uk/spm/

Resting-state connectivity analyses were performed using
standard SPM-based functions (in-house MATLAB code
was used to wrap these functions). Translation (mm) and
rotation (deg) was assessed for each participant; motion
was low across the sample of 100 participants (Translation:
mean = 1.13 mm, SD = 0.37; Rotation: mean = 0.86 degrees,
SD = 0.73). Our threshold for maximum translation was
3 mm of motion and none exceeded this. Motion artifact
reduction was applied to smoothed functional images using
the SPM BrainWavelet Toolbox wavelet despiking methods
to identify and filter spike artifacts. A principal component
analysis was performed by extracting five eigenvariates
of the BOLD signal principal time series from the white
matter and cerebrospinal fluid simultaneously using singular
value decomposition. Using multiple linear regression, the
time series at each voxel was adjusted by applying these
tissue components and the raw values of the six motion
parameters (not their derivatives) from preprocessing as
covariates. The residual time series was extracted from each
voxel and we used a series of cosines to model the band
pass Butterworth filter (0.008–0.15 Hz), which was applied
on the residuals.

Region of Interest-to-Region of Interest Analyses
The sgACC, BNST and PVN ROI masks were created
using manual segmentation with MRIcron on the ch2better
template. The BNST and PVN ROIs were based on the
Atlas of the Human Brain (Mai et al., 2008) [BNST: plates
18 (Talairach reference systems, y = −2.7 mm) through 24
(y = + 2.7 mm); PVN: plates 20 (y = −1.3 mm) through 28
(y = + 8.0 mm)]. The sgACC ROI was based on its depiction
in Cingulate Neurobiology and Disease (Vogt, 2009). These
ROIs were described initially (Banihashemi et al., 2015) and
utilized/reported elsewhere (Andreescu et al., 2015a,b; Price
et al., 2018; Wu et al., 2019). The amygdala ROI was created
from the SPM Anatomy toolbox using the 50% probabilistic
map (Amunts et al., 2005; Eickhoff et al., 2005). Each ROI
was applied as a mask on the covariate-processed functional
data. Using principal component analysis, we extracted the
first eigenvariate within each ROI for each subject. The
correlation (Pearson) between the eigenvariates for each ROI-
to-ROI pair was calculated to determine connectivity between
the two regions.

Variable Selection
Our rationale for childhood threat and deprivation variable
selection has been described previously (Banihashemi et al.,
2021). Briefly, preliminary data analyses from the current
sample demonstrated that our childhood threat and deprivation
variables were correlated (Table 1), however, among deprivation
measures, socioeconomic deprivation [SED, maximum parental
education level (reverse coded, such that higher values reflected
greater deprivation)] was the least correlated with the threat
measures (Pearson r = 0.175 to 0.411, Table 1). CTQ Threat
(abuse) and CTQ Deprivation (neglect) were strongly correlated
(r = 0.769). As such, CTQ Deprivation was considered only in
exploratory analyses (data not shown) and SED was used as the
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TABLE 1 | Pearson correlations between childhood threat and deprivation measures (n = 100).

CTQ Threat THQ 0-11 THQ 12-17 CTQ deprivation SED

CTQ Threat (abuse) Pearson r –

p (2-tailed)

THQ 0-11 Pearson r 0.535** –

p (2-tailed) 0.000

THQ 12-17 Pearson r 0.580** 0.539** –

p (2-tailed) 0.000 0.000

CTQ Deprivation (neglect) Pearson r 0.769** 0.462** 0.534** –

p (2-tailed) 0.000 0.000 0.000

Socioeconomic Deprivation (SED) Pearson r 0.411** 0.175 0.337** 0.404** –

p (2-tailed) 0.000 0.081 0.001 0.000

**Correlation is significant at the 0.01 level (2-tailed).

primary measure of childhood deprivation. As early childhood
experiences are critical for brain development (Tottenham and
Sheridan, 2010), our primary analyses of trauma utilized early
traumatic events (THQ 0-11); exploratory analyses examining
later traumatic events (THQ 12-17) are included in the
Supplementary Material. Because CTQ Threat and THQ 0-11
are highly correlated (r = 0.535), these threat measures were
considered in separate models, allowing separate examination
of broader traumatic events (THQ 0-11) and abuse (CTQ
Threat). Because threat co-occurs with SED (and these constructs
are not independent from one another), we examined the
additive effects (Fahrmeir et al., 2013) of threat and deprivation
similar to Lawson et al. (2017).

Data Analysis
Childhood Adversity and Resting-State Connectivity
We examined whether childhood threat and SED variables
were associated with resting-state connectivity between our
ROIs; six resting-state ROI-to-ROI connections were examined
(Amygdala-BNST, Amygdala-PVN, Amygdala-sgACC, BNST-
PVN, BNST-sgACC and PVN-sgACC). All hierarchical linear
regression models covaried for age, race and sex in Step 1
and examined the additive effects of childhood threat and
SED together in Step 2 (i.e., Model 1: early traumatic events
and SED, and Model 2: abuse and SED). We also evaluated
whether our findings remained after multiple comparison
correction (FDR < 0.05, for six tests, one for each ROI-to-
ROI connection) (Benjamini and Hochberg, 1995) and after
adjusting for adulthood trauma (all traumatic events occurring
after age 18, THQ > 18), adulthood SES (education level) and
negative life events within the past year (Life Events List); these
variables were entered together in Step 3. Where a significant
relationship was found between abuse (CTQ Threat) and resting-
state connectivity, post hoc analyses were performed substituting
each abuse subscale in the model to examine which type of abuse
may have been driving the relationship.

Resting-State Connectivity and Affective
Symptoms/Disorders
Where a significant relationship was found between childhood
threat and resting-state connectivity between our ROIs, we also

examined whether ROI-to-ROI connectivity was associated with
depressive or post-traumatic stress symptom severity or the
number of lifetime diagnoses. Hierarchical regression models
covaried for age, race and sex in Step 1 and examined the
effect of ROI-to-ROI connectivity in Step 2 in separate models.
We also evaluated whether our findings remained after multiple
comparison correction (FDR < 0.05, for three tests, one for
each measure of affect) and after adjusting for adulthood trauma
(THQ > 18), adulthood SES (education level) and negative life
events within the past year (Life Events List); these variables were
entered together in Step 3.

RESULTS

Childhood Threat, Deprivation and
Central Visceral Network Resting-State
Connectivity
Early Traumatic Events (Trauma History
Questionnaire, Age 0–11)
Of the six resting-state ROI-to-ROI connections examined, THQ
0-11 had a significant, negative association with BNST-PVN
(ß = −0.224; p = 0.033, Figure 2A), Amygdala-sgACC
(ß = −0.312; p = 0.003, Figure 2B) and PVN-sgACC
connectivity (ß=−0.264; p= 0.008, Figure 2C) (standardized ß
values reported throughout; Table 2). Among these, relationships
between THQ 0-11 and Amygdala-sgACC (adjusted p = 0.018)
and PVN-sgACC (adjusted p = 0.024) survived multiple
comparison correction, and both relationships remained
significant when adulthood trauma (age > 18), adulthood
SES and negative life events were added to the model
[Amygdala-sgACC (ß = −0.328; p = 0.005); PVN-sgACC
(ß = −0.241; p = 0.030) (Table 2)]. Socioeconomic deprivation
(SED, maximum parental education level reverse coded)
did not have a significant association with any ROI-to-ROI
connection examined.

An examination of potential outliers is reported in
the Supplementary Material [Results, Early Traumatic
Events (THQ, age 0–11, Supplementary Tables S2–
S4)]. When removing the largest THQ 0-11 value,
the amygdala-sgACC and PVN-sgACC results remain
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FIGURE 2 | Relationships between childhood threat and central visceral network resting-state connectivity. Hierarchical linear regression was used to examine
associations between early traumatic events (Trauma History Questionnaire, THQ, age 0–11) and (A) BNST-PVN (ß = −0.224; p = 0.033), (B) Amygdala-sgACC
(ß = −0.312; p = 0.003), and (C) PVN-sgACC (ß = −0.264; p = 0.008) connectivity. (D) The association between childhood abuse (Childhood Trauma
Questionnaire, CTQ) and PVN-sgACC (ß = −0.258; p = 0.018) connectivity. * Indicates survival of FDR correction (0.05) for six tests; # indicates that the childhood
threat variable remained significant with the addition of adulthood covariates (adulthood trauma, socioeconomic status and negative life events) to the model. (BNST,
bed nucleus of the stria terminalis; PVN, paraventricular nucleus of the hypothalamus; sgACC, subgenual anterior cingulate cortex).

significant, continue to survive multiple comparison
correction and remain significant with the additional
adulthood covariates.

Abuse (Childhood Trauma Questionnaire Threat)
CTQ Threat had a significant, negative association with only one
resting-state ROI-to-ROI connection, PVN-sgACC connectivity
(ß=−0.258; p= 0.018, Figure 2D and Table 3). This finding did
not survive multiple comparison correction (adjusted p= 0.108);
however, it did remain significant (ß = −0.228; p = 0.043) with
the additional adulthood covariates (trauma, SES and negative
life events) (Table 3). SED did not have a significant association
with any ROI-to-ROI connection examined.

Post hoc analyses examining CTQ Threat subscales
(physical, emotional and sexual abuse) revealed that physical
(ß = −0.255; p = 0.023, Supplementary Table S5) and

sexual (ß = −0.250; p = 0.014, Supplementary Table S6)
abuse were each negatively associated with PVN-sgACC
connectivity. Both findings survived multiple comparison
correction for 3 tests (one for each abuse type) [physical abuse
(adjusted p = 0.035); sexual abuse (adjusted p = 0.042)];
however, only sexual abuse remained significant (ß = −0.248;
p = 0.015) with the additional adulthood covariates
(Supplementary Tables S5, S6).

Exploratory Analyses
Exploratory analyses examining later traumatic events (THQ 12-
17) are included in Supplementary Table S7.

When CTQ Deprivation (Neglect) was substituted for SED in
the THQ 0-11 or CTQ Threat models, no significant associations
of CTQ Deprivation with any ROI-to-ROI connection were
observed (data not shown).
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TABLE 2 | Hierarchical linear regression results: childhood threat (early traumatic events, age 0–11) and central visceral network resting-state connectivity.

BNST-PVN Amygdala-sgACC PVN-sgACC

Step Variable St. Beta t p St. Beta t p St. Beta t p

1 Age −0.107 −1.050 0.296 −0.036 −0.358 0.721 0.113 1.166 0.247

Race 0.092 0.910 0.365 −0.177 −1.750 0.083 −0.038 −0.388 0.699

Sex 0.096 0.943 0.348 0.007 0.068 0.946 0.301 3.111 0.002

2 Age −0.085 −0.809 0.421 −0.007 −0.069 0.945 0.152 1.529 0.130

Race 0.135 1.330 0.187 −0.117 −1.184 0.240 0.010 0.104 0.917

Sex 0.097 0.961 0.339 0.009 0.093 0.926 0.295 3.102 0.003

THQ 0-11 −0.224 −2.170 0.033 −0.312 −3.103 0.003* −0.264 −2.707 0.008*

Socioeconomic Deprivation 0.084 0.800 0.425 0.119 1.161 0.249 0.049 0.492 0.624

3 Age 0.008 0.067 0.947 −0.025 −0.210 0.834 0.161 1.417 0.160

Race 0.121 1.183 0.240 −0.119 −1.170 0.245 0.003 0.026 0.979

Sex 0.073 0.686 0.495 0.015 0.143 0.886 0.257 2.511 0.014

THQ 0-11 −0.151 −1.312 0.193 −0.328 −2.887 0.005* −0.241 −2.201 0.030

Socioeconomic Deprivation 0.074 0.639 0.524 0.108 0.944 0.348 0.053 0.487 0.628

THQ > 18 −0.182 −1.385 0.169 0.039 0.299 0.766 0.048 0.384 0.702

Adulthood SES −0.139 −1.301 0.197 −0.006 −0.057 0.955 −0.037 −0.364 0.717

Negative Life Events −0.047 −0.387 0.699 0.013 0.103 0.918 −0.134 −1.143 0.256

Bold values indicate significance at p < 0.05; an asterisk indicates survival of FDR correction (0.05) for six tests.

Central Visceral Network Resting-State
Connectivity and Affective Symptoms or
Diagnoses
Of the three ROI-to-ROI connections that showed an association
with childhood threat (early traumatic events and/or childhood
abuse) (BNST-PVN, Amygdala-sgACC, PVN-sgACC), only
BNST-PVN connectivity was associated with affective (depressive
or post-traumatic stress) symptoms or diagnoses. BNST-PVN

TABLE 3 | Hierarchical linear regression results: childhood threat (abuse) and
central visceral network resting-state connectivity.

PVN-sgACC

Step Variable St. Beta t p

1 Age 0.113 1.166 0.247

Race −0.038 −0.388 0.699

Sex 0.301 3.111 0.002

2 Age 0.150 1.494 0.139

Race 0.004 0.043 0.966

Sex 0.262 2.696 0.008

CTQ Threat −0.258 −2.398 0.018

Socioeconomic Deprivation 0.105 0.986 0.327

3 Age 0.189 1.660 0.100

Race 0.003 0.028 0.978

Sex 0.214 2.081 0.040

CTQ Threat −0.228 −2.057 0.043

Socioeconomic Deprivation 0.124 1.070 0.287

THQ > 18 −0.004 −0.033 0.974

Adulthood SES −0.029 −0.284 0.777

Negative Life Events −0.166 −1.448 0.151

Bold values indicate significance at p < 0.05.

connectivity was negatively associated with depressive symptoms
(ß = −0.138; p = 0.169, non-significant), post-traumatic stress
symptoms (ß = −0.202; p = 0.045) and the number of lifetime
affective diagnoses (ß = −0.236; p = 0.011, Table 4). The
relationship between BNST-PVN connectivity and the number
of lifetime diagnoses survived multiple comparison correction
(adjusted p = 0.033) and remained significant when adulthood
trauma, adulthood SES and negative life events were added to
the model (ß = −0.191; p = 0.032, Table 4). Relationships
between childhood adversity and affective symptoms/diagnoses
are in Supplementary Table S8.

DISCUSSION

An expanding literature has linked childhood adversity to neural
measures of brain structure, (e.g., gray matter volume, van
Harmelen et al., 2010; Walsh et al., 2014) and white matter
structural integrity (Choi et al., 2012; Hanson et al., 2013,
2015) and function [e.g., emotion or threat processing (Fani
et al., 2010; McCrory et al., 2011, 2013; van Harmelen et al.,
2012) and resting-state connectivity] (Teicher et al., 2016; Ho
and King, 2021). Further, threat and deprivation dimensions
of childhood adversity may have different neural correlates
(McLaughlin et al., 2014; Sheridan and McLaughlin, 2014)
and/or influence the same neural circuits in different ways
(Banihashemi et al., 2021). How threat and deprivation may
differentially influence a proximally stress-responsive, central
visceral network (PVN, BNST, amygdala and sgACC) is unclear;
previous work demonstrated that early experience may shape
the sensitivity of these regions to stress (Banihashemi et al.,
2011, 2015), however, childhood adversity-related differences in
resting-state connectivity specific to this network have not been
examined. To this end, the present study examined effects of
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childhood threat (traumatic events and childhood abuse) and
socioeconomic deprivation on the resting-state connectivity of
this neural circuit. We hypothesized that threat and deprivation
would have differential, potentially opposing effects on resting-
state connectivity within this central visceral network.

Overall, we found that childhood threat (namely, early
traumatic events, age 0–11) was associated with lower resting-
state-connectivity among our central visceral, limbic forebrain-
hypothalamic ROIs (BNST-PVN, Amygdala-sgACC and PVN-
sgACC). Of these, our most robust findings were that greater
exposure to early traumatic events was associated with less
PVN-sgACC and amygdala-sgACC connectivity, both of which
withstood multiple comparison correction, as well as the
addition of adulthood covariates to the model. Contrary to our
hypothesis of differential effects of threat and deprivation, we
only identified childhood threat as being related to resting-
state connectivity within our network, with no significant
associations of socioeconomic deprivation (SED) on any ROI-
to-ROI connections. Lastly, despite the well-known clinical
significance of amygdala-sgACC connectivity, only BNST-
PVN connectivity was associated with affective symptoms and
disorders, implicating this connection as a potential mediator
between childhood threat and affective vulnerability.

Relationships Between Childhood Threat
and Subgenual Anterior Cingulate
Cortex-Related Resting-State
Connectivity
Two of the three identified ROI-to-ROI relationships with
childhood threat involved the sgACC (PVN-sgACC and
amygdala-sgACC), a central visceral/visceromotor limbic
forebrain region (Vertes, 2004; Alexander et al., 2020) involved
in negative affect (Shackman et al., 2011) and emotion regulation,
that is also dysregulated in affective disorders (Gotlib et al., 2005;
Drevets et al., 2008a,b; Matthews et al., 2009; Alexander
et al., 2019). The present study demonstrated a relationship
between childhood threat and PVN-sgACC connectivity;
this was shown with both early traumatic events (THQ
0-11) and childhood abuse (CTQ Threat), where greater
threat was associated with lower PVN-sgACC connectivity.
Interestingly, the sgACC has little to no direct projection to
the PVN (Öngür et al., 1998; Freedman et al., 2000; Floyd
et al., 2001). The sgACC may influence PVN activity via
its direct innervation of the BNST (Freedman et al., 2000;
Dong et al., 2001a), which sends dense projections to the
PVN from its anterolateral and fusiform subnuclei (Figure 1;
Dong et al., 2001b; Dong and Swanson, 2004; Maita et al.,
2021). Indeed, our findings did indicate that greater exposure
to early traumatic events was associated with less BNST-
PVN connectivity (discussed further below, Relationship
between Childhood Threat and BNST-PVN Resting-State
Connectivity).

Our findings also revealed a negative relationship between
early traumatic events and amygdala-sgACC resting-state
connectivity. The amygdala and sgACC are directly and
reciprocally connected (Figure 1); from amygdala to sgACC,

projections primarily stem from basal, accessory basal and lateral
nuclei (Kim et al., 2018; Sharma et al., 2019). Projections
from sgACC to amygdala innervate various subnuclei, including
basal, accessory basal, medial and intercalated nuclei (Freedman
et al., 2000). Blunt dissection and tractography techniques have
also identified putative connections between them (Johansen-
Berg et al., 2008; Vergani et al., 2016). To further elaborate
the white matter these connections traverse, elegant work by
Folloni et al. (2019) demonstrated that in both macaques
and humans the amygdalofugal pathway and the uncinate
fasciculus extend between the amygdala and sgACC. Our present
finding that greater exposure to early traumatic events was
associated with less amygdala-sgACC connectivity may indicate
microstructural differences in these white matter pathways.
Indeed, childhood adversity has been associated with less
uncinate fasciculus fractional anisotropy (Eluvathingal et al.,
2006; Kumar et al., 2013; Hanson et al., 2015; McCarthy-
Jones et al., 2018); however, only a medial bundle from the
uncinate extends along the sgACC, while a major section of the
amygdalofugal pathway extends along the sgACC (Folloni et al.,
2019). Thus, the amygdalofugal pathway may be a promising
candidate neural mechanism underlying the relationship between
childhood threat and amygdala-sgACC connectivity found
here. Further, a recent study showed greater neurite density
within the ventral amygdalofugal pathway with age, perhaps
indicating greater fiber packing density and/or myelination of
the tract (Azad et al., 2021). Future work will be needed to
examine childhood adversity-related microstructural differences
within this pathway across development and to determine
its multimodal relationship to functional connectivity among
these ROIs.

Our finding that greater exposure to early traumatic events
is associated with less amygdala-sgACC connectivity in a sample
of transdiagnostic young adults converges with that of Herringa
et al. (2013) who found that greater childhood maltreatment
was associated with less amygdala-sgACC connectivity in a
late adolescent sample. In younger individuals, however, this
relationship may be reversed. Thomason et al. (2015) found that
trauma-exposed youth displayed greater centromedial amygdala-
sgACC connectivity compared to controls; this work highlights
the need for future work examining the connectivity of this
central visceral network across development.

The amygdala-sgACC connection has long been thought
to be clinically important (Drevets et al., 2008b). Herringa
et al. (2013) found that amygdala-sgACC connectivity
contributed substantially in mediating the relationship
between maltreatment and internalizing symptoms. Depressed
adolescents display elevated sgACC-amygdala connectivity
(Connolly et al., 2013; Ho et al., 2014) or weaker bottom-
up amygdala-sgACC connectivity (Musgrove et al., 2015).
Amygdala-sgACC connectivity may also predict treatment
response (Taylor et al., 2018; Nakamura et al., 2021). Recent
studies highlight the role of amygdala-sgACC connectivity in
fear-related encoding, emotional processing/regulation and
anxiety (Hakamata et al., 2020; Scharnowski et al., 2020).
Hakamata et al. (2020) demonstrated that greater fear encoding
strength is associated with greater basolateral amygdala-sgACC
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TABLE 4 | Hierarchical linear regression results: central visceral network resting-state connectivity and affective symptoms or diagnoses.

BDI-II PCL-C Lifetime Diagnoses

Step Variable St. Beta t p St. Beta t p St. Beta t p

1 Age 0.223 2.238 0.028 0.190 1.885 0.062 0.337 3.618 0.000

Sex −0.148 −1.486 0.141 −0.117 −1.167 0.246 −0.296 −3.189 0.002

Race −0.004 −0.042 0.967 0.029 0.286 0.776 −0.042 −0.450 0.653

2 Age 0.208 2.088 0.039 0.168 1.688 0.095 0.311 3.427 0.001

Sex −0.134 −1.354 0.179 −0.098 −0.986 0.327 −0.273 −3.019 0.003

Race 0.009 0.086 0.932 0.047 0.477 0.634 −0.020 −0.221 0.826

BNST-PVN Connectivity −0.138 −1.385 0.169 −0.202 −2.032 0.045 −0.236 −2.603 0.011*

3 Age 0.039 0.352 0.725 −0.049 −0.451 0.653 0.131 1.320 0.190

Sex −0.029 −0.288 0.774 0.031 0.314 0.754 −0.170 −1.885 0.063

Race −0.021 −0.218 0.828 0.016 0.176 0.861 −0.057 −0.665 0.508

BNST-PVN Connectivity −0.088 −0.898 0.372 −0.128 −1.347 0.181 −0.191 −2.177 0.032

THQ > 18 0.186 1.560 0.122 0.247 2.149 0.034 0.220 2.078 0.040

Adulthood SES −0.048 −0.491 0.624 0.014 0.145 0.885 −0.101 −1.169 0.245

Negative Life Events 0.253 2.264 0.026 0.320 2.973 0.004 0.227 2.285 0.025

Bold values indicate significance at p < 0.05; an asterisk indicates survival of FDR correction (0.05) for six tests.

connectivity, and that this connectivity was also elevated in
anxious participants. Scharnowski et al. (2020) have examined
the role of amygdala-sgACC connectivity during automated
and effortful emotion regulation; during more automated/less
effortful emotion regulation, they found greater amygdala-
to-sgACC connectivity. Additionally, they found greater
amygdala-to-sgACC modulation among anxious participants
during effortful emotion upregulation (Scharnowski et al., 2020).
In this context, our amygdala-sgACC findings may suggest less
adaptive emotional processing or regulation related to fear-
inducing or emotionally salient stimuli, however, such childhood
threat-related differences could be indicative of functional
impairments that yield vulnerability to affective disorders
and/or neuronal adaptations to the early environment that yield
resilience (Champagne et al., 2003; Teicher and Samson, 2016;
Teicher et al., 2016; Ioannidis et al., 2020).

Relationship Between Childhood Threat
and Bed Nucleus of the Stria
Terminalis-Paraventricular Nucleus of
the Hypothalamus Resting-State
Connectivity
The present study also revealed an association between early
traumatic events and BNST-PVN resting-state connectivity;
however, this effect was less robust (i.e., did not withstand
multiple comparison correction or the addition of adulthood
covariates). This relationship did, however, converge with
our previous finding that greater childhood threat (both
traumatic events and childhood abuse) was associated with less
stria terminalis white matter structural integrity (Banihashemi
et al., 2021), a white matter bundle that connects these
regions (Figure 1; De Olmos and Ingram, 1972; Nieuwenhuys
et al., 2008). Taken together, these findings may indicate
a reciprocal relationship between BNST-PVN structural and
functional connectivity. Further, previous work in rodents

shows that ascending noradrenergic/viscerosensory pathways
from caudal brainstem collateralize to both BNST and PVN,
thus, enabling coordinated modulation of both structures’
response to stress (Banihashemi and Rinaman, 2006). These
viscerosensory pathways course through the medial forebrain
bundle (Figure 1), which our previous study also revealed
may be diminished by childhood threat (Banihashemi et al.,
2021). Thus, the medial forebrain bundle may be an indirect
pathway underlying the resting-state relationship between BNST
and PVN, as well as a neural mechanism underlying the
current findings.

The BNST regulates physiological responses to stress not only
via its own preautonomic projections but also through its direct
connections to the PVN (Maita et al., 2021). Various BNST
subnuclei differentially regulate physiological responses to stress
(Choi et al., 2007; Crestani et al., 2013). PVN-projecting BNST
neurons are primarily GABAergic and recent work has shown
that the anteroventral BNST exerts inhibitory influence over HPA
responses to stress (Radley et al., 2009; Johnson et al., 2016;
Radley and Johnson, 2018) via potential peptidergic mechanisms
(Zheng et al., 2019; Povysheva et al., 2021). Considered together,
our finding that childhood threat (early traumatic events) was
associated with lower BNST-PVN connectivity may indicate the
BNST’s diminished capacity to constrain the PVN and stressor-
evoked HPA responses, perhaps yielding greater stress reactivity.

It has been proposed that anteroventral BNST-related circuitry
is recruited by stress-inducing stimuli, but is uninvolved in
tonic HPA regulation (Johnson et al., 2016). Our findings
suggest that childhood threat may shape basal BNST-PVN
connectivity, however, effects of childhood threat on sgACC-
related connectivity (PVN-sgACC and amygdala-sgACC) were
more robust, despite BNST-PVN connectivity having closer
proximity to the control of stress responses. It is possible that
childhood threat may shape the resting-state connectivity of
this central visceral network in ways that prime the network
to engage differently during stress, with indirect connections
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(sgACC-related connectivity) more active at rest and direct
connections (BNST-PVN) more active during stress.

Relationship Between Bed Nucleus of
the Stria Terminalis-Paraventricular
Nucleus of the Hypothalamus
Resting-State Connectivity and Affective
Disorders
The BNST’s involvement in mediating responses to more distant,
less predictable threats implicate it in future-oriented anxiety
states, as well as addiction and other psychiatric disorders
(Avery et al., 2016; Lebow and Chen, 2016; Clauss, 2019; Clauss
et al., 2019; Limbachia et al., 2020). Recent work also indicates
stronger BNST-hypothalamus structural connectivity in women,
which may underlie sex differences in symptoms related to
abstinence from alcohol and risk for relapse (Flook et al., 2021).
As the BNST’s anatomical connection to the PVN contributes
in part to its ability to respond to threat, our findings may
indicate childhood threat-related differences in vulnerability to
affective disorders. Indeed, the present study found that greater
BNST-PVN resting-state connectivity was associated with less
affective symptoms and disorders (i.e., fewer lifetime diagnoses),
implicating this connection as a potential mediator between
childhood threat and affective vulnerability, although future,
larger studies will be necessary to test formal mediation models
(Fritz and MacKinnon, 2007).

Convergence With Large-Scale
Networks
The sgACC is considered to be part of the default mode
network (DMN), which is involved in self-related mental activity;
the DMN is most active when individuals are not engaged
in goal-oriented tasks and is deactivated when engaged in
cognitive processing (Menon, 2013; Seitzman et al., 2019).
The sublenticular extended amygdala and hypothalamus are
considered to be part of the salience network (Menon,
2013), although the amygdala may also be considered part
of the affective or limbic network (Seitzman et al., 2019).
Nevertheless, our findings involved childhood threat-related
differences in functional connectivity in cortico-amygdalar-
hypothalamic regions that overlap with DMN and salience
networks. Expanding literatures indicate that these networks,
their nodes and connections between them are altered by
childhood adversity (Werff et al., 2012; Marusak et al., 2015;
Hoffmann et al., 2018; Cheng et al., 2021; Huang et al.,
2021; Rakesh et al., 2021a; Merrick et al., 2018; Silveira
et al., 2021), and that these networks are dysregulated in
affective disorders (Greicius et al., 2007; Seeley et al., 2007;
Jacobs et al., 2014, 2016; Iadipaolo et al., 2018). Thus, our
findings may also reflect alterations within these large-scale
networks that impact emotion regulation processes (DMN) and
orientation to salient internal and external stimuli (salience)
(Menon, 2013). Additionally, Kleckner et al. (2017) provided
evidence of a large-scale, intrinsic allostatic-interoceptive system
and demonstrated that stronger connectivity between hubs
within this system supported greater interoceptive ability. This

allostatic-interoceptive system is comprised of DMN and salience
network regions and includes limbic cortices and subcortical
and brainstem visceromotor regions (Kleckner et al., 2017;
Ruiz-Rizzo et al., 2020; Sennesh et al., 2022) that converge
with our central visceral network of interest (Myers et al.,
2005; Banihashemi and Rinaman, 2006; Rinaman et al., 2011;
Banihashemi et al., 2015, 2021). Further, Schaan et al. (2019)
have shown that childhood maltreatment was associated with
less stress-related interoceptive accuracy during a heartbeat
perception task. Taken together, our findings indicating lower
childhood threat-related central visceral network connectivity
may have implications for diminished interoceptive ability and/or
accuracy. Future work will be necessary to explicitly examine the
neural mechanisms underlying links between childhood adversity
and interoceptive ability/capacity.

Differential Relationships of Childhood
Threat and Deprivation on Resting-State
Connectivity
Several studies have examined differential relationships between
resting-state connectivity and aspects of threat and deprivation
dimensions (Cheng et al., 2021; Fadel et al., 2021; Park et al.,
2021; Rakesh et al., 2021a). A study examining mesocorticolimbic
circuitry in young children found opposing influences of threat
and socioeconomic deprivation on ventral tegmental area (VTA)-
related resting-state connectivity (Park et al., 2021), with greater
threat associated with less VTA-somatomotor connectivity and
greater deprivation associated with greater VTA-intraparietal
sulcus connectivity. In a large adolescent sample, Rakesh et al.
(2021a) found differential effects of threat and deprivation across
development: at age 16, greater abuse was associated with less
within salience network connectivity, while at age 19, greater
neglect was associated with greater within-salience network
connectivity, potentially indicating different trajectories for
adversity dimensions. Fadel et al. (2021) also found differential
relationships of threat and deprivation on salience network
connectivity; in a sample of healthy and depressed adults they
found opposing relationships of abuse and neglect on within
salience network connectivity (i.e., prefrontal cortex-insula), in
which greater abuse was associated with greater resting-state
connectivity and greater neglect was associated with less resting-
state connectivity. The present study did not find effects of
socioeconomic deprivation, as defined by maximum parental
education level (reverse coded), on any ROI-to-ROI connection.
Effects of CTQ Deprivation (neglect) on central visceral network
connectivity were also explored and no significant relationships
were found (data not shown). It is possible that socioeconomic
deprivation will have a greater impact on stressor-evoked activity
and connectivity within this central visceral network than on
its resting-state connectivity. Future work on this network will
be needed to investigate different aspects of the deprivation
construct (e.g., neighborhood and cognitive deprivation).

Limitations and Future Directions
A limitation of this study is its cross-sectional design examining
young adults; however, participants were specifically recruited
across a continuum of physical abuse severity, with individuals
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across a spectrum of affective symptom severity including those
with depression, anxiety and trauma-related disorders. This
recruitment strategy achieved a relatively even distribution across
childhood socioeconomic status, as well. Nevertheless, future
prospective work will be needed to examine distinct dimensions
of childhood adversity and how they differentially impact this
central visceral network across development. Additionally, future
studies designed to be statistically powered for detecting realistic
effect sizes for mediation are necessary to further examine central
visceral network components as mediators of the relationship
between childhood adversity and affective symptoms/disorders.

Regions of interest in the present study were defined using
a template for manual segmentation [sgACC, BNST and PVN
(Banihashemi et al., 2015; Wu et al., 2019)]. Greater accuracy
and precision are necessary to define specific subnuclei within
these ROIs and to examine additional components of the network
(e.g., brainstem nuclei), which may benefit from high-field
acquisitions. Improvements in manual segmentation approaches
for these regions and continued advancements in automated
segmentations would also benefit the examination of these brain
regions, particularly in humans. Future work will be needed to
capitalize on current advances (Avery et al., 2014; Saygin et al.,
2017; Wolff et al., 2018).

SUMMARY AND CONCLUSION

This study provides novel evidence that childhood threat may
influence a central visceral network. Analyses revealed that
childhood threat is associated with lower connectivity among our
ROIs (PVN-sgACC, amygdala-sgACC and BNST-PVN). These
findings have functional and clinical implications that suggest
potential alterations in emotion regulation and processing,
orienting responses to salient stimuli, and stress and threat
reactivity. Further, our results demonstrate that BNST-PVN
connectivity may provide a novel link between childhood threat
and affective symptoms and disorders. In conclusion, exposure
to threat during early development may entrain altered patterns
of resting-state connectivity between these stress-related regions
in ways that contribute to dysregulated neural and physiological
responses to stress and subsequent affective psychopathology.
Investigating how this network links childhood adversity and
affective symptoms may elucidate underlying neural mechanisms
of affective disorders, as well as guide interventions targeting
these brain structures.
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