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Abstract

Objective: Huntington’s disease (HD) is a rare neurodegenerative disease

caused by the expansion of an N-terminal repeat in the huntingtin protein. The

protein is expressed in all cells in the body; hence, peripheral tissues, such as

blood, may recapitulate processes in the brain. The plasma metabolome may

provide a window into active processes that influence brain health and a unique

opportunity to noninvasively identify processes that may contribute to neurode-

generation. Alterations in metabolic pathways in brain have been shown to pro-

foundly impact HD. Therefore, identification and quantification of critical

metabolomic perturbations could provide novel biomarkers for disease onset

and disease progression. Methods: We analyzed the plasma metabolomic pro-

files from 52 premanifest (PHD), 102 early symptomatic HD, and 140 healthy

controls (NC) using liquid chromatography coupled with a highly sensitive

electrochemical detection platform. Results: Alterations in tryptophan, tyrosine,

purine, and antioxidant pathways were identified, including many related to

energetic and oxidative stress and derived from the gut microbiome. Multivari-

ate statistical modeling demonstrated mutually distinct metabolomic profiles,

suggesting that the processes that determine onset were likely distinct from

those that determine progression. Gut microbiome-derived metabolites particu-

larly differentiated the PHD metabolome, while the symptomatic HD metabolo-

me was increasingly influenced by metabolites that may reflect mutant

huntingtin toxicity and neurodegeneration. Interpretation: Understanding the

complex changes in the delicate balance of the metabolome and the gut micro-

biome in HD, and how they relate to disease onset, progression, and pheno-

typic variability in HD are critical questions for future research.

Introduction

Huntington’s disease (HD) is an autosomal dominant

inherited neurodegenerative disorder characterized by

progressive motor, psychiatric, cognitive, and metabolic

dysfunction. HD is caused by the abnormal expansion of

a polymorphic triplet (CAG) repeat in the N-terminus of

the Huntington gene leading to an excessive and toxic

polyglutamine sequence in the huntingtin protein. The

mutant huntingtin protein is expressed ubiquitously

throughout the body but causes its greatest harm to

neurons, especially in the striatum and cerebral cortex,

where dysfunction and neurodegeneration cause the most

consequential clinical symptoms of the disease. Aberrant

interactions between mutant huntingtin, or its proteolytic

fragments, and many other proteins, as well as down-
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stream effects have been identified, which collectively play

roles in neurodegeneration and which have become thera-

peutic targets for disease modification. Because HD is

highly variable and slowly progressive clinically, there is

an urgent need for useful biomarkers to help detect dis-

ease activity, monitor progression, and assess the pharma-

codynamic effects and potential efficacy of experimental

therapies. Since blood is easily and repeatedly accessible

clinically and since its collection and processing is readily

standardized, we have sought to discover markers of HD

in blood that could be useful clinically.

Metabolomics is a global approach to understanding

metabolic pathways and metabolic networks, including the

precursors and products of all cellular biochemical path-

ways. The metabolome reflects dynamic interactions

between the genome, transcriptome, proteome, and envi-

ronment and provides information about the chemical

“state” at a particular time. Metabolomic profiling has tre-

mendous potential to provide critical information about

“when” a system is perturbed, information about “which”

specific molecular pathways might be implicated, and

about “how” profiles change with disease. These are all dif-

ficult questions that remain largely unanswered in HD;

identifying affected pathways could provide markers of dis-

ease onset or progression and may represent pathogenic

pathways that could be targets for treatment and provide

pharmacodynamic markers of potential treatments. As the

huntingtin protein is present ubiquitously, analyzing the

plasma metabolome is a less invasive way of investigating

biochemical changes taking place in the presence of the

mutant protein that may reflect centrally acting processes.

We therefore applied a targeted approach to metabolo-

mic profiling to identify global biochemical changes in

HD in plasma samples derived from a cohort of premani-

fest subjects (PHD), early symptomatic HD patients

(HD), and age- and gender-matched healthy controls

(NC). We used high-performance liquid chromatography

coupled with highly sensitive electrochemical detection to

profile plasma metabolites and focused on tryptophan,

tyrosine, and purine pathway constituents. These bio-

chemical pathways have been previously implicated as rel-

evant to neurodegeneration in HD,1–3 and may reflect

cellular events involving mutant huntingtin, oxidative

stress, inflammation, mitochondrial dysfunction, synaptic

dysfunction, and cell death.

Materials and Methods

Patients and sample processing

Blood samples were collected prospectively from 140

healthy controls (NC, F:M 68:72; age 50.8 � 8.8), 102

patients with early symptomatic HD (HD, F:M 58:44; age

47 � 8.8; CAG repeat 44.6 � 2.9), and 52 subjects known

to carry the trinucleotide expansion but who were without

clinical symptoms (premanifest) of HD (PHD, F:M 33:19;

age 43 � 9.3; CAG 42.2 � 2.0) at the MGH HD Center of

Excellence as part of the REVEAL-HD translational bio-

marker program. A detailed history was obtained for each

subject, including age, medications, and total functional

capacity assessment. Procedures were explained and con-

sent obtained according to the Declaration of Helsinki

(BMJ 1991; 302:1194). Study protocols were approved by

the Partners Human Research Committee.

Blood was collected by venipuncture into tubes con-

taining ethylenediaminetetraacetic acid as an anticoagu-

lant and kept on ice until centrifugation, which occurred

within 3 h of collection, first at 1000g for 10 min to

remove red blood cells, and then at 15,800g for 20 min.

The plasma was aliquoted into 500 lL aliquots and subse-

quently frozen at �80°C until analyzed.

Sample preparation and metabolomics
analysis

Plasma samples were prepared for analysis using extrac-

tion/precipitation of 125 lL of plasma with 500 lL of ace-

tonitrile/0.4% acetic acid, centrifugation, centrifugal

evaporation of the supernatant, and reconstitution in the

Liquid Chromatography Electrochemical Array running

buffer for injection. Samples were analyzed in a blinded

fashion using an established well-validated Liquid Chroma-

tography Electrochemical Array long gradient method.4–10

This method has been used previously for defining markers

of caloric restriction,9–11 signatures of neurodegenerative

diseases12–15 and response to therapy in depression.15 Sam-

ples were randomized and run along with a standard con-

taining 60 metabolites of interest. Duplicate samples were

interleaved for quality control. All chromatograms were

time normalized (stretched) to the chromatogram of a

sample pool run in the middle of the run (sequence sets of

14) to 0.5 sec for major peaks and 1.5–2 sec for minor

peaks. Data were then response normalized to the average

pool value for each sequence.

Statistical analyses

Although ~1300 metabolites are resolved on the Liquid

Chromatography Electrochemical Array platform, we

restricted this initial analysis to the 29 known metabolites

related to the pathways of interest (Table S1).

Bivariate analyses of individual compounds were car-

ried out using t-tests and analysis of variance models to

test differences in mean metabolite levels between gene-

expanded subjects (including both PHD and early HD) as

compared to age- and gender-matched healthy controls as
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well as between the PHD and early HD groups. Differ-

ences amongst the groups in product/substrate ratios

within the pathways as potential indicators of altered

enzymatic processes were assessed by calculating their

respective Pearson correlations. Correlations between

metabolites were obtained by calculating their respective

Pearson’s coefficients and are reported along with unad-

justed P-values based on two-sided Student’s t-tests. Heat

maps and network graphs are used to graphically repre-

sent the correlations within each group.

To further evaluate differences between the metabolo-

mic profile of subjects comprising each of the groups we

employed a number of multivariate techniques. The dis-

crimination performance (measured by area under recei-

ver operating curve, ROC) of the metabolite

combinations was evaluated using well-validated receiver

operator curve methodology. Models were validated inter-

nally using bootstrap techniques.16,17 The calibration of a

prediction model measures how well the predicted proba-

bilities agree with the actual observed outcome. The Hos-

mer–Lemeshow test was used to evaluate the calibration

of the models.

Composite metabolomic profiles were used to construct

partial least square discriminant analysis models, k-nearest

neighbor hierarchical cluster analysis (including k-NN1

and k-NN3) to evaluate the categorical separation of the

three study groups and to identify metabolites that con-

tributed most to discriminating amongst groups. Correla-

tion frequency distribution analysis was used to assess the

degree to which relationships among compounds discrim-

inated among the groups. Scoring using correct frequency

discriminant analysis of the ratios underlying these corre-

lations among and within pathways asks the question “to

what extent do the metabolic relationships and sources

among and within these pathways separate one state from

another?” This approach differs fundamentally from the

information obtained from the degree of separation given

by individual compound concentrations using hierarchical

cluster analysis, partial least square analysis, or linear dis-

criminant analysis (LDA), for example. It relates both to

the underlying enzymatic processes driving metabolic

transitions and to the relative efficacy of sources of those

compounds.

Results

Participant demographics

The demographic characteristics of the groups were com-

pared; there were no significant differences with respect

to age or gender amongst the three groups. The mean

CAG repeat length for the mutant Huntington allele in

the PHD subjects and symptomatic HD patients did not

differ. Nine NC subjects, ten PHD subjects and 31 symp-

tomatic HD patients reported taking selective serotonin

reuptake inhibitors (SSRI’s) of these, nine NC, seven

PHD subjects, and 17 symptomatic HD patients had evi-

dence of plasma serotonin re-uptake inhibitor metabolites

at the time of sample acquisition. No other medications

(e.g., antihistamines, analgesics, antihypertensives) were

used with a frequency or regularity that permitted analy-

sis or modeling and were considered essentially as part of

the inherent variability in any human study.

Individual and pathway metabolite analyses
to evaluate differences between NC, PHD
and early symptomatic HD subjects

We used several multivariate analyses to determine the

extent to which the entire data determined the category of

an individual and the specific metabolite and relationship

amongst them most responsible for the categorization.

Table 1 provides a summary of the mean, and standard

deviations, metabolite concentrations for each group and

comparisons between NC versus PHD subjects, NC versus

HD patients, and PHD versus HD patients including both

the uncorrected and FDR corrected significance levels. Sev-

eral metabolites from the tyrosine, tryptophan, purine, and

tocopheral pathways demonstrated significant differences

between groups, the changes were not necessarily linear

between PHD and HD groups; in some cases, metabolites

were higher in the PHD and lower in the HD group (or vice

versa) as compared to NC, suggesting dynamic changes

through the disease progression process. While several of

the individual compounds studied did not reach signifi-

cance when corrected for multiple comparisons, taken

together, they compose unique descriptive metabotypes for

PHD and HD subjects.

Tryptophan pathway

Serotonin was reduced in both PHD and HD groups as

compared to NC. In contrast, N-acetylserotonin was

increased in both groups. 5-hydroxytryptophan, 3-

hydroxyanthranilic acid, and kynurenine were significantly

reduced in the HD group but were not significantly differ-

ent in PHD as compared to NC groups; however, differ-

ences between PHD and HD groups were significant except

for kynurenine. In contrast, 5-hydroxyindoleactetate and

N-methyltryptamine were significantly reduced in the PHD

group but not significantly different between the HD and

NC groups; differences between PHD and HD groups were

significant for 5-hydroxyindoleacetate. The tryptophan

metabolite, indole-3-propionic acid was significantly

reduced in both the PHD and HD groups. There were no

significant differences amongst groups in the concentra-
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tions of indole-3-acetic acid, 3-hydroxykynurenine or in

tryptophan itself.

Tyrosine pathway

Tyrosine was increased in the PHD and symptomatic HD

groups compared to NC group but the increase was signifi-

cant only in the PHD group. Homogentisic acid was signif-

icantly increased in the PHD group, but was not

significantly different in the HD group. Although 2-hy-

doxyphenylacetate was higher in the PHD group compared

to the NC group, the difference was not significant; in con-

trast, 2-hydroxyphenylacetate was significantly reduced in

symptomatic HD patients. 4-hydroxyphenyllactic acid was

significantly reduced in HD in comparison to both NC and

PHD subjects. 3-hydoxyphenylacetate was significantly

higher in HD as compared to both NC and PHD subjects.

Homovanillic acid was significantly higher in HD but

reduced in PHD subjects. There were no differences in the

concentrations of 4-hydoxyphenylacetate or vanillylman-

delic acid concentrations amongst the groups.

Purine pathway

Xanthine was significantly reduced in both HD and PHD

groups as compared to the NC group; there was no sig-

nificant difference between the HD and PHD groups.

Xanthosine was significantly lower in the HD group as

compared to the NC group. Guanosine, hypoxanthine,

and paraxanthine were not significantly different between

groups. Urate concentrations were significantly lower in

HD as compared to the PHD group.

Tocopherols

The tyrosine pathway-related antioxidant gamma tocoph-

erol was significantly increased in HD; alpha tocopheral

was increased in both HD and PHD subjects.

Table 1. Metabolite concentrations (ng/ml) in controls (NC), premanifest (PHD) and early symptomatic Huntington’s disease (HD).

Pathway Metabolite

Mean (SD) P-values

NC PHD HD

NC

versus

PHD

NC

versus

HD

PHD

versus

HD

Tryptophan Tryptophan (TRP) 4225.2 (872.3) 4225.6 (781.1) 4238.2 (953.1) 0.998 0.913 0.993

Serotonin (5HT) 17.5 (30.8) 8.7 (12.9) 6.9 (14.5) 0.006** <0.001** 0.427

N-acetylserotonin (NA5HT) 12.1 (7.31) 15.9 (5.93) 17.2 (8.93) <0.001** <0.001** 0.308

5-hydroxytryptophan (5HTP) 4 (3.2) 4.7 (2.76) 3.3 (2.22) 0.128 0.044 0.002**

5-hydroxyindoleacetate (5HIAA) 18 (10.2) 14.5 (8.22) 18.4 (15.2) 0.014** 0.855 0.042**

Indole-3-acetic acid (I3AA) 227 (144.1) 253.7 (137.6) 240.8 (160.5) 0.243 0.491 0.606

Kynurinine (KYN) 149.1 (38.6) 145.6 (33.1) 138.5 (36.9) 0.537 0.031** 0.225

3-hydroxyanthranilic acid (3OHAN) 3.3 (2.7) 3.9 (3.6) 2.6 (2.5) 0.284 0.028** 0.019**

3-hydroxykynurenine (3OHKY) 6.2 (3.8) 6.6 (2.5) 6.1 (3.0) 0.381 0.765 0.231

Indole-3-lactic acid (ILA) 31.5 (10.8) 28.6 (9.99) 30 (9.8) 0.081* 0.253 0.41

N-methyltryptamine (NMTRYP) 13 (6.50) 11 (3.8) 12 (4.7) 0.013** 0.186 0.173

Indole-3-propionic acid (I3PA) 191.1 (199.2) 138.5 (130.1) 107.7 (87.8) 0.035** <0.001** 0.128

Tyrosine Tyrosine (TYR) 3570.8 (1128.5) 3954.5 (980.4) 3809.3 (1253.8) 0.023** 0.128 0.431

Homovanillic acid (HVA) 21.6 (9.8) 20.4 (6.70) 24.7 (10.52) 0.339 0.021** 0.003**

Homogentisic acid (HGA) 2.8 (2.45) 3.6 (2.36) 3.2 (2.59) 0.045** 0.268 0.31

Vanillylmandelic acid (VMA) 23.6 (11.04) 23.6 (10.70) 21.4 (14.5) 0.961 0.204 0.275

2-hydroxyphenylacetate (2HPAC) 104.6 (102.3) 120.7 (136.2) 78.7 (89.4) 0.441 0.037** 0.048**

3-hydroxyphenylacetate (3HPAC) 124.2 (150.8) 120.7 (110.7) 175.4 (208.1) 0.862 0.035** 0.034**

4-hydroxyphenylacetate (4HPAC) 79.2 (110.1) 88.5 (52.06) 91.4 (75.7) 0.429 0.304 0.77

4-hyroxyphenyllactic acid (4HPLA) 155 (60.8) 145 (38.9) 127.2 (42.8) 0.18 <0.001** <0.01**

Purine Hypoxanthine (HX) 285.3 (399.9) 406.8 (498.8) 309.2 (373.9) 0.119 0.634 0.217

Guanosine (GR) 56.9 (51.67) 73.4 (69.5) 55.3 (60.12) 0.13 0.823 0.12

Xanthine (XAN) 122.6 (61.6) 98.3 (35.9) 103.7 (45.7) 0.001** 0.007* 0.419

Xanthosine (XANTH) 57.7 (19.3) 57.5 (17.3) 53.3 (16.47) 0.938 0.055* 0.15

Urate (URATE) 40,099.7 (1001) 41,701 (6770.2) 38,936 (8475.0) 0.209 0.331 0.03*

Paraxanthine (PARAXAN) 68.9 (60.5) 70.1 (63.0) 77.1 (70.6) 0.909 0.341 0.528

Antioxidant Gama tocopherol (GTOCO) 898.8 (585.2) 887.7 (537.2) 1077 (721.2) 0.901 0.041** 0.068*

Alpha tocopherol (ATOCO) 2699 (1562.4) 3307.5 (1471.7) 3166 (1836.1) 0.014** 0.038** 0.605

Methionine Methionine; (MET) 1409.1 (666.5) 1709.3 (594.0) 1484.6 (611.0) 0.003** 0.361 0.03**

*P < 0.1, **P < 0.05, FDR corrected.
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Methionine

Methionine was significantly increased in PHD subjects

only; this difference was significant as compared to both

the NC and HD groups.

Multivariate analysis of the NC, PHD, and
HD groups

Receiver operator curves

To determine whether the metabolite profiles discriminate

amongst groups, we used Receiver Operator Curves. The

area under the curve (AUC) provides the discriminating

power of a given variable, or group of variables to differ-

entiate between NC and PHD subjects, between NC and

HD patients and between PHD subjects and HD patients

(Fig. 1).

The AUC values for sensitivity and specificity (index

corrected) for the entire set of metabolites were between

74% and 80%. Finally, to validate the models and obtain

an unbiased estimate of future model performance we

used the Bootstrap method proposed by Efron.18 The

bootstrap adjusted AUC values are provided in Table 2,

further supporting group differences.

Partial least squares-discriminant analysis

We used projection on latent structures discriminate

analysis models with one out testing to define the level of

categorical separation. Strong group separation was

achieved between the groups; PHD versus NC; symptom-

atic HD versus NC, and PHD versus HD (Fig. 2).

Comparative discriminant models were developed using

LDA, hierarchical cluster analysis (kNN1 and kNN3) and

LDA; the relationships amongst compounds as discrimi-

nators among groups were evaluated using correlation

frequency distribution analysis (shown in Fig. 3 as a heat

map and in Fig. 4 as a network graph.)

The correlation frequency distribution analysis of these

correlations is shown in Figure 5.

The correct classification rates among the three catego-

ries NC, PHD subjects, and HD patients are summarized

in Table 3, for all discriminant models tested. We vali-

dated the performance of each model using one out scor-

ing. The training and validation sets were iterated until

each subject was included in a validation set.

Table 4 provides the metabolite ratios that have the

strongest effect on discrimination between group pairs. In

particular, N-acetylserotonin/xanthine, N-acetylserotonin/

indole lactic-3-acid, 4-hydroxyphenyllactic acid/5-hydrox-

yindoleactetate, N-acetylserotonin/kynurenine, 5-hydroxy-

indoleacetate/N-acetylserotonin, 5-hydroxytryptophan/
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Figure 1. Receiver operator curves. (A) NC versus PHD. (B) NC versus HD. (C) PHD versus HD. In each case, the AUC demonstrated excellent

sensitivity and specificity, demonstrating clear separation between groups and suggesting specific effects on the HD plasma metabolome. AUC,

area under the curve.

Table 2. Metabolite area under the curve values.

Pathway Comparison Index corrected

All metabolites NC versus PHD 0.74

NC versus HD 0.80

PHD versus HD 0.77

Indole-3-propionic acid NC versus PHD 0.58

NC versus HD 0.67

PHD versus HD 0.55

Purine NC versus PHD 0.69

NC versus HD 0.60

PHD versus HD 0.60

Tyrosine NC versus PHD 0.64

NC versus HD 0.73

PHD versus HD 0.73

Tryptophan NC versus PHD 0.71

NC versus HD 0.74

PHD versus HD 0.70
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homovanillic acid, indole-3-propionic acid/homovanillic

acid, N-acetylserotonin/xanthosine, 4-hydroxyphenyllactic

acid/homovanillic acid; indole-3-propionic acid/N-acetyl

serotonin, urate/homovanillicacid, indole-3-propionic

acid/N-acetylserotonin, homovanillic acid/methionine.

Controlling for drug effects

In order to determine if concomitant SSRI’s might have

an impact or explain reduced serotonin, as has been

previously reported, or might exert an effect on other

metabolites in the tyrosine pathway, we independently

evaluated the metabolomics profiles of those partici-

pants who were on SSRI’s (nine NC, ten PHD subjects,

and 31 HD patients). No subject was on Haldol. We

were able to identify peaks corresponding to known

metabolites for the parent drug in all NC, 65% of

PHD subjects who reported taking these medications

and in 60% of symptomatic HD patients who were

prescribed SSRI’s, suggesting that some of these individ-

uals were not actually taking these medications. We

found a reduction in the mean concentration of seroto-

nin (8.68 vs. 6.98 ng/mL) in SSRI users, which was not

significant (P = 0.09). Removing those individuals from

the original analyses did not significantly change the

results (Fig. 6).

Figure 2. One out testing scores using PLSDA models for NC versus PHD, NC versus HD and PHD versus HD, using the 29 chosen compounds

from the tyrosine, tryptophan, purine pathways and markers of oxidative progression (from Table 1). The CCR are summarized in Table 3. PLSDA,

partial least squares discriminant analysis; HD, Huntington’s disease; CCR, correct classification rates.

Figure 3. Heat map demonstrating altered correlations in the cross-metabolite correlations. Red demonstrates a positive correlation, blue a

negative correlation, between pairs of metabolites.
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Discussion

Although the cardinal symptoms of HD are due to neu-

rodegeneration in the central nervous system, mutant

huntingtin protein is expressed throughout all tissues.

The plasma metabolome integrates the effects of neu-

rodegeneration, as leaked into the plasma; the systemic

effects of the widespread expression of the mutant pro-

tein; and the global effects of disease on systemic metab-

olism. We identified distinct alterations in tyrosine,

tryptophan, and purine pathways in prodromal and early

HD, many related to oxidative stress and cellular metab-

olism. Selective dysregulation of some pathways and par-

adoxically increased regulation of other pathways suggests

complex alterations in the feedback control of the under-

lying enzymes, proteins, or genes in HD. Remarkably, the

normal control, PHD, and early HD plasma metabolomes

were mutually distinct rather than differing along a con-

tinuum suggesting differing influences during the prodro-

mal and symptomatic stages of the disease. Many of the

metabolites differentiating the control from the PHD and

HD metabolomes are highly linked to the gut microfl-

ora,19 suggesting that the HD genetic mutation favors a

distinct microbiome or “enterotype”.20,21 Enteric mutant

huntingtin22 or systemic effects of HD on the gut could

influence energy homeostasis, the supply of vitamins and

metabolites, and neuroimmune function23–27 and impact

the clinical expression of HD. Our data also suggests that

the PHD metabolome is more influenced by the gut mi-

crobiome than the HD metabolome, perhaps due to

increasing effects of mutant huntingtin (mthtt) toxicity

and neurodegeneration.

Figure 4. Network graph representing Pearson correlations between metabolites for NC, PHD, and HD groups (r = �0.7 to �0.2) for each

pathway. Red lines represent negative correlations while blue lines represent positive correlations. These results demonstrate altered relationships

amongst metabolites across disease groups, suggesting unique alterations in the feedback control of key enzymatic processes that change with

HD progression.
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Tryptophan pathway

We found indole-3-propionic acid, a product of trypto-

phan metabolism through indole-3-pyruvic acid and

indole-3-lactic acid, to be significantly reduced in pre-

manifest subjects and in HD. Indole-3-propionic acid is a

potent hydroxyl radical scavenger normally found in the

plasma and cerebrospinal fluid (CSF) that is produced

exclusively by the commensal gut bacteria Clostridium

sporogenes.19,28 Its primary metabolite, kynuric acid, was

undetectable at levels of pg/mL even after concentrating

plasma up to a factor of 20 arguing against increased

metabolism. Consumption by covalent binding to oxi-

dized protein residues is also inconsistent with the modest

increase of bound indole-3-propionic acid found in HD

(Matson, pers. comm.). Thus, reduced production or

transport through the gut best explains the indole-3-pro-

pionic acid reductions we have observed and suggests an

HD microbiome that discriminates against Clostridium

sporogenes. Interestingly, indole-3-propionic acid, is pro-

tective against A-Beta-mediated toxicity in vitro29 and

iron-mediated oxidative damage30 and is under develop-

ment as a possible treatment for Alzheimer’s disease.31 As

levels of indole-3-propionic acid, and other circulating

antioxidants diminish in HD, the level of the oxidative

damage to proteins likely increases.

Quinolinic acid-induced excitotoxic striatal lesions led

to the hypothesis that the tryptophan pathway could play

an important role in HD pathophysiology.32 Tryptophan

is converted to, kynurenine, which is reduced in HD

patients, and thence to kynurenic acid, a glutamate recep-

tor antagonist and endogenous neuroprotectant. Its

metabolite, 3-hydroxyanthranilic acid, is reduced in HD,

as is the 3-hydroxyanthranilic/anthranilate ratio, as previ-

ously reported.2 This reduction in plasma 3-hydroxyanth-

ranilic acid could be due to modulation of 3-

hydroxyanthranilic acid oxidase in favor of reducing the

downstream production of quinolinic acid. If brain levels

of 3-hydroxyanthranilic acid are also low, kynurenine 3-

monooxygenase inhibitors, a potential treatment for

HD,33 may simply shift the production and metabolism

of 3-hydroxyanthranilic acid to other pathways and may

not have a major effect on quinolinic acid levels.34 Inter-

estingly, 3-hydroxyanthranilic levels were not correlated

with its precursor 3-hydroxykynurenine in any group,

suggesting alternate routes in its production.

In controls, kynurenine correlated with its precursor

tryptophan and with the subsequent pathway from ky-

nurenine through 3-hydroxykynurenine and 3-hydroxyan-

thranilinic acid. With phenoconversion, kynurenine

became more strongly correlated with tryptophan and

with its product, 3-hydroxykynurenine (and not 3-

hydroxyanthranilic acid) in HD. This suggests that the

pathway through 3-hydroxyanthranilic acid to quinoli-

nate, and eventually NAD/NADH, becomes more domi-

nant with symptom onset. Although the kynurenine

branch product kynurenic acid was not measured in this

study, the shift of regulation is consistent with progres-

Figure 5. Summation of one-out scoring. The graph is presented

with 0.5 subtracted from all values to center around 0 and scaled by

a factor of 100 for visualization. From the left, the first two columns

score NC versus HD with NC as category A. The third and fourth

columns score NC versus PHD with NC as category A. The fifth and

sixth columns score HD versus PHD with HD as category A.

Table 3. Correct classification rates using distinct models.

NC versus HD NC versus PHD PHD versus HD

PLSDA 0.744 0.656 0.721

LDA 0.731 0.629 0.662

KNN 1 0.626 0.618 0.591

KNN 0.668 0.688 0.636

CFDA 0.712 0.701 0.706

PLSDA, partial least squares discriminant analysis; LDA, linear discrimi-

nant analysis; kNN2, kNN3, k-nearest neighbor hierarchical cluster

analysis; CFDA, correlation frequency distribution analysis.

Table 4. Associations between compounds that best separate groups

(CFDA).

NA5HT/KYN 5HIAA/NA5HT 4HPLA/5HIAA

I3PA/HVA NA5HT/XANTH 5HTP/HVA

NA5HT/XAN I3PA/NA5HT 4HPLA/HVA

I3PA/NA5HT HVA/MET URATE/HVA

CFDA, correlation frequency distribution analysis; NA5HT, N-Acetyl-

serotonin; KYN, Kynurinine; I3PA, Indole-3-propionic acid; HVA, Homo-

vanillic acid; ILA, Indole-3-lactic acid; 5HIAA, 5-hydroxyindoleacetate;

XANTH, Xanthosine; MET, Methionine; 4HPLA, 4-hydroxyphenyllactic

acid; URATE, Urate, XAN, Xanthine.
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sive loss of protection from kynurenic acid and with pre-

vious findings of lower levels in HD.35 Alternatively, 3-

hydroxyanthranilic acid could arise from the tryptophan

pathway leading through indole-3-acetic acid to anthrani-

late and to 3-hydroxyanthranilic acid, either through

enzymatic processes or direct hydroxyl radical attack on

anthranilate. The strong correlation between tryptophan

and indole-3-acetic acid in HD patients but not in

healthy controls supports this.

Other metabolites comprising the tryptophan pathway

were also altered. Serotonin was markedly reduced in

both PHD and HD and its primary metabolite 5-hy-

droxyindoleacetate was significantly reduced in PHD sub-

jects. Since plasma serotonin levels reflect release from

enterochromaffin cells in the gut wall, selective uptake by

platelets, and metabolism to 5-hydroxyindoleacetate by

the liver, the reductions observed are certainly peripheral

in origin. Despite the reduction in serotonin, N-acetyl

serotonin, a neuroprotective antioxidant metabolite,36

and precursor for melatonin, was significantly increased

in both PHD and HD. Reduced metabolism, would be

consistent with reports of reduced melatonin release in

brain HD,37 even though serum levels of melatonin are

not altered in HD.38,39 A more likely explanation is

increased production of N-acetyltryptophan in the gut

with direct conversion to N-acetylserotonin. These find-

ings, which were not explained by SSRI’s, may be rele-

vant clinically for HD given the importance of serotonin

levels for mood, cognition, appetite, and gastrointestinal

motility.

Tyrosine pathway

Alterations in the gut microflora could also underlie the

tyrosine elevations that were observed via excess produc-

tion from the essential dietary amino acid phenylalanine.

2-hydroxyphenylacetate, which was increased in HD; 3-

hydroxyphenylacetate, which was increased in HD; and 4-

hydroxyphenylacetate, which was reduced in HD, are

polyphenol metabolites of phenylacetate, which is derived

from dietary phenylalanine in the gut.40 These polyphe-

nols are largely formed nonenzymatically from direct

hydroxyl radical attack on the free amino acid or on resi-

dues in proteins that are subsequently degraded. Interest-

ingly, the gut microflora forms these compounds through

the microbial styrene degradation pathway by which 2-hy-

droxyphenylacetate and 3-hydroxyphenylacetate are con-

verted to homogentisic acid, which we also find to be

increased in premanifest plasma. 4-hydroxyphenyllactic

acid, which was reduced progressively from PHD to HD,

is a tyrosine metabolite formed by gut microbes, such as

lactobacilli41 or consumed in dietary plant material.42

Interestingly, 4-hydroxyphenyllactic acid decreases reactive

oxygen species production in both mitochondria and

neutrophils and like indole-3-propionic acid, is an antiox-

idant supplied by the gut microbiome.43 Its diminution

in HD could further indicate an HD/gut interaction or a

change in mitochondrial status in HD.

Tyrosine metabolism in the gut may also relate to the

increases in alpha tocopherol we observed in both pre-

manifest and symptomatic groups and to increases in

A B

Figure 6. PLSDA modeling of effects of medications on metabolomics profiling. (A) There was no difference in the metabolomic profiles of PHD

and HD individuals taking SSRI’s (Red) and those who were not on SSRI’s (Green). (B) There was no difference in the metabolomic profiles of PHD

and HD individuals taking Neuroleptics (Green) and those not on neuroleptics (Red). This suggests that the HD metabotype is sufficiently robust to

be insignificantly affected by these medications.
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gamma tocopherol (vitamin E) we observed in symptom-

atic HD. The tocopherols are absorbed by the intestine

into the lymphatic system and released into the plasma

by the liver after consumption in the diet. While most

vitamin E in humans originates from ingested plant mate-

rial in the form of dietary vegetable oil,44 it is also synthe-

sized by microbes in a pathway through tyrosine and

homogentisic acid.45 We hypothesize that the Huntington

enterotype that leads to an increase in tyrosine and ho-

mogentisic acid also increases production and absorption

of the tocopherols. Further research will be necessary to

determine whether an HD enterotype significantly modu-

lates the onset and course and thus might also be a thera-

peutic target as has been suggested for other disorders.46

More widespread alterations in the tyrosine pathway

were suggested. HVA, the primary metabolite of dopa-

mine was increased in HD. A significant percentage of the

HVA in plasma is believed to originate from the central

nervous system.47,48 Higher HVA levels in CSF have been

correlated with psychotic symptoms in schizophrenia

while lower levels have been correlated with depres-

sion49,50; in HD CSF levels have been reported to be

unchanged,51 so higher levels of HVA in the plasma may

represent reduced metabolism in the periphery. Although

reduced dopamine beta hydroxylase activity could also

explain the increase, there are several reports that plasma

dopamine beta hydroxylase activity is normal in HD.52

Elevated monoamine oxidase activity, which has been

reported in platelets from HD patients,53 is an alternative

explanation that would be consistent with the reductions

in 5-hydroxyindoleacetic acid we observed.

Purine pathway

Alterations in the purine pathway were also significant.

While its precursors hypoxanthine and guanosine were

unchanged and xanthosine trended down in HD, xan-

thine was markedly reduced in both PHD and HD

groups. In contrast, there were no significant differences

between controls and PHD or HD in its metabolite, the

systemic antioxidant urate (although there were signifi-

cant differences between HD and PHD groups). Perhaps

urate oxidase activity is increased to maintain levels of

urate in HD, resulting in precursor depletion. The purine

pathway is also closely linked to cellular energetics and

mitochondrial function through adenosine metabolism

and ADP/ATP dynamics, which are altered in HD trans-

genic mouse models. Mitochondrial dysfunction would

spill ADP into the production of hypoxanthine, decou-

pling it from its immediate product xanthine, consistent

with the elevated hypoxanthine/xanthine ratio we

observed in the premanifest group. Both xanthine and

hypoxanthine are normally about 10-fold higher in ven-

tricular CSF than in plasma, so alterations in purine

metabolism in brain could also effect peripheral levels.

Lower plasma levels of urate have been associated with

Parkinson’s disease while higher levels may be associated

with slower progression of HD.54,55 Inosine treatment to

raise urate levels is currently being tested in clinical trials

for Parkinson disease.56,57 Levels of paraxanthine, the

principle metabolite of caffeine were not altered amongst

groups.

We observed an increase in plasma methionine in pre-

manifest subjects. This is consistent with other sugges-

tions of altered one-carbon metabolism, such as the

increases in DNA and histone methylation.58 Since there

is normally an equilibrium between methionine and cys-

teine, this finding could also be connected to alterations

in L-cysteine levels that have been reported in HD59 and

related to oxidative mechanisms of pathogenesis.

Limitations

This work is based on one of the largest plasma data sets

available for HD and is based on the use of several mod-

els and while cross-validation and boot-strap methods

were used in an effort to validate the models, a follow-up

study, using an independent sample set is warranted.

Conclusion

HD is a nervous system disorder that demonstrates com-

plex brain-body perturbations, including dysregulation of

bioenergetic pathways and of the gut microbiome. Collec-

tively, our findings identify specific and selective altera-

tions of the plasma metabolome that could provide useful

markers of prodromal and symptomatic HD patients;

confirm that HD involves important metabolic pathways;

demonstrate that mthtt affects systemic as well as central

nervous system biochemistry; and identifies significant

interactions between HD and the gut that could influence

disease onset and progression and have important impli-

cations for treatment.

To determine the predictive potential of the com-

pounds, these models were evaluated using leave-one-out

cross-validation to assess the predictive performance of

these models and to further refine the variables included

in prediction analyses. By using cross-validation, we were

able to estimate a prediction error from the withheld data

used in the validation process. While such an analysis is

not as powerful in assessing the true predictive perfor-

mance of a model, it does provide a reasonable estimate

of the predictive performance.

Because of the high dimensional and sparse nature of

the data, to try to assess whether the resulting models

were better than would be expected by chance, we per-
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formed permutation testing to ascribe statistical signifi-

cance to the resulting models. The best correlation coeffi-

cient and AUC for each permuted data set were recorded,

and an empirical distribution of model fit statistics was

generated across the permuted data sets. The values from

the real data analysis were the compared to the empirical

distribution to generate an empirical P-value.

We also used a network approach to evaluate differences

amongst groups. Categorizing disease based on the correla-

tions in the metabolomics network is a different strategy

representing a different biological phenomenon from the

use of ROCs of partial least squared discriminant analysis

(receiver operator curve or partial least squares discrimi-

nant analysis), which rely on the levels of compounds in

the data set. Correlation networks reflect the aggregate

influence of the underlying enzymes and sources of input

among categories and the information for discriminating

categories is inherent in those correlations.

Receiver operator curve, k-nearest neighbor hierarchical

cluster analysis, and LDA analyses were performed using

R (R Core Team [2013]). Partial least squares discrimi-

nant analyses were performed using Matlab. Correlation

frequency distribution analysis was performed using an in

house program and approach.60
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