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Abstract

Genetic and epigenetic mechanisms may interact and together affect biological processes and disease development.
However, most previous studies have investigated genetic and epigenetic mechanisms independently, and studies
examining their interactions throughout the human genome are lacking. To identify genetic loci that interact with the
epigenome, we performed the first genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human
pancreatic islets. We related 574,553 single nucleotide polymorphisms (SNPs) with genome-wide DNA methylation data of
468,787 CpG sites targeting 99% of RefSeq genes in islets from 89 donors. We identified 67,438 SNP-CpG pairs in cis,
corresponding to 36,783 SNPs (6.4% of tested SNPs) and 11,735 CpG sites (2.5% of tested CpGs), and 2,562 significant SNP-
CpG pairs in trans, corresponding to 1,465 SNPs (0.3% of tested SNPs) and 383 CpG sites (0.08% of tested CpGs), showing
significant associations after correction for multiple testing. These include reported diabetes loci, e.g. ADCY5, KCNJ11, HLA-
DQA1, INS, PDX1 and GRB10. CpGs of significant cis-mQTLs were overrepresented in the gene body and outside of CpG
islands. Follow-up analyses further identified mQTLs associated with gene expression and insulin secretion in human islets.
Causal inference test (CIT) identified SNP-CpG pairs where DNA methylation in human islets is the potential mediator of the
genetic association with gene expression or insulin secretion. Functional analyses further demonstrated that identified
candidate genes (GPX7, GSTT1 and SNX19) directly affect key biological processes such as proliferation and apoptosis in
pancreatic b-cells. Finally, we found direct correlations between DNA methylation of 22,773 (4.9%) CpGs with mRNA
expression of 4,876 genes, where 90% of the correlations were negative when CpGs were located in the region surrounding
transcription start site. Our study demonstrates for the first time how genome-wide genetic and epigenetic variation
interacts to influence gene expression, islet function and potential diabetes risk in humans.
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Introduction

Most cells in the human body share the same genetic sequence

while the epigenetic pattern varies between different cell types and

over time. DNA methylation is one of the most studied epigenetic

modifications and it is involved in multiple biological processes

such as transcriptional control during embryonic development, X-

chromosome inactivation, genomic imprinting and regulation of

cell specific gene expression [1]. In differentiated mammalian cells,

DNA methylation occurs primarily on the 59 position of cytosine

followed by guanine, so called CpG sites [2]. Alterations in DNA

methylation may affect phenotypic transmission and may be part

of the etiology of human disease [3].

Inheritance of epigenetic traits between generations has been

shown in animals [4,5]. Previous studies in twins further suggest

that genetic factors may affect DNA methylation profiles [6,7].

Moreover, genetic variation has been shown to influence the inter-

individual variation in DNA methylation in the human brain,

fibroblast and adipose tissue [8–14]. While some of these studies

used the Infinium HumanMethylation27 BeadChip which covers

,14,500 genes [8–10], others used the HumanMethylation450

BeadChip and limited the analysis to cis regulatory effects [12–14].

However, studies examining the impact of genetic variation on the

genome-wide DNA methylation pattern of most genes and

regions, in both cis and trans, throughout the human genome

are still scarce.

Pancreatic islets contribute to the regulation of whole body

glucose homeostasis by secreting insulin in response to increased

plasma glucose concentrations. Deficient insulin secretion, result-

ing in chronically elevated blood glucose levels, is a characteristic

of diabetes mellitus. Recent genome-wide association studies

(GWAS) have identified numerous genetic loci associated with

diabetes and its related traits [15–30]. However, these variants

only explain a small proportion of the estimated heritability for
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diabetes [31], proposing that there are additional genetic factors

left to be discovered. These may include genetic variants

interacting with epigenetic mechanisms.

To study the interaction between genetics and epigenetics and

to identify novel loci affecting islet function and potentially

diabetes, we performed the first genome-wide DNA methylation

quantitative trait locus (mQTL) analysis in human pancreatic

islets. The specific goals for this study were to: 1) identify single

nucleotide polymorphisms (SNPs) associated with altered DNA

methylation (mQTLs) in human pancreatic islets; 2) test if

identified SNPs in significant mQTLs affect islet gene expression

and diabetes related phenotypes; 3) examine the causal relation-

ship between genotype, DNA methylation and gene expression or

insulin secretion in human pancreatic islets; 4) test if identified

candidate genes, based on our mQTL results, have a functional

role in pancreatic b-cells; 5) examine if mQTLs in human

pancreatic islets also associate with diabetes and its related traits in

GWAS. To reach these goals, we related genome-wide genotype

data of SNPs with genome-wide DNA methylation data of

,470,000 CpG sites covering 21,231 (99%) RefSeq genes and

most genomic regions in pancreatic islets of 89 human donors.

Here, both cis and trans regulatory effects of SNPs on DNA

methylation were analyzed. SNPs found to be associated with

DNA methylation levels in the mQTL analysis were then

followed-up with an expression quantitative trait locus (eQTL)

analysis in the human islets, and related to islet insulin secretion

data. In addition, we used a causal inference test (CIT) [32] to

model the causal relationships between genotype, DNA methyl-

ation and phenotypic outcome. A number of candidate genes,

where both DNA methylation and gene expression were

associated with genetic variation, were then selected for functional

follow-up analysis in clonal b-cells. Finally, identified mQTLs were

examined for overlap with reported diabetes loci in publicly

available GWAS data. The study design is described in Figure 1.

Using this approach, we identified significant mQTLs in cis and

in trans. Numerous mQTLs were associated with altered mRNA

expression and insulin secretion in human islets. Notably,

identified mQTLs covered known diabetes loci. Together, our

study highlights the importance of integrating genetic and

epigenetic data in order to identify new loci affecting biological

processes and disease risk.

Results

Associations between genetic variation and DNA
methylation – A genome-wide mQTL analysis in human
pancreatic islets

To examine whether genetic variation is associated with DNA

methylation levels in human pancreatic islets, a genome-wide

mQTL analysis was performed. In total, genotype data of 574,553

SNPs and DNA methylation data of 468,787 CpG sites from

pancreatic islets of 89 human donors (Table S1) were included in

the analysis. A correlation heatmap illustrating the overall

variability in DNA methylation among included samples is

presented in Figure S1. In the mQTL analysis, a total of

111,360,152 SNP-CpG pairs were found to be located in cis and

269,231,617,059 SNP-CpG pairs were located in trans. We

proceeded to calculate the statistical significance threshold for the

cis and trans-mQTL analyses, taking the linkage dependency of

SNPs and number of tests into account. Linkage disequilibrium

(LD) based SNP pruning, which takes into account the linkage

dependency of SNPs that are run against DNA methylation of the

same CpG site in the mQTL analysis, was then used to calculate

the number of independent tests based on r2,0.9 for the SNPs

and thereby the significance threshold after correction for multiple

testing. After LD-based pruning, 102,307,720 SNP-CpG pairs

were identified showing independence based on r2,0.9 in cis and

this number was subsequently used as a correction value for

multiple testing in the cis-mQTL analysis (significance threshold in

the cis-mQTL: 0.05/102,307,720 = 4.9610210) (Table 1). Fur-

thermore, 200,388,516,440 SNP-CpG pairs were identified

showing independence based on r2,0.9 in trans and this number

was used as a correction value for multiple testing in the trans-
mQTL analysis (significance threshold in the trans-mQTL: 0.05/

200,388,516,440 = 2.5610213) (Table 1).

Note that LD-based SNP pruning was used in order to calculate

statistical significance thresholds based on number of independent

tests. Our goal was to detect and present SNPs that show

significant associations with DNA methylation regardless of

linkage dependency and we subsequently included all genotyped

SNPs in the mQTL analysis. In the cis-mQTL analysis, 67,438

SNP-CpG pairs were identified showing significant associations

between genotype and DNA methylation levels after correction for

multiple testing. These 67,438 SNP-CpG pairs consist of 36,783

unique SNPs (6.4% of tested SNPs) and 11,735 unique CpG sites

(2.5% of tested CpG sites) which are annotated to 4,504 unique

genes (Table 1). Among the significant cis-mQTLs, there are

31,313 SNP-CpG pairs with a LD threshold of r2,0.9 and 24,963

SNP-CpG pairs with r2,0.8 (Table 1). These include 20,251

unique SNPs with LD r2,0.9 and 16,557 unique SNPs with

r2,0.8 (Table 1).

Depictions of the most and least significant cis-mQTLs are

shown in Figure 2A–B and all significant cis-mQTLs are

presented in Table S2. Distance analysis of significant cis-
mQTLs showed that the majority of associated SNPs were located

within a short range from CpG sites (Figure 2C). A SNP located

within a cytosine or guanine of a CpG site, a so called CpG-SNP,

can potentially remove or introduce a CpG site. Among SNP-CpG

Author Summary

Inter-individual variation in genetics and epigenetics
affects biological processes and disease susceptibility.
However, most studies have investigated genetic and
epigenetic mechanisms independently and to uncover
novel mechanisms affecting disease susceptibility there is
a highlighted need to study interactions between these
factors on a genome-wide scale. To identify novel loci
affecting islet function and potentially diabetes, we
performed the first genome-wide methylation quantitative
trait locus (mQTL) analysis in human pancreatic islets
including DNA methylation of 468,787 CpG sites located
throughout the genome. Our results showed that DNA
methylation of 11,735 CpGs in 4,504 unique genes is
regulated by genetic factors located in cis (67,438 SNP-CpG
pairs). Furthermore, significant mQTLs cover previously
reported diabetes loci including KCNJ11, INS, HLA, PDX1
and GRB10. We also found mQTLs associated with gene
expression and insulin secretion in human islets. By
performing causality inference tests (CIT), we identified
CpGs where DNA methylation potentially mediates the
genetic impact on gene expression and insulin secretion.
Our functional follow-up experiments further demonstrat-
ed that identified mQTLs/genes (GPX7, GSTT1 and SNX19)
directly affect pancreatic b-cell function. Together, our
study provides a detailed map of genome-wide associa-
tions between genetic and epigenetic variation, which
affect gene expression and insulin secretion in human
pancreatic islets.
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pairs showing significant associations in the cis-mQTL analysis,

459 pairs were identified as CpG-SNPs. Moreover, the cis-mQTLs

showing the most significant associations were within SNPs located

close to a CpG site (Figure 2D).

In the trans–mQTL analysis, 2,562 SNP-CpG pairs showed

significant associations between genotype and DNA methylation

levels after correction for multiple testing. These 2,562 SNP-CpG

pairs consist of 1,465 unique SNPs (0.3% of tested SNPs) and 383

unique CpG sites (0.08% of tested CpG sites), which are annotated

to 247 unique genes. Among the significant trans-mQTLs, there are

837 SNP-CpG pairs with a LD threshold of r2,0.9 and 629 SNP-

CpG pairs with r2,0.8 (Table 1). These include 620 unique SNPs

with LD r2,0.9 and 492 unique SNPs with r2,0.8 (Table 1).

Depictions of the most and least significant trans-mQTLs are

shown in Figure 2E–F and all significant trans-mQTLs are

presented in Table S3. Out of the significant trans-mQTLs,

Figure 1. Flow-chart showing the analysis pipeline. Direction of the arrows represents the workflow of the study design with performed
analysis indicated. Solid lines indicate analysis performed within data of human pancreatic islets. Dashed lines indicate analysis performed against
external databases. Light grey boxes indicate input data of human pancreatic islets. Dark grey boxes indicate output of significant data. White boxes
indicate follow-up studies for look-up or functional- and biological validation of significant results.
doi:10.1371/journal.pgen.1004735.g001

Table 1. Number of significant mQTL results in human pancreatic islets.

cis-mQTL trans-mQTL

SNP-CpG pairs 67,438 2,562

SNP-CpG pairs with LD r2,0.9 31,313 837

SNP-CpG pairs with LD r2,0.8 24,963 629

Unique SNPs 36,783 1,465

Unique SNPs with LD r2,0.9 20,251 620

Unique SNPs with LD r2,0.8 16,557 492

Unique CpG sites 11,735 383

Unique genes 4,504 247

Significance threshold ,0.05 after correction for multiple testing.
Correction value cis = 102,307,720.
Correction value trans = 200,388,516,440.
LD = linkage disequilibrium.
doi:10.1371/journal.pgen.1004735.t001
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1,564 (61.0%) SNP-CpG pairs, which consist of 970 unique SNPs

and 229 unique CpG sites, are located on different chromosomes.

Additionally, for the significant trans-mQTLs where the SNP and

CpG are located on the same chromosome, the median distance

between SNP and CpG is 1.2 Mb and these are potentially

corresponding to long-range cis-effects.

We next generated quantile-quantile (Q-Q) plots of all –log10

(P-values) for the cis and trans mQTL analyses to illustrate the

distribution of the P-values as compared to a theoretical null

distribution (Figure 2G). The Q-Q plots illustrate that cis effects

are stronger compared to trans effects.

A recent study reports that some probes on Illumina’s DNA

methylation chip can cross-react to multiple locations in the

genome [33]. However, only 14 out of the 11,735 probes used to

detect significant cis-mQTLs in human islets, and five out of 383

probes used to detect significant trans-mQTLs, were demonstrated

to have a perfect match elsewhere in the human genome (Table
S2, S3). Additionally, all significant probes with a 47–50 bp match

elsewhere in the genome and possible cross-reactivity based on

Chen et al [33] have been indicated in Table S2, S3.

Genomic distribution of mQTLs in human pancreatic
islets

Although previous cancer studies have described the genomic

location of CpG sites that exhibit differential DNA methylation in

tumor versus normal cells [34,35], to our knowledge, no previous

study has examined the genomic distribution of CpG sites in

genome-wide mQTLs. Moreover, while there is an accumulation

of genetic variation on certain chromosomes associated with

disease [23,36], it remains unknown if there is an over- or

Figure 2. Depiction and distance analysis of associations between genotype and DNA methylation of significant mQTLs in human
pancreatic islets. Depiction of (A) the most significant cis-mQTL; rs1771445 vs. cg02372404, and (B) the least significant cis-mQTL; rs196489 vs.
cg06433283, among all identified cis-mQTLs in human pancreatic islets. Data is presented as Box and Whisker plots with P-values adjusted for
multiple testing. (C) Distance analysis between SNPs and CpG sites of significant cis-mQTLs plotted as the number of identified mQTLs within each
distance bin. Distance summary: minimum = 0 kb, 10%ile = 1.88 kb, 25%ile = 7.62 kb, 50%ile = 26.31 kb, 75%ile = 74.76 kb, 90%ile = 164.5 kb,
maximum = 499.6 kb. (D) The strength of associations plotted against the distance between SNPs and CpG sites of significant cis-mQTLs after
correction for multiple testing. Depiction of (E) the most significant trans-mQTL; rs17660464 vs. cg22968622, and (F) the least significant trans-mQTL;
rs6440971 vs. cg10438649, among all identified trans-mQTLs in human pancreatic islets. Data is presented as Box and Whisker plots with P-values
adjusted for multiple testing. (G) Quantile-Quantile plots (Q-Q plots) of –log10 (P-values) illustrating the distribution of P-values for all analyzed SNP-
CpG pairs in the cis- (red dots) and trans- (blue dots) mQTL analysis in relation to a theoretical null distribution (grey diagonal line). Bold dots indicate
significant mQTLs identified in the cis- (red dots) and trans-(blue dots) mQTL analysis after correction for multiple testing.
doi:10.1371/journal.pgen.1004735.g002
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underrepresentation of significant mQTLs on certain chromo-

somes linked to islet function. Here, we describe the genomic

distribution of significant mQTLs in human pancreatic islets.

When analyzing the chromosomal distribution of CpG sites

among significant cis-mQTLs, an overrepresentation of CpG sites

on chromosomes 6, 7, 8 and 21 together with an underrepresen-

tation of CpG sites on chromosomes 1, 2, 3, 12, 14, 15, 16, 17, 19

and 20 were found in comparison to the chromosomal distribution

of all analyzed sites on the Infinium HumanMethylation450

BeadChip based on chi-squared-tests (Figure 3A and Table
S4A). In the trans-mQTL analysis, an overrepresentation of CpGs

was found on chromosomes 6 and 17 together with an

underrepresentation on chromosomes 1, 9 and 14 (Figure 3A
and Table S4A). Chromosome 6, which possess the HLA region

– a gene region known to be involved in diabetes and autoimmune

reaction [37,38], was found to show the highest enrichment when

comparing the chromosomal distribution of CpG sites among

significant mQTLs for both the cis- and trans-analysis compared

with all analyzed CpG sites (Figure 3A and Table S4A).

Moreover, the CpG sites analyzed using the Infinium

HumanMethylation 450 BeadChip have been annotated based

on their genomic location in relation to the nearest gene

(TSS1500, TSS200, 59UTR, 1st exon, gene body, 39UTR or

intergenic regions) [39] (Figure 3B). When comparing the

distribution of CpG sites of significant cis-mQTLs with all

analyzed sites on the Infinium array, CpG sites in the gene body

and intergenic regions were found to be overrepresented

meanwhile CpG sites in TSS1500, TSS200, 59UTR, 1st exon

and 39UTR were found to be underrepresented (Figure 3C and
Table S4B). Among significant trans-mQTLs, overrepresenta-

tions of CpG sites were found in the 1st exon and intergenic

regions while an underrepresentation of CpG sites was found in

the TSS1500 (Figure 3C and Table S4B).

The CpG sites analyzed using the Infinium HumanMethylation

450 BeadChip have also been annotated based on their genomic

location in relation to CpG islands (CpG island, northern- and

southern shores, northern- and southern shelves or open sea) [39]

(Figure 3B). Overrepresentations of CpG sites were found in

northern- and southern shores, southern shelf and open sea while

an underrepresentation was found in CpG islands when compar-

ing the location of CpG sites of significant cis-mQTLs with all

analyzed sites on the Infinium array (Figure 3D and Table
S4C). CpG sites of significant trans-mQTLs were found to be

overrepresented in CpG islands and underrepresented in northern

shores (Figure 3D and Table S4C).

Epigenetic variation in enhancer regions has been proposed to

play a key role in the regulation of gene expression in pancreatic

islets [40–43]. We therefore proceeded to test if CpG sites in our

significant mQTLs are located in long stretch enhancers based on

publicly available data for human pancreatic islets [42]. These

stretch enhancers are referred to as large gene elements ($3 kb) of

enhancer states that are cell type specific [42]. Here, we found that

993 (8.5%) CpG sites in our significant cis-mQTLs and 11 (2.9%)

CpG sites in our significant trans-mQTLs are located in long

stretch enhancers specific for pancreatic islets (Table S2 and
Table S3), which is not more than expected by chance (P.0.05).

Additionally, we found that 139 (1.2%) CpG sites in our significant

cis-mQTLs and only two CpG sites in the significant trans-
mQTLs are located in active enhancer regions of pancreatic islets

identified by Pasquali et al [43] (Table S2 and Table S3).

Moreover, we tested if the genomic distribution of the

significant mQTLs found in human islets in our study could be

replicated in publicly available data. Here, we took advantage of

published mQTL data in adipose tissue from Grundberg et al and

we analyzed the genomic distribution of their significant cis-
mQTLs [12]. In agreement with the genomic distribution of

significant cis-mQTLs in human islets, we found that significant

cis-mQTLs in human adipose tissue were overrepresented in the

intergenic region, the gene body, the open sea as well as the shore

and shelf regions, while underrepresented in regions close to the

TSS and CpG island regions (Figure S2A–B). On the other hand,

we found differences between human islets and adipose tissue

regarding the chromosomal distribution of significant cis-mQTLs

(Figure 3A and Figure S2C). Of note, differences in the study

design and filtering of CpG probes between the two studies may

influence these results.

Association of identified mQTL-SNPs with mRNA
expression – A follow-up eQTL analysis in human
pancreatic islets

Both genetic variation and DNA methylation have been shown

to regulate gene expression [44,45]. Therefore, SNPs identified to

significantly affect DNA methylation in the mQTL analysis were

followed-up and related to mRNA expression levels in human

pancreatic islets. To calculate the number of independent tests to

be used for correction for multiple testing in this analysis, we first

connected SNPs of significant cis-mQTLs (n = 36,783) with all

mRNA transcripts on the Affymetrix array located within 500 kb

of respective SNP – the set cis boundary distance. With this

setting, 895,764 SNP-mRNA transcript combinations were found

in cis. However, after LD-based pruning of these SNPs, 692,616

SNP-mRNA transcript combinations remained showing inde-

pendence of SNPs (based on r2,0.9) and this number was

subsequently used as a correction value for multiple testing

(significance threshold in the cis-eQTL: 0.05/692,616 =

7.261028) (Table 2). In this cis-eQTL analysis, 302 SNP-

mRNA transcript pairs were identified showing significant

associations between genotypes and mRNA expression levels

after correction for multiple testing (Table 2 and Table S5).

These 302 significant pairs consist of 243 unique SNPs (0.7% of

the significant cis-mQTL SNPs) and 46 unique mRNA

transcripts (0.2% of tested mRNA transcripts). Among the

significant cis-eQTLS, there are 117 SNP-mRNA transcript

pairs with a LD threshold of r2,0.9 and 86 SNP-mRNA

transcript pairs with r2,0.8 (Table 2). These include 99 unique

SNPs with LD r2,0.9 and 76 unique SNPs with r2,0.8

(Table 2).

The SNPs of significant trans-mQTLs (n = 1,465) were then

related to mRNA expression levels of all transcripts included on

the Affymetrix array, giving rise to 40,127,815 SNP-mRNA

transcript combinations. The correction value for multiple testing

was calculated to 16,982,420 after LD-based pruning of SNPs

(based on r2,0.9) (significance threshold in the trans-eQTL: 0.05/

16,982,420 = 2.961029) (Table 2). In the trans-eQTL, 32 SNP-

mRNA transcript pairs consisting of 22 unique SNPs (1.5% of the

significant trans-mQTL SNPs) and 8 unique mRNA transcripts

(0.02% of tested mRNA transcripts) were found to show

significance (Table 2 and Table S6). Among the significant

trans-eQTLs, there are 16 SNP-mRNA transcript pairs with a LD

threshold of r2,0.9 and 10 SNP-mRNA transcript pairs with r2,

0.8 (Table 2). These include 10 unique SNPs with LD r2,0.9

and 7 unique SNPs with r2,0.8 (Table 2).

Moreover, a correlation heatmap illustrating the overall

variability in mRNA expression among included samples is

presented in Figure S3. We next used Mantel’s test [46] to

compare the hierarchical clustering results for mRNA expression

(Figure S3) and DNA methylation (Figure S1) and obtained a

correlation coefficient of 0.21 (P = 0.005).

Genome-Wide Interactions Genetics and Epigenetics
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Causality inference test (CIT) - DNA methylation
potentially mediates the genetic impact on mRNA
expression

We further used CIT [32] to examine if relationships between

genotypes and phenotype (gene expression) are potentially

mediated through DNA methylation of CpG sites in significant

mQTLs. In this CIT approach, we consider SNPs identified in the

mQTL/eQTL analysis as causal factors (G), DNA methylation of

CpG sites identified in the mQTL analysis as potential mediators

(M) and mRNA expression identified in the eQTL analysis as a

phenotypic outcome (E). The possible relationships between these

three factors are shown in Figure 4A. Significant SNP-CpG pairs

from the mQTL analysis (Step 1 Figure 4B), where the mQTL-

SNPs also show significant association with mRNA expression in

the eQTL analysis (Step 2 Figure 4B), were included in the CIT.

In the CIT analysis of cis-mQTLs/eQTLs, we identified 28 SNP-

CpG-mRNA combinations (1.0%) consisting of 17 unique SNPs,

14 unique CpG sites and 5 unique mRNA transcripts that were

significantly called as causal (causal hypothesis Q-value,0.05

based on FDR) and these represent potential methylation-

mediated relationships between SNPs and mRNA expression (left
panel Figure 4A, step 3 Figure 4B and Table 3). All hypothesis

tests of the CIT for cis interactions are presented in Table S7.

Interestingly, several identified relationships where DNA methyl-

ation potentially mediates the causal association between SNP and

mRNA expression were annotated to HLA genes (Table 3), a

gene region strongly linked to type 1 diabetes [37]. Moreover, a

causal relationship between SNPs, DNA methylation and mRNA

expression of genes involved in glutathione metabolism, including

GSTT2 (Q,0.05, Table 3) and GSTT1 (P,0.05, Table S7),

were also identified in the CIT analysis. Glutathione metabolism is

known to protect against oxidative stress [47–49] and thereby has

a potential role in islet function.

In the CIT analysis of trans-mQTLs/eQTLs, we identified 4

SNP-CpG-mRNA combinations (10.8%) showing a causal rela-

tionship with FDR,5% (step 3 Figure 4B and Table S8).

Biological features of genes identified in the mQTL/eQTL
analyses

Next, we performed gene ontology and KEGG pathway

analyses to identify cellular components or biological pathways

with enrichment of genes that were significant in the mQTL and/

or eQTL analyses in human pancreatic islets.

In the gene ontology analysis of significant cis-mQTLs, genes

annotated to identified CpG sites were enriched in biological

processes of relevance to human pancreatic islets, including the

MHC protein complex (Padj = 5.861027) and the endoplasmic

reticulum (ER) to golgi transport (Padj = 1.661022) (Figure S4,

includes all enriched biological processes). Moreover, in the KEGG

pathway analysis, type 1 diabetes (Padj = 3.361027), phagosome

(Padj = 3.061024), cell adhesion molecules (Padj = 5.061024),

extracellular-receptor matrix (ECM) interaction (Padj = 2.761023)

and folate biosynthesis (Padj = 0.011) were found among the

enriched pathways (Table 4, includes all enriched KEGG
pathways).

In the gene ontology analysis of genes showing differential

expression between genotype groups in the eQTL analysis of

significant cis-mQTL-SNPs, we again found enrichment of genes

in the MHC protein complex (Padj = 1.661023) and in ER to golgi

transport (Padj = 1.461022). Moreover, genes involved in glutathi-

one peroxidase activity (Padj = 1.161022) and glutathione trans-

ferase activity (Padj = 1.161022) were enriched in the gene

Figure 3. Genomic distribution of CpG sites of significantly identified mQTLs in human pancreatic islets. (A) Chromosomal distribution
of CpG sites of significant cis- and trans-mQTLs in comparison to all analyzed CpG sites on the Infinium Human Methylation450 BeadChip. (B) All
analyzed CpG sites on the Infinium Human Methylation450 BeadChip have been annotated to genomic regions based on their relation to the nearest
gene (TSS: proximal promoter, defined as 200 bp or 1500 bp upstream of transcription start site; UTR: untranslated region) or in relation to the
nearest CpG island (CpG island: DNA stretch of 200 bp or more with a C+G content of .50% and an observed CpG/expected CpG in excess of 0.6;
Shore: the flanking region of CpG islands, 0–2000 bp; Shelf: regions flanking island shores, i.e., covering 2000–4000 bp distant from the CpG island).
Distribution of CpG sites of significant mQTLs in relation to (C) the nearest gene and (D) in relation to CpG islands. *Significantly different distribution
(P,0.05) of CpGs of significant cis- or trans-mQTLs from what is expected by chance based on a Chi-squared-test when compared with all analyzed
CpG sites on the Infinium HumanMethylation450 BeadChip.
doi:10.1371/journal.pgen.1004735.g003

Table 2. Number of significant eQTL results in the human pancreatic islets.

eQTLs of cis-mQTL-SNPs eQTLs of trans-mQTL-SNPs

SNP-mRNA transcript pairs 302 32

SNP-mRNA transcript pairs with LD r2,0.9 117 16

SNP-mRNA transcript pairs with LD r2,0.8 86 10

Unique SNPs 243 22

Unique SNPs with LD r2,0.9 99 10

Unique SNPs with LD r2,0.8 76 7

Unique mRNA transcripts 46 8

Unique genes 42 7

Only SNPs of significant mQTLs are included in the eQTL analysis.
SNPs of significant cis-mQTLs are regressed against mRNA expression of transcripts located in cis (#500 kb).
SNPs of significant trans-mQTLs are regressed against mRNA expression of all transcripts.
Significance threshold ,0.05 after correction for multiple testing.
Correction value of eQTL analysis for cis-mQTL-SNPs = 692, 616.
Correction value of eQTL analysis for trans-mQTL-SNPs = 16,982,420.
LD = linkage disequilibrium.
doi:10.1371/journal.pgen.1004735.t002
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Figure 4. CIT analysis identifies mQTLs where DNA methylation potentially mediates genetic associations with mRNA expression in
human pancreatic islets. (A) Depiction of possible relationship models between genotype as a causal factor (G), DNA methylation as a potential
mediator (M) and islet mRNA expression as a phenotypic outcome (E). Left diagram: The causal or methylation mediated model. Middle diagram: The
reactive or methylation-consequential model (reverse causality). Right diagram: The independent model. (B) Illustration of the study approach to
identify if DNA methylation of CpG sites potentially mediates the causal association between SNPs and islet mRNA expression. Left: Workflow steps.
Middle: Tested relationships between G, M and E in the different steps. Right: Number of identified sites in each step. Bottom: Conditions that must
be fulfilled to conclude a mathematical definition of a causal relationship between G, M and E. Significantly called as causal at 5% FDR (causal
hypothesis Q,0.05).
doi:10.1371/journal.pgen.1004735.g004
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Table 4. KEGG pathways with enrichment of genes annotated to CpG sites of significant cis-mQTLs in human pancreatic islets.

Pathway (total
number of genes in
pathway)

Observed
number of
genes

Expected
number of
genes

Ratio of
enrichment Raw P-value

Adjusted
P-value Observed genes

Type 1 Diabetes (41) 27 9.16 2.95 3.0261029 3.3261027 HLA-DRA, HLA-DQA2, CD86, HLA-DQA1,
HLA-E, HLA-F, HLA-DMB, CD80, IL1A,
GZMB, HLA-DPB1, INS, HLA-A, FAS, HLA-
DMA, HLA-DPA1, HLA-DRB1, HLA-B,
ICA-1, HLA-DQB1, HLA-G, PTPRN2,
HLA-C, HLA-DOA, GAD1, HLA-DOB,
HLA-DRB5

Autoimmune thyroid
disease (41)

27 9.16 2.95 3.0261029 3.3261027 HLA-DRA, HLA-DQA2, CTLA4, CD86,
HLA-DQA1, HLA-E, HLA-F, HLA-DMB,
CD80, TPO, GZMB, HLA-DPB1, HLA-A,
FAS, HLA-DMA, HLA-DPA1, HLA-DRB1,
HLA-B, HLA-DQB1, HLA-G, TG, HLA-C,
HLA-DOA, TSHR, HLA-DOB, HLA-DRB5,
IFNA4

Allograft rejection (34) 22 7.59 2.90 1.4361025 1.0561025 HLA-DRA, HLA-DQA2, CD86, HLA-DQA1,
HLA-E, HLA-F, HLA-DMB,CD80, GZMB,
HLA-DPB1, HLA-A, FAS, HLA-DPA1, HLA-
DRB1, HLA-DMA, HLA-B, HLA-DQB1,
HLA-G, HLA-C, HLA-DOA, HLA-DRB5,
HLA-DOB

Graft versus host
disease (37)

23 8.26 2.78 2.1961027 1.2061025 HLA-DRA, HLA-DQA2, CD86, HLA-DQA1,
HLA-E, HLA-F, HLA-DMB, CD80, IL1A,
GZMB, HLA-DPB1, HLA-A, FAS, HLA-
DPA1, HLA-DRB1, HLA-DMA, HLA-B,
HLA-DQB1, HLA-G, HLA-C, HLA-DOA,
HLA-DRB5, HLA-DOB

Viral myocarditis (66) 31 14.74 2.10 8.4461026 0.0003 HLA-DRA, HLA-DQA2, CASP3, CD55,
MYH13, CD86, HLA-DQA1, HLA-E, HLA-
F, CASP9, SGCD, HLA-DMB, CD80, CAV1,
LAMA2, HLA-DPB1, HLA-A, MYH11,
ITGB2, HLA-DPA1, HLA-DRB1, HLA-DMA,
HLA-B, FYN, HLA-DQB1, HLA-G, MYH15,
HLA-C, HLA-DOA, HLA-DOB, HLA-DRB5

Phagosome (143) 55 31.94 1.72 9.2861026 0.0003 HLA-DRA, DYNC1I2, TUBB2A, ATP6V1A,
HLA-E, HLA-F, TAP1, TUBB6, DYNC1I1,
ITGB5, HLA-DPB1, NCF2, HLA-A, HLA-
DRB1, MBL2, HLA-DPA1, PLA2R1, HLA-
DQB1, ITGB3, ATP6V0A4, ATP6V0A2,
TAP2, TUBAL3, HLA-C, DYNC2H1,
TUBB8, TUBA3D, COMP, ATP6V0D1,
ATP6V0E2, ATP6V1G1, C3, HLA-DQA2,
PIK3C3, SEC61B, TUBA1A, THBS2, HLA-
DQA1, RAB7A, VAMP3, HLA-DMB,
TUBA3E, FCGR3B, COLEC11, TLR6, CD36,
ITGB2, HLA-DMA, HLA-B, TLR2, HLA-G,
SCARB1, HLA-DOA, HLA-DOB,
HLA-DRB5

Cell adhesion molecules -
CAMs (125)

49 27.92 1.75 1.5461025 0.0005 HLA-DRA, CDH4, CLDN15, CD86, HLA-E,
HLA-F, CD276, SDC2, SELL, CNTNAP2,
NRXN1, CLDN14, HLA-DPB1, HLA-A,
HLA-DRB1, HLA-DPA1, CDH15, CDH1,
HLA-DQB1, CD6, CLDN14, HLA-C,
CLDN3, NCAM1, ITGA9, CLDN18, HLA-
DQA2, CTLA4, CLDN23, HLA-DQA1,
HLA-DMB, ICAM3, CD80, MAG, JAM3,
NEGR1, ITGB2, CNTNAP1, PTPRF, HLA-
DMA, HLA-B, MPZ, CDH5, HLA-G,
NFASC, HLA-DOA, HLA-DOB, SIGLEC1,
HLA-DRB5

Extracellular matrix (ECM)
receptor interaction (83)

34 18.54 1.83 0.0001 0.0027 COL-4A2, AGRN, HSPG2, TNXB, SDC2,
ITGB5, COL6A3, ITGA3, GP5, COL6A1,
ITGB3, COL5A1, COL2A1, ITGA11,
COL4A1, COL5A3, ITGA1, CD44, ITGA9,
COMP, LAMA4, SV2C, COL6A2, LAMC1,
THBS2, COL11A2, COL1A1, RELN,
LAMA2, CD36, LAMB1, VWF, GP6,
LAMA5
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ontology analysis of the cis-eQTLs (Figure S5). In the KEGG

pathway analysis of differentially expressed genes in the cis-eQTL

(Table S9), genes involved in the glutathione metabolism pathway

which is of relevance to islet function were enriched including the

following identified genes: GSTT1, GSTM3 and GPX7
(Padj = 3.061024).

Furthermore, genes annotated to CpG sites of significant trans-
mQTLs were also found to be enriched in the MHC protein

complex (Padj = 1.161023) and the ER part (Padj = 3.861022)

when performing a gene ontology analysis (Figure S6). This was

also reflected in the KEGG pathway analysis of trans-mQTLs

(Table S10) where type 1 diabetes was found to be an enriched

pathway of relevance in human pancreatic islets, including the

following genes: PTPRN2, HLA-DRB1, HLA-B, HLA-C,
HSPD1 and HLA-DRB5 (Padj = 6.061024).

In the gene ontology analysis of genes showing differential

expression between genotype groups in the eQTL analysis of

significant trans-mQTL-SNPs, the carboxylic acid metabolic

process was found to be enriched (Padj = 8.461023) (Figure S7).

However, no significant enrichment was found in the KEGG

pathway analysis including the same dataset.

Knockdown of Gpx7, Gstt1 and Snx19 alters b-cell
proliferation and cell death signaling

To examine whether altered expression of some of the identified

candidate genes in the islet mQTL/eQTL analyses affect b-cell

function and thereby potentially the development of diabetes, we

silenced the expression of three selected genes; Gpx7, Gstt1 and

Snx19, in clonal b-cells. These genes were selected based on their

potential role in diabetes and islet function [47,49–51] and

because they showed both differential DNA methylation and gene

expression between genotype groups in the mQTL and eQTL

analyses (Table S2 and Table S5). One representative mQTL

and eQTL for GPX7,, GSTT1 and SNX19, respectively, is

presented in Figure 5A–C. Moreover, GPX7 and GSTT1
belong to the genes that were enriched in the glutathione

metabolism KEGG pathway of significant cis-eQTLs. The

knock-down experiments were performed to establish if identified

genes in our mQTL analysis have a biological function in

pancreatic b-cells. While both GPX7 and GSTT1 encode proteins

that are known to protect against oxidative stress [48,52,53], sortin

nexin 19, encoded by SNX19, may put cells into a pre-apoptotic

state [50]. We therefore studied cell number and cell death

signaling, measured as caspase-3/7 activities, under control and

lipotoxic stress conditions when silencing selected candidate genes

in clonal b-cells. The expression level of Gpx7, Gstt1 and Snx19
respectively, was significantly reduced in the siRNA knockdown

experiments (P,0.05, Figure 5D). Interestingly, both under

control and lipotoxic conditions, we found increased caspase-3/7

activities in b-cells with silenced Gpx7 or Gstt1 expression

compared to negative control siRNA transfected (siNC) b-cells

(P,0.05, Figure 5E). Moreover, when crystal violet staining was

used to measure b-cell number, knockdown of Snx19 resulted in

increased cell number compared to negative control cells under

both normal and lipotoxic conditions (P,0.05, Figure 5F).

Associations of identified mQTLs with insulin secretion in
human pancreatic islets

Pancreatic islets play a major role in controlling whole-body

glucose-homeostasis through secreting insulin in response to

elevated blood glucose levels and other fuels. To further examine

phenotypic outcomes of significant mQTLs in human pancreatic

islets, significant cis and trans mQTL-SNPs were related to

glucose-stimulated insulin secretion from human islets in vitro.

Out of the identified cis-mQTL-SNPs, 1,843 (5.0%) SNPs were

associated with glucose-stimulated insulin secretion in vitro (P,

0.05) (Table S11). Moreover, seven of the cis-mQTL-SNPs

associated with insulin secretion were also identified in the cis-
eQTL analysis including the GPX7 and HLA genes (Table S5).

Additionally, out of the identified trans-mQTL-SNPs, 90 (6.1%)

SNPs were associated with glucose-stimulated insulin secretion in

human islets (Table S12). We next used CIT [32] to examine if

relationships between genotypes and phenotype (insulin secretion)

were potentially mediated through DNA methylation of CpG sites

in the significant mQTLs. In this CIT approach, we consider

genotypes of SNPs identified in the mQTL analysis as causal

factors (G), DNA methylation of CpG sites identified in mQTL

analysis as potential mediators (M) and islet insulin secretion as a

phenotypic outcome (I). The possible relationships between these

three factors are shown in Figure S8A. Significant SNP-CpG

pairs from the mQTL analysis where mQTL-SNPs also show

association with insulin secretion were included in the CIT

Table 4. Cont.

Pathway (total
number of genes in
pathway)

Observed
number of
genes

Expected
number of
genes

Ratio of
enrichment Raw P-value

Adjusted
P-value Observed genes

Other types of O-glycan
biosynthesis (43)

20 9.61 2.08 0.0004 0.0098 UGT1A1, GXYLT2, UGT1A4, GXYLT1,
UGT2B15, UGT1A10, ST6GAL1,
GLT25D2, UGT1A7, MGAT5B, POMGNT1,
UGT1A5, ST3GAL3, UGT1A3, UGT1A9,
UGT2B17, FUT9, UGT1A6, UGT1A8,
ST6GAL2

Folate biosynthesis (11) 8 2.46 3.26 0.0005 0.0110 ALPPL2, ALPP, GCH1, QDPR, ALPL, PTS,
DHFR, GGH

Antigene processing and
presentation (68)

27 15.19 1.78 0.0009 0.0180 HLA-DRA, HLA-DQA2, HLA-DQA1, HLA-
E, HLA-F, HSP90AB1, TAP1, HLA-DMB,
HLA-DPB1, HLA-A, HSPA1B, HLA-DPA1,
HSPA1L, HLA-DRB1, HLA-DMA, HLA-B,
TAPBP, NFYA, HLA-DQB1, HLA-G, TAP2,
HSP90AA1, HLA-C, HLA-DOA, HLA-DOB,
KLRC2, HLA-DRB5

P-values have been adjusted for multiple testing using Benjamini-Hochberg.
doi:10.1371/journal.pgen.1004735.t004
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(Figure S8B). The CIT analysis of cis-mQTLs identified 14

(0.5%) SNP-CpG pairs consisting of 10 unique SNPs and 8 unique

CpGs that were called as causal (causal hypothesis P-value,0.05;

nothing hold for FDR with Q-value,0.05) and represent potential

methylation-mediated relationships between mQTL-SNPs and

insulin secretion (Figure S8B and Table S13). One identified

mQTL, where methylation potentially mediates the causal

association between the SNP and islet insulin secretion, was

annotated to PTPRN2 (also known as IA-2b or in rodents as

phogrin) (Table S13). Interestingly, the PTPRN2 gene encodes a

protein that is an autoantigen in type 1 diabetes [54,55]. When

performing the CIT analysis of trans-mQTLs, no SNP-CpG pairs

were found to show a causal relationship with islet insulin secretion

(Figure S8B).

Identified mQTLs/eQTLs in human pancreatic islets
capture reported diabetes SNPs

Previous GWAS have identified SNPs associated with an

increased risk of diabetes or diabetes related traits [15,20,56].

Nevertheless the molecular understanding of how these SNPs

contribute to disease is still limited. To examine if previously

reported diabetes SNPs may affect DNA methylation and/or gene

expression in human pancreatic islets, a key tissue in the

pathogenesis of diabetes, they were checked for overlap with the

identified mQTLs/eQTLs in the present study.

The GWAS catalog (www.genome.gov/gwastudies, accessed

March 2013) [57] was used to find SNPs reported to be associated

with diabetes. In total, 317 SNPs were identified showing

associations (P,1026) with type 1 diabetes, type 2 diabetes or

related traits (glucose-, insulin- and proinsulin traits). To get better

reference coverage of these SNPs a proxy search using SNAP [58]

was performed, giving 5,448 SNPs in LD (r2.0.8) with the

reported diabetes SNPs. This dataset was then used to check for

any overlap with the identified SNPs in the mQTL/eQTL

analyses of human islets.

In the overlap, 32 out of 317 (10.7%) reported diabetes SNPs

were found to match directly or through a proxy with the

identified cis-mQTL-SNPs, consisting of SNPs associated with

type 1 diabetes (n = 12), type 2 diabetes (n = 12), fasting-plasma

glucose (n = 4; 1 SNP overlapping with type 2 diabetes), 2 hour

glucose challenge (n = 1), insulin response (n = 2) and proinsulin

(n = 2) (Figure 6A–H; Table S14). Moreover, one diabetes

associated SNP (rs9272346 HLA-DQA1, PT1D,102128) was

found through the proxy search to overlap with a cis-mQTL-

SNP (rs1063355 HLA-DQB1, R2 = 0.87) (Figure 6B) that

showed association with mRNA expression in the human islets

(Table S5). Identified trans-mQTL-SNPs were not found to

overlap with reported diabetes SNPs identified through GWAS.

Identified mQTL-SNPs were also checked for overlap with

publicly available consortium data of type 2 diabetes associations

from DIAGRAMv3 GWAS meta-analysis [59] and for glycemic

traits association from MAGIC investigators [60–64]. Significant

mQTL-SNPs overlapping with SNPs showing associations with

type 2 diabetes (P,0.05 in DIAGRAM) or with glucose, insulin

and proinsulin traits (P,0.05 in MAGIC) are presented in Table
S15 and Table S16, cis- and trans-mQTL-SNPs respectively.

These include SNPs annotated to the KIF11-HHEX-IDE region,

WFS1, ADCY5, KCNJ11, FADS1, SIRT2 and SNX19.

As an evaluation of the number of islet mQTL-SNPs also

reported to be diabetes associated SNPs in GWAS, we further

checked for overlap between mQTL-SNPs identified in human

islets and SNPs associated with breast cancer, stroke and

hypothyroidism; diseases not relevant for our targeted tissue of

pancreatic islets. In total, there were 63 reported SNPs associated

with breast cancer, 18 SNPs associated with stroke and 20 SNPs

associated with hypothyroidism in the GWAS catalog with P,

1026 (accessed March 2013). Out of these, four breast cancer

SNPs, one SNP associated with stroke and no hypothyroidism

SNPs could be identified directly or through a proxy SNP as cis-
mQTLs in human pancreatic islets. However, the SNPs associated

with the additional traits were neither identified in the trans-
mQTL analysis nor in the eQTL analyses of human islets.

Associations between DNA methylation and mRNA
expression in human pancreatic islets

Depending on the genomic location of a CpG site, DNA

methylation may regulate gene transcription in several different

ways [65,66]. Nevertheless, the association between DNA

methylation and gene expression throughout the human genome

remains poorly described. To test if DNA methylation is directly

associated with gene expression in human pancreatic islets, we

performed a linear regression between individual mRNA tran-

scripts and DNA methylation of CpG sites in cis (500 kb up- and

100 kb downstream of respective gene), including age, gender,

BMI, HbA1c, islet purity, days in culture and batch as covariates.

We found significant associations between DNA methylation and

mRNA expression for 31,315 combinations (FDR,5%), consist-

ing of 22,773 unique CpG sites (4.9% of tested CpG sites) and

5,377 unique mRNA transcripts (19.6% of tested mRNA

transcripts), which are annotated to 4,876 genes. Out of these,

CpG sites in 20,376 combinations (65.1%) were located in the

region 0–500 kb upstream of a transcription start site, CpG sites in

5,718 combinations (18.3%) were intragenic, and CpG sites in

5,221 combinations (16.7%) were located 0–100 kb downstream

of a gene (Figure 7). For CpGs upstream from a transcription

start site, 9,436 combinations (46.3%) showed negative and 10,940

combinations (53.7%) showed positive correlations between DNA

methylation and mRNA expression (Figure 7A). For intragenic

CpGs, we found 3,694 (64.6%) negative and 2,024 (35.4%)

positive correlations (Figure 7B). Interestingly, negative correla-

tions were enriched for CpGs in the region close to the

transcription start site (Figure 7C–D). For example, for CpGs

Figure 5. Identified mQTL/eQTL candidate genes GPX7, GSTT1 and SNX19 affect b-cell number and apoptosis. Associations identified in
the mQTL/eQTL analyses of human pancreatic islets. (A) rs835342 located approximately 5 kb upstream of GPX7 associates with DNA methylation of
cg18087326 located 406 bp upstream of the GPX7 transcription start site (TSS) as well as with mRNA expression of GPX7. (B) rs4822453 located
,121 kb downstream of GSTT1 associates with DNA methylation of cg17005068 located 241 bp upstream of the GSTT1 TSS as well as with mRNA
expression of GSTT1. (C) rs3751035 located within exon 1 of SNX19 associates with DNA methylation of cg08912652 located within the gene body of
SNX19 as well as with mRNA expression of SNX19. Data are presented as Box and Whisker plots with P-values adjusted for multiple testing. (D) qPCR
quantification of siRNA mediated knockdown of Gpx7 (siGpx7), Gstt1 (siGstt1) and Snx19 (siSnx19) compared to negative control siRNA (siNC). * P,
0.01, the graphs show the average of four independent knockdown experiments presented as mean 6 SEM. (E) Knockdown of Gpx7 and Gstt1
resulted in increased combined caspase-3/7 activity compared to negative control siRNA under both control (white bars) and lipotoxic (black bars)
conditions. * P,0.05, the graph shows the average of three independent knockdown experiments presented as mean 6 SEM. (F) Knockdown of
Snx19 (siSnx19) resulted in increased cell number compared to negative control siRNA (siNC) under both control (white bars) and lipotoxic (black
bars) conditions. * P,0.05, the graph shows the average of six independent knockdown experiments presented as mean 6 SEM.
doi:10.1371/journal.pgen.1004735.g005

Genome-Wide Interactions Genetics and Epigenetics

PLOS Genetics | www.plosgenetics.org 13 November 2014 | Volume 10 | Issue 11 | e1004735

www.genome.gov/gwastudies


Genome-Wide Interactions Genetics and Epigenetics

PLOS Genetics | www.plosgenetics.org 14 November 2014 | Volume 10 | Issue 11 | e1004735



in the region 1 kb upstream to 1 kb downstream from the

transcription start site, 90% of the correlations between DNA

methylation and mRNA expression were negative. For CpGs

downstream of the gene, we found negative correlations for 2,499

combinations (47.9%) and positive correlations for 2,722 combi-

nations (52.1%) (Figure 7E).

In addition, we looked for any overlap between significant

mQTL/eQTL results and direct associations between DNA

methylation and mRNA expression. Thereby, we extracted and

paired CpG sites and mRNA transcripts that were significantly

affected by the same SNPs in the mQTL/eQTL analyses, which

resulted in identification of 410 unique CpG-mRNA transcript

pairs. Out of these, 287 (70%) also showed a significant direct

association between DNA methylation and mRNA levels, where

164 (57.1%) CpG-mRNA transcript pairs showed negative

correlations and 123 (42.9%) showed positive correlations (Table

Figure 6. Diabetes SNPs reported by GWAS associate with DNA methylation in human pancreatic islets. Depiction of some identified
associations between SNP and DNA methylation in islets of reported type 1 diabetes loci: (A) INS, (B) HLA and (C) PTPN2; type 2 diabetes loci: (D)
KCNJ11, (E) WFS1 and (F) ADCY5; and glucose-trait loci: (G) PDX1 and (H) GRB10. P-values adjusted for multiple testing. HLA rs1063355 and WFS1
rs1801216 were identified through proxy search and are in linkage with the GWAS reported diabetes SNPs HLA rs9272346 and WFS1 rs1801214,
respectively.
doi:10.1371/journal.pgen.1004735.g006

Figure 7. Distribution of CpG sites significantly associated with one or more mRNA transcripts, separated based on negative or
positive correlations. (A) 20,376 combinations in the region 0–500 kb upstream of transcription start site and (B) 5,718 intragenic combinations.
Negative correlations were enriched in the region surrounding the transcription start site, both (C) upstream and (D) downstream. (E) 5,221
combinations 0–100 kb downstream of the gene. Associations corrected for multiple testing using false discovery rate at 5% (Q,0.05).
doi:10.1371/journal.pgen.1004735.g007
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S17). Of note, for all three genes selected for functional follow-up

experiments based on both significant mQTL and eQTL results

(Figure 5), DNA methylation was directly associated with gene

expression, e.g. DNA methylation of 8 CpG sites within or around

GSTT1 showed the most significant correlations with mRNA

expression of GSTT1 (Padj,9.9610213) (Table S17). Addition-

ally, DNA methylation within or around GPX7 and SNX19 was

directly associated with mRNA expression of respective gene

(Table S17).

Biological validation and replication of mQTL and eQTL
data

To biologically validate our findings from the genome-wide

mQTL analysis and the eQTL analysis, we analyzed DNA

methylation with Pyrosequencing and mRNA expression of two

selected genes (GPX7 and SNX19) in pancreatic islets from a

different set of human donors than the ones used for the mQTL/

eQTL analyses. The characteristics of the 37 islet donors used for

biological validation can be found in Table S18. Importantly, our

mQTL/eQTL data could be biologically validated in the new set

of islets (Figure 8A–B, Figure 5, Table S2 and Table S5).

We found significant differences in methylation and expression

between genotype groups which were in the same direction as the

genome-wide mQTL/eQTL analysis. Of note, for validation of

SNX19 expression, there was only expression data available from

one carrier of the rare variant and the association did not reach

significance, P = 0.12 (Figure 8B). It should also be noted that we

were able to validate significant mQTL data detected with an

Infinium probe that contains a SNP by the use of Pyrosequencing

(Figure 5C and Figure 8B), i.e., there is a SNP (rs4402303, C/

T) located in the SNX19 methylation probe (cg08912652, Table
S2), which either introduces or removes a CpG site and this SNP is

in full LD with our significant mQTL SNP (rs3751035; D9 = 1,

r2 = 1 based on 1000 Genomes project, CEU population panel,

distance between SNPs = 5.7 kb).

We further examined whether our significant islet cis-mQTLs

(presented in Table S2) were identified in previous reported

mQTL studies from other human tissues [8,9,12–14]. Here, we

tested for the overlap of CpG sites in significant mQTLs in our

study and previously reported mQTL studies. For example, we

found that ,33% of identified CpG sites in significant cis-mQTLs

in our human islet study were also identified in significant cis-
mQTLs in adipose tissue [12]. The numbers of CpG sites in

significant cis-mQTLs in our human islets study that could be

replicated in previously published human mQTL studies are

presented in Table S19. Significant cis-mQTLs identified in

human pancreatic islets and not replicated in other human tissues

may be islet specific. In total, we found 6,898 CpG sites in

significant cis-mQTLs annotated to 3,241 unique genes in our islet

mQTL analysis that cannot be replicated in any of the previously

published human mQTL studies used in the overlap analysis

[8,9,12–14]. To look for potential biological relevance of

significant cis-mQTLs only identified in human islets, we

performed KEGG pathway analysis of this subset of 3,241 unique

genes (Table S20). However, we cannot rule out that unequal

filtering and inclusion criteria of CpG probes, different significance

thresholds for calling mQTL hits and various cis windows together

with other factors may influence the replication of our islet

Figure 8. mQTLs/eQTLs of GPX7 and SNX19 identified in the genome-wide analysis were biologically validated in pancreatic islets
from a different set of human donors. Biological validation of associations for (A) GPX7 rs835342 with DNA methylation of cg18087326 as well as
with mRNA expression of GPX7 and (B) SNX19 rs3751035 with DNA methylation of cg08912652 as well as with mRNA expression of SNX19 in a set of
human pancreatic islets from donors (n = 37) not included in the genome-wide mQTL/eQTL analysis. DNA methylation was analyzed using
Pyrosequencing and mRNA expression using Affymetrix microarray. Data are presented as Box and Whisker plots with P-values.
doi:10.1371/journal.pgen.1004735.g008
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mQTLs in previously published mQTL studies in other human

tissues.

Associations between imputed genotype data and DNA
methylation in human pancreatic islets

To generate a reference map of mQTL data in human

pancreatic islets, we finally imputed autosomal genotype data

generated with the Human OmniExpress BeadChip for the 89

islet donors to the 1000 Genomes phase 1, version 3 reference

panel. We then associated imputed autosomal genotype data,

including 6,544,062 SNPs, with DNA methylation data of 468,787

CpG sites from islets of 89 human donors. Based on significance

thresholds of 4.9610210 and 2.5610213 in the cis- and trans-
mQTL analyses, respectively, we found 978,128 SNP-CpG pairs

in cis (Table 5 and Table S21) and 59,529 SNP-CpG pairs in

trans (Table 5 and Table S22) showing significant associations

between genotypes and DNA methylation levels. These 978,128

cis-SNP-CpG pairs consist of 494,642 unique SNPs (7.6% of tested

SNPs) and 14,308 unique CpG sites (3.1% of tested CpG sites),

which are annotated to 5,160 unique genes (Table 5 and Table
S21). Moreover, the 59,529 trans-SNP-CpG pairs consist of

34,351 unique SNPs (0.5% of tested SNPs) and 545 unique CpG

sites (0.1% of tested CpG sites), which are annotated to 352 unique

genes (Table 5 and Table S22). Of note, only 2,573 new CpG

sites were discovered in the cis-mQTL analysis of imputed

genotype data compared with the cis-mQTL analysis of directly

genotyped SNP data (Table 1/Table S2 and Table 5/Table
S21). Additionally, we discovered 162 new CpG sites in the trans-
mQTL analysis of imputed genotype data compared with the

analysis of directly genotyped SNP data (Table 1/Table S3 and

Table 5/Table S22). The mQTL analysis of imputed genotype

data identified all significant SNP-CpG pairs presented in Table
S2 and Table S3. The modest increase in discovered CpG sites

and unique genes in the mQTL analysis of imputed SNPs is most

likely due to a dependency in imputed and directly genotyped SNP

data as the directly genotyped SNP data generated with the

Human OmniExpress BeadChip was used for imputation.

Discussion

It is well established that genetic and epigenetic variation

contributes to the development of numerous diseases, including

diabetes [40,56,65,67–73]. While most studies have investigated

genetic and epigenetic mechanisms independent of each other,

they may interact and together affect biological processes and

susceptibility to disease. Here, we perform the first mQTL analysis

in human pancreatic islets targeting DNA methylation of ,99% of

RefSeq genes and most genomic regions in the human genome.

The present study gives new insights on how genetic and

epigenetic factors can interact in humans and provides a detailed

map of genetic loci affecting the genome-wide DNA methylation

pattern in human pancreatic islets.

Pancreatic b-cells secrete insulin in proportion to extracellular

glucose concentrations and thereby contribute to whole-body

glucose-homeostasis. Deficient insulin secretion, giving rise to

chronically elevated blood glucose levels, is a hallmark of diabetes

mellitus. Recent GWAS have identified SNPs associated with an

increased risk of both type 1 diabetes [15–17,19,21,22,24] and

type 2 diabetes [25–28]. Interestingly, many of these SNPs seem to

affect pancreatic islet function, autoimmunity and inflammation

[15,23,74–79]. However, SNPs identified by GWAS only explain

a small part of the estimated heritability of type 2 diabetes based

on family studies [31], suggesting that there are additional genetic

factors left to be discovered. SNPs that are carriers for inheritance

of DNA methylation may explain some of the missing heritability

of complex diseases. In the present study, we found that SNPs

associated with DNA methylation, mRNA expression and insulin

secretion in human pancreatic islets also showed nominal

associations with type 2 diabetes as reported by the DIAGRAM

consortium [59] and with glucose/insulin traits as reported by

MAGIC investigators [60–64]. It is possible that some of the

overlapping SNPs have escaped detection to disease phenotypes in

previous GWAS and that association to diabetes can only be

significantly detected if the degree of DNA methylation in cases

and controls is taken into account. However, other cohorts than

the one used in this study will be needed to test this.

Environmental factors can change the degree of DNA methylation

and may thereby control phenotype transmission [67,71,72,80–

82]. Effects of SNPs that interact with DNA methylation levels

may thereby change under different environmental conditions,

which could affect their impact on disease risk [70]. This may be

one explanation for gene-environment interactions.

The majority of reported loci that predispose to diabetes seem to

act through insulin secretion defects from pancreatic islets [83–85].

However, the molecular mechanisms of how most of these SNPs

affect their target gene or phenotypic outcome remain unknown.

In the present study, we found that several SNPs identified in

GWAS to associate with type 1 diabetes (e.g. PTPN2 [15], INS
[15] and HLA [86]), type 2 diabetes (e.g. ADCY5 [60,64,87] and

KCNJ11 [25,26,29,79]) and glucose-traits (GRB10 [64] and

PDX1 [64]) were also associated with differential DNA methyl-

ation between genotype groups in human pancreatic islets. In

particular we found an enrichment of significant mQTLs in the

HLA region on chromosome 6p21, which possess the strongest

genetic determinant for type 1 diabetes [23] and predisposition to

autoimmunity [78]. In total, 55% of the CpG sites in significant

cis-mQTLs on chromosome 6 were located within the HLA gene

region (Chr6:29.570.005–33.377.701 - human genome build 37)

Table 5. Number of significant mQTL results in human pancreatic islets when including imputed genotyped data.

cis-mQTL trans-mQTL

SNP-CpG pairs 978,128 59,529

Unique SNPs 494,642 34,351

Unique CpG sites 14,308 545

Unique genes 5,160 352

Significance threshold ,0.05 after correction for multiple testing.
Correction value cis = 102,307,720.
Correction value trans = 200,388,516,440.
doi:10.1371/journal.pgen.1004735.t005
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and the enrichment cannot be explained by the distribution of

analyzed sites on the array. A non-HLA gene, PTPN2, known to

affect the risk of type 1 diabetes and Crohn’s disease was also

identified in the mQTL analysis of human islets [15,74]. PTPN2
encodes a non-receptor type protein member of the tyrosine

phosphate family and is expressed in b-cells where it has been

shown to be involved in cytokine-induced apoptosis [75,88]. We

also found significant mQTLs in the PDX1 and INS (insulin)

genes. PDX1 (pancreatic duodenal homeobox 1) is a transcription

factor involved in pancreas development and function [89,90].

The PDX1 gene is also expressed in b-cells of the mature

pancreas, where it plays a role in glucose-dependent regulation of

insulin gene expression and insulin secretion. Recent studies from

our group show that increased DNA methylation may reduce

expression of PDX1 and INS in diabetic islets and contribute to

the development of the disease [40,68,91]. Altered DNA

methylation levels in human pancreatic islets based on genotype

may be a molecular mechanism through which diabetes associated

SNPs contribute to the disease phenotype.

We recently showed that ,50% of previously reported type 2

diabetes risk SNPs are so called CpG-SNPs that introduce or

delete possible DNA methylation sites. These type 2 diabetes

associated CpG-SNPs were significantly associated with altered

DNA methylation, gene expression and islet hormone secretion in

pancreatic islets from non-diabetic human donors [65]. In the

present study, we also looked for associations between significant

mQTL-SNPs and islet insulin secretion in our study cohort and we

found numerous associations with P,0.05. However, the lack of

available insulin secretion data measured in pancreatic islets in
vitro in an independent cohort limits our possibility to replicate

and strengthen our results. Nevertheless, our findings may provide

interesting biological insights to the field of insulin secretion.

Further, in order to mathematically model the relationships

between genotype, DNA methylation and a phenotype (mRNA

expression and insulin secretion), we performed CIT analysis [32].

While the CIT for mRNA expression remained significant after

correction for multiple testing, the CIT for insulin secretion did

not stand correction for multiple testing. Interestingly, we found

that genetic associations with mRNA expression of genes located

in the HLA region and of genes involved in glutathione

metabolism were potentially mediated through DNA methylation.

Both the HLA gene region and the glutathione genes have been

genetically linked to type 1 diabetes and are suggested to play a

biological role in islet function [37,47]. Our data also suggest that

DNA methylation of a CpG site within PTPRN2 is the potential

mediator of the association between a SNP in the same gene and

islet insulin secretion. The gene product of PTPRN2 (also known

as IA-2b or in rodents as phogrin) is a receptor type of the protein

tyrosine phosphatase family known to be a major islet autoantigen

in type 1 diabetes [54,55]. Expression of the PTPRN2 gene

product in pancreatic islets is shown to have important biological

b-cell functions and is involved in the regulation of insulin

secretion [92–95]. Together with the mQTL findings in e.g. HLA
genes and PTPN2, our results highlight that future studies may

need to integrate genetics and epigenetics in order to clarify how

candidate genes for type 1 diabetes contribute to the disease. To

our knowledge, only two previous studies have applied a CIT

approach to model the interacting relationship between genotype

and DNA methylation on the effect of a human phenotype

[13,96]. In line with the study by Liu et al. that found ten

differentially methylated positions in blood that mediate genetic

risk in rheumatoid arthritis [96], we found in the present study 14

differentially methylated positions in human islets that act as

potential mediators of genetic associations with mRNA expression.

Since the CIT analyses are based on hypotheses that mathemat-

ically model the causal relationships of interactions between

genetics and epigenetics on phenotypes, we cannot rule out the

fact that confounding factors not coped for in the models may

influence the suggested calls of causality. Although independent

studies need to verify the modelled relationships, we will

emphasize that the study approach previously addressed by Liu

et al [96] and Gutierrez-Arcelus et al [13] and applied here reveals

novel interesting information about molecular interactions be-

tween genetics and epigenetics, and may pose new questions about

disease causality.

Functional in vitro follow-up studies in b-cells of selected genes,

based on our mQTL/eQTL findings, showed that decreased

expression of Gpx7 and Gstt1 significantly affects caspase activity

and decreased expression of Snx19 significantly affects cell

number. These functional experiments were performed to test if

any of the identified genes in the mQTL/eQTL analyses have a

biological role in b-cells. Importantly, we could also biologically

validate our mQTL/eQTL results for GPX7 and SNX19 in a

different set of islets than the ones included in the genome-wide

analysis. Together, our data propose a model where altered DNA

methylation and expression of these genes in human islets based

on genotype may influence in vivo islet b-cell number and thereby

diabetes risk. Interestingly, GPX7 (glutathione peroxidase 7), and

GSTT1 (glutathione S-transferase theta 1), are involved in

glutathione metabolism, a pathway we found to be enriched

among differentially expressed genes in the eQTL analysis of the

human islets, and known to have cell protective functions against

oxidative stress [48,49,52]. Moreover, the protein encoded by

SNX19 (sortin nexin 19) has been shown to interact with the islet

autoantigen IA-2 and put cells into a pre-apoptotic state [50].

Here, we identified numerous mQTL loci that affect the

expression of these genes. Interestingly, some of these loci were

also nominally associated with glucose traits in analyses by

MAGIC investigators [60–64]. Together, our functional data

provide novel biological insights in the regulation of b-cell

function.

Additionally, the genes covering significant cis-mQTLs were

enriched in a total of 11 KEGG pathways. These include 9 KEGG

pathways relevant to pancreatic islet function, e.g. type 1 diabetes

[88,97], cell adhesion molecules [98], extracellular-receptor matrix

(ECM) interaction [99] and folate biosynthesis [100]. It should be

noted, however, that many individual genes are included in

multiple KEGG pathways and the significant pathways that do not

seem to be relevant for pancreatic islet function, such as viral

myocarditis, contain numerous individual genes with important

roles in pancreatic islets e.g. CASP3, CAV1 and HLA-genes [101–

103]. Moreover, for the analyses of genes covering significant cis-
eQTLs and trans-mQTLs, all of the identified KEGG pathways

were relevant to pancreatic islet function [49,104–111].

This study is to our knowledge the first to perform both cis and

trans mQTL analyses of DNA methylation data generated with

the Infinium HumanMethylation450 BeadChip. Our aim was to

select a cis distance that illustrates the overall distribution of

significant cis-mQTLs. Before selecting 500 kb as our cis distance,

we performed a preliminary mQTL analysis where we used 1 Mb

as the cis distance. However, based on the small number of

significant SNPs identified in the cis window between 501 kb and

1 Mb (e.g. only 1.43% of significant mQTL-SNPs were located in

the 501–1000 kb window, while 98.57% of significant mQTL-

SNPs were located within the 0–500 kb window), we reduced the

cis distance to 500 kb. Quon et al have previously tried to find an

optimal window size for inclusion of cis acting SNPs for mQTL

analysis of methylation data from the human brain generated with
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the Infinium HumanMethylation27 BeadChip [112]. Here, they

propose that using a too large or too small cis window dramatically

reduced the number of identified heritable loci. However, it should

be noted that the optimal cis distance may vary in different tissues

and cell types.

In our mQTL analysis, we took advantage of the sampling of

DNA methylation across the genome to explore distribution of

mQTLs in genomic regions based on relation to the nearest gene

or in relation to the nearest CpG island. Interestingly, based on

Illumina’s annotations, we found an enrichment of significant cis-
mQTLs in the gene body and intergenic regions, as well as in

northern- and southern shores, southern shelf and open sea.

Additionally, we found less significant cis-mQTLs than expected in

CpG islands. Most of the previous mQTL analyses, which mainly

cover DNA methylation data in CpG islands of promoter regions,

have subsequently not been able to describe the genomic location

of significant mQTLs [8,9,113]. However, our study suggests that

DNA methylation in more CpG-depleted regions to a larger extent

is regulated by genetic factors. These results confirm previous

efforts from our group and others [12,72,91,114]. Interestingly, a

very recent study from our group shows that differentially

methylated CpG sites in pancreatic islets from patients with type

2 diabetes compared to non-diabetic donors are also overrepre-

sented in intergenic regions and the open sea while underrepre-

sented in CpG islands [91]. These results are also in line with a

previous global analysis of DNA methylation in adipose tissue

from twins using the Illumina 450 K chip, where they showed that

high variability of DNA methylation in the gene body and

intergenic regions across individuals can be explained by

regulation of genetic factors [12]. We further took advantage of

the published mQTL data in adipose tissue from Grundberg et al

[12] and analysed if the genomic distribution of their significant

cis-mQTLs show a similar pattern to the findings in our study.

Confirmative, significant cis-mQTLs in human adipose tissue were

overrepresented in the intergenic region, the gene body, the open

sea as well as the shore and shelf regions, while underrepresented

in regions close to the TSS and CpG island regions based on

Illumina’s annotations. In agreement with the data in the present

study, we have previously found that CpG sites with significantly

altered methylation in human adipose tissue after an exercise

intervention or based on type 2 diabetes are enriched in the gene

body, intergenic region and open sea, while underrepresented in

the CpG island region [72,114]. Together, our genome-wide data

point to a direction that variable CpG sites in the human genome

are more frequently located outside CpG rich regions. Moreover,

the role of DNA methylation seems to vary in context between

different genomic elements, and although the function of DNA

methylation in gene body and enhancer regions is less well studied

compared to promoter methylation, DNA methylation in these

genomic regions seems to be crucial for biological function and cell

regulation [40–43,66]. It is possible that CpG sites annotated to

intergenic regions in our study overlap with enhancer regions and

thereby involve distal gene regulatory elements. Moreover, CpG

sites located within gene bodies or non-coding regions of a gene

may overlap with enhancer elements for another distant gene

[115]. Additionally, it has also been suggested that the relationship

between gene body DNA methylation and expression is bell

shaped and varies depending on the transcriptional activity of the

gene, e.g. that high levels of gene body methylation are observed

in genes with moderate expression levels while low levels of gene

body methylation are observed in genes with low and high

expression [116].

Although our mQTL analysis was performed in pancreatic islets

of to date the largest cohort of human islet donors, our statistical

power is limited compared to large genetic population studies.

Nevertheless, after correction for multiple testing, we identified

,67,000 significant SNP-CpG pairs in human islets which

demonstrate a strong interaction between genetic and epigenetic

mechanisms. It may seem surprising that we found such a large

number of significant associations between SNPs and DNA

methylation in human islets from 89 donors after correcting for

multiple testing (e.g. we corrected for 102,307,720 tests in cis).
However, our mQTL data in human islets are in line with

previous mQTL analyses performed in human brain samples,

where ,8,000–12,000 significant SNP-CpG pairs were identified

when DNA methylation of only ,27,000 CpG sites was analyzed

in approximately 100–150 samples [8,9]. One should also keep in

mind that ,28% of common SNPs in the human genome either

introduce or remove a CpG site [117]. These so called CpG-SNPs

can have very strong effects on DNA methylation in human tissues

[65]. They have also been shown to be biologically relevant

[70,118–125]. Altering the binding of certain proteins is one

possible mechanism through which methylation in CpG-SNPs can

affect gene expression. For example, a recent study showed that

DNA methylation of a CpG site created by the G allele of a CpG-

SNP located in the 59UTR of the GDF5 gene altered the binding

affinity for SP1 and SP3 repressor proteins which have a higher

affinity to the unmethylated allele and this lead to an expression

imbalance between both alleles [118]. Interestingly, another study

identified a variant associated with alcohol dependence that

introduces a CpG site in PDYN. Even though carriers of the T risk

allele had the highest binding affinity for a protein that regulates

PDYN expression positively the researchers found that increased

DNA methylation of the non-risk C allele increased its binding

affinity for this protein more than the non-methylated C allele but

still less than the risk T allele. Methylation of the C allele resulted

in increased PDYN expression and made it act similar to the risk

allele, and it is possible that the increase in DNA methylation may

be a consequence of alcohol consumption [119]. Additionally, our

group has previously reported a CpG-SNP in the promoter of

NDUFB6 that shows increased DNA methylation in skeletal

muscle from elderly but not young subjects which resulted in

reduced NDUFB6 expression and insulin-stimulated glucose

uptake only in the elderly subjects [70]. This demonstrates that

the phenotypic outcome of a CpG-SNP can result not only from

genotypic differences but that even carriers of the same genotype

can have a different phenotype depending on the degree of DNA

methylation of the SNP site which can be influenced by lifestyle

and age. Interestingly, a CpG-SNP in the promoter of CYP17A1
is associated with Oligoasthenoteratozoospermia and testosterone

levels in infertile males and the degree of methylation in the SNP

site was high in colon and stomach tissue while low in testis, kidney

and adrenal gland [120]. The tissue specific DNA methylation

pattern within the CpG-SNP site of CYP17A1 was further

associated with high CYP17A1 expression in tissues with low

methylation in the SNP site. In addition, intragenic CpG-SNPs

can influence transcription elongation positively or negatively

through alternative promoters or noncoding transcripts [121–

123]. Methylation of a CpG-SNP can also play a role in the

regulation of splicing by helping the splicing machinery to identify

exons [124] or by affecting recombination rates [125]. Together,

these studies support key biological functions of differential DNA

methylation due to CpG-SNPs.

It should also be noted that previous human case-control studies

[73,91,126] and human intervention studies [71,72,80] have

identified quite a large number of significant differences in DNA

methylation in cohorts with less than 100 samples. Together, these

studies demonstrate that both genetic and environmental factors
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can have strong effects on the human methylome and that a large

number of significant differences in methylation can be found in

modest sample-sizes.

Epigenetic modifications are involved in the regulation of gene

transcription [67]. However, no previous study has to our

knowledge related DNA methylation data generated with the

HumanMethylation450 BeadChip to genome-wide expression

data. Here, we found direct associations between DNA methyl-

ation of 22,773 CpG sites and mRNA expression of 4,876 genes in

human islets. Interestingly, ,2/3 of the CpG sites that showed

significant associations with mRNA expression were located

upstream of a transcription start site. Additionally, 90% of the

associations were negative when CpG sites were located in the

region 1 kb upstream to 1 kb downstream of the transcription start

site. These data are in line with our previous studies where we

have shown that DNA methylation in promoter regions close to

the transcription start site has direct negative effects on the

transcriptional activity using luciferase assays [71,72]. While

methylation close to a transcription start site is known to block

initiation of transcription, methylation in the gene body might

contribute to transcriptional elongation [66]. In the present study,

35.4% of the associations between gene expression and DNA

methylation of intragenic CpGs were positive. Associations

between expression and methylation of CpGs located downstream

of genes have not been studied in human genome-wide data. We

found direct associations between expression and methylation of

CpGs located downstream of genes, where 47.9% of the

associations were negative. However, it remains to be tested if

methylation downstream of a gene affects the transcriptional

machinery. Additionally, for ,70% of identified mQTLs affecting

gene expression there was also a direct association between DNA

methylation and gene expression in human islets, suggesting that

altered DNA methylation in the mQTL has a direct impact on

gene expression. The CIT further supported this hypothesis.

Although, these novel data improve our understanding of the

associations between DNA methylation and gene expression

throughout the genome, additional studies are needed to examine

if the genome-wide association-pattern between methylation and

expression is tissue specific or general for multiple human tissues.

The key biological findings of our study include; i) the

identification of a large number of SNPs with strong effects on

DNA methylation in human pancreatic islets; ii) the discovery of

SNPs previously known to affect diabetes and its related traits that

affect DNA methylation in human pancreatic islets; iii) the first

demonstration of how SNPs can mediate their effects on gene

expression via altered DNA methylation in human pancreatic

islets; iv) the strong genetic regulation of DNA methylation in

genomic regions with low CpG density; and v) the illustration of

how the genome-wide DNA methylation pattern correlates

directly with gene expression in human pancreatic islets. Impaired

insulin secretion is a hallmark of diabetes. Understanding gene

regulation in human pancreatic islets is therefore essential for

creating a full picture of diabetes and for optimal drug

development. As the prevalence of diabetes is rapidly increasing

worldwide, the need for new treatment strategies for diabetic

patients is growing. New treatments may include epigenetic

editing, where selected genes are targeted [127]. The results from

our study may then be used to identify target genes for epigenetic

editing. Additionally, a growing body of literature proposes that

new therapeutic treatments for diabetes may target epigenetic

mechanisms e.g. enzymes responsible for altering the epigenetic

pattern in target tissues for the disease [128,129]. Importantly, our

study shows that subjects at risk for diabetes, by carrying genetic

risk variants for the disease, have altered DNA methylation in their

pancreatic islets, and future therapeutics targeting epigenetic

modifications may potentially reduce the risk for diabetes in these

subjects.

In conclusion, we describe for the first time genome-wide

interactions between genetic and epigenetic variation in human

pancreatic islets. We show that interactions of these regulatory

mechanisms can influence islet mRNA expression, islet function

and potentially diabetes risk. Our results demonstrate the

importance of considering epigenetics when studying the impact

of genetic variation on phenotypic outcomes and human complex

diseases. All together, these data can serve as a reference for future

studies further dissecting the impact of genetic variation on

epigenetic traits as well as for the understanding of epigenetic

regulation of biological mechanisms.

Methods

Ethics statement
The pancreatic islet donor or her/his relatives had given their

written or oral informed consent to donate organs for medical

research upon admission to intensive care unit. All procedures

were approved by ethics committees at Uppsala and Lund

Universities.

Sample information
Pancreatic islets from 89 human donors not diagnosed with

diabetes mellitus were obtained from the Nordic Network for Islets

Transplantation, Uppsala University, Sweden (Table S1). This

islet cohort is a resource within the human tissue laboratory of

Lund University Diabetes Center (http://www.ludc.med.lu.se/

platforms/human-tissue-laboratory/) and data from this cohort

has previously been described [91,130–132]. Islets were prepared

and cultured for 4.060.2 days prior to RNA and DNA isolation as

previously described [68]. AllPrep DNA/RNA Mini Kit was used

for islet DNA and RNA isolation (Qiagen GmbH, Hilden,

Germany) and concentrations and quality were measured with

NanoDrop ND-1000 spectrophotometer (NanoDrop Technolo-

gies, Wilmington, DE). Islet purity was 7560.8% [133]. Glucose-

stimulated insulin secretion was measured as stimulation index as

previously described [134].

Genotype data
Genome-wide genotyping was performed on DNA (200 ng)

from 89 islet donors using the HumanOmniExpressBeadChip,

which covers 731,412 SNPs and the iScan system (Illumina, Inc.

CA) according to the Illumina protocol. Genotype calling was

done with GenomeStudio software (Illumina). Quality control of

genotype data was performed by PLINK software toolset [135].

All subjects passed the call rate threshold of .98% for inclusion.

No gender discrepancy between the supplied donor information

and the genotypic gender was detected. In population stratification

analysis, no sample was highlighted as a population outlier

supporting a homogenous ethnic make-up of the included islet

donors. No donors were found to be related. SNP data were

excluded from subsequent analysis based on following criteria’s:

call rate ,98%; monomorphic SNPs; MAF,0.05; HWE,0.001;

SNPs located on X and Y chromosomes due to bias of mixed

gender population or with missing position. In total 574,553 SNPs

passed quality control.

DNA methylation analysis
Genome-wide DNA methylation profiling in pancreatic islets

from the 89 human donors was assessed using the Infinium

HumanMethylation450 BeadChip [39] (Illumina, Inc.), which
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analyzes DNA methylation in 482,421 CpG sites that cover 21,231

genes (99% of RefSeq genes) and all genomic regions [39]. DNA

(500 ng) from pancreatic islets was bisulfite treated with the EZ

DNA methylation kit (Zymo Research, Orange, CA) and used for

analysis of DNA methylation with Infinium assay according to the

standard protocol (User Guide part #15019519). BeadChips were

imaged with Illumina iScan. All samples had an acceptable

bisulfite conversion efficiency (intensity values .4000) [136] and

passed quality control steps in GenomeStudio where built in

control probes for staining, hybridization, extension and specificity

were examined.

Subsequent analyses were performed using the lumi package

from Bioconductor [137]. Methylation Beta-values were converted

to M-values (M = log2(Beta/(1-Beta))) [138] and these were used

for all statistical analysis. However, Beta-values were included in

the final report for its biological interpretation (Beta = 2M/(2M+1))

[138]. Probes were then filtered and all CpG sites with a mean

detection P-value,0.01 were considered detected and used for

subsequent analysis. The methylation data were background

corrected by subtracting the median intensities of built in negative

controls and then normalized using quantile normalization

[137,139]. COMBAT was used to correct for batch effects

[140]. While a strong batch effect could be identified before

COMBAT was applied (P = 7.561026 for correlation between

batch and the 1st component in a principal component analysis),

there was no longer any identified batch effect after COMBAT

(P.0.05 for the correlation between batch and first 10 principal

components). After preprocessing of methylation data and

exclusion of CpG sites located on X and Y chromosomes due to

bias of mixed gender population, we obtained DNA methylation

data for 468,787 CpG sites from human pancreatic islets. Probes

reported to be cross-reactive ($47 bases) or SNPs within

underlying probe sequence, according to Chen et al. (2013) [33],

are indicated in Table S2 and Table S3. Based on the important

role of CpG-SNPs on DNA methylation [65], probes with

potential SNPs in the probe sequence were not filtered out from

the mQTL analysis. The overall variability in DNA methylation

from all 89 donors is illustrated in Figure S1.

mRNA expression analysis
mRNA expression in pancreatic islets from 89 donors was

analyzed genome-wide using the GeneChip Human Gene 1.0 ST

array (Affymetrix, Santa Clara, CA) as previously described [133].

The array data was summarized and normalized using the Robust

Multi-Array analysis method with the oligo package from

Bioconductor. Gene transcripts with missing annotation or located

on X and Y chromosomes were excluded from the dataset.

COMBAT was used to correct for batch effects [140]. In total,

mRNA expression of 27,391 transcripts was obtained for further

analysis. The overall variability in mRNA expression from all 89

donors is illustrated in Figure S3.

Methylation quantitative trait loci (mQTL) analysis
To test for associations between SNPs and DNA methylation, a

linear regression model with biological covariates was used. In the

linear model; DNA methylation values were used as the

quantitative trait, SNP genotypes were encoded as 0, 1 or 2

according to the number of minor alleles, and the categorical

variable gender as well as the continuous variables age, BMI,

HbA1c, islet purity and islet culture days were included as

covariates. The analysis was based on an additive genetic model.

To distinguish between local (cis-) and distant (trans-) mQTLs, an

arbitrary boundary with the maximum distance of 500 kb between

SNPs and CpG sites were used to define cis-mQTLs. All other

SNP-CpG pairs were considered as trans-mQTLs. The mQTL

analysis was performed by using the R package Matrix eQTL

[141]. P-values were adjusted with a correction value for multiple

testing, which takes into consideration the dependency of linkage

disequilibrium (LD) between SNPs by LD based pruning and

thereby uses the number of independent tests. In the cis-analysis,

LD based pruning of SNPs within a distance of 500 kb from a

CpG site was performed by pairwise-tagging (r2,0.9) and the total

sum of all tagSNPs connected to each CpG site was used as a

correction value when correcting for multiple testing. LD

calculations were performed using R trio package (http://www.

bioconductor.org/packages/release/bioc/html/trio.html). The

correction value for the trans-analysis was calculated as the total

number of analyzed CpG sites multiplied by the number of all

tagSNPs in the whole dataset (pairwise-tagging r2,0.9) and

subtracted by the correction value for the cis-analysis. Significance

threshold was set to P,0.05 after correction for multiple testing.

Expression quantitative trait loci (eQTL) analysis of SNPs
identified in the mQTL

To test for associations between SNPs and mRNA expression,

an eQTL analysis in the human pancreatic islets including the

significant SNPs found to be associated with DNA methylation in

the cis- or trans-mQTL analyses were performed. In the eQTL

analyses, significant SNPs identified in the cis-mQTL analysis

were related to expression of genes in cis (#500 kb between SNP

and mRNA transcripts); meanwhile, significant SNPs identified in

the trans-mQTL were related to expression of all analyzed genes

(no distance limit). To test for associations between SNPs and

mRNA expression a linear regression assuming an additive genetic

model was used. mRNA expression values were used as

quantitative trait, SNP genotypes were encoded as 0, 1 or 2

according to the number of minor alleles, and the categorical

variable gender as well as the continuous variables age, BMI,

HbA1c, islet purity and islet culture days were included as

covariates. In the eQTL analysis of significant cis-mQTL SNPs,

the correction value for multiple testing was calculated by the total

sum of tagSNPs within 500 kb to each mRNA transcript in the

dataset, where LD pruning of SNPs within a distance of 500 kb

from a mRNA transcript was performed by pairwise-tagging with

r2,0.9. The correction value for multiple testing for the eQTL

analysis of significant trans-mQTL SNPs was calculated by the

number of tagSNPs (LD pruning of included SNPs by pairwise

tagging with r2,0.9) multiplied by the number of analyzed mRNA

transcripts.

Gene ontology and pathway analyses
Enrichment of gene ontology and/or biological pathways

assigned by KEGG was tested among the genes significantly

identified in the mQTL and eQTL analyses using Webgestalt

(http://bioinfo.vanderbilt.edu/webgestalt, March 2013). The full

dataset of analyzed genes in respective mQTL and eQTL analysis

was used as background reference. P-values for the KEGG

pathway analyses were adjusted for multiple testing using the

Benjamini-Hochberg method.

RNA interference of Gstt1, Gpx7 and Snx19 in clonal
b-cells

Genes were silenced by siRNA transfection into 832/13 INS-1

b-cells [142] with Dharmafect I (Thermo Scientific, Waltham,

MA) according to the manufacturer’s instructions. siRNAs (Life-

Technologies, Paisley, UK) used were s151334 (Gpx7), s129302

(Gstt1), and s164019 (Snx19). RNA was isolated 72 h post
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transfection with the RNeasy Plus mini kit (Qiagen) and converted

to cDNA with the RevertAid First Strand cDNA Synthesis kit

(Thermo Scientific). Knockdown was quantified by qPCR with the

following TaqMan assays (Life Technologies); Rn01416464_m1

(Gpx7), Rn00583932_m1 (Gstt1), and Rn01524775_m1 (Snx19).

Assays for Cyclophilin B (Rn03302274_m1) and Hprt1
(Rn01527840_m1) were used as endogenous controls. Quantifi-

cation was done with the DDCt method.

Proliferation/apoptosis measurements in clonal b-cells
b-cell number was quantified 72 h post transfection by crystal

violet staining as previously described [143], except we used a

0.1% crystal violet solution and read absorbance at 600 nm. The

combined activity of caspase-3 and -7 was determined 72 h post

transfection with the Apo-One Homogenous Caspase-3/7 assay

(Promega, Madison, WI). Lipotoxicity was induced as previously

described [144].

Associations of identified mQTL/eQTL SNPs with islet
insulin secretion

To examine if SNPs identified in the mQTL/eQTL analyses were

associated with glucose-stimulated insulin secretion in human

pancreatic islets cultured in vitro, linear regression analyses assuming

additive models adjusted for age, sex and BMI were performed.

Glucose-stimulated insulin secretion, measured as stimulation index

[134], was naturally log transformed before analysis.

Causal inference test (CIT)
A statistical hypothesis test called CIT [32] was used to

distinguish if associations between genotype of SNPs identified in

the mQTL analysis and phenotype (gene expression and islet

insulin secretion) was potentially mediated by DNA methylation of

CpG sites. Each of the genotype (G), methylation (M) and

phenotype (Y) relationships were assessed using CIT to classify

them as causal (methylation mediated), reactive (methylation

consequential) or independent [32]. The statistical test of CIT is

based on four mathematical conditions which must be satisfied for

the definition of causality: 1) G and Y are associated, 2) G is

associated with M after adjusting for Y, 3) M is associated with Y

after adjusting for G and 4) G is independent of Y after adjusting

for M [32]. A causal call with a hypothesis P-value,0.05 suggests

that DNA methylation of a CpG site is a potential mediator

between a SNP and phenotype.

Overlap between identified mQTL/eQTL SNPs and
reported diabetes SNPs

The catalog of published genome-wide association studies

(GWAS) (www.genome.gov/gwastudies, accessed March 2013)

[57] was used to search for SNPs reported to be significantly

associated (P,1026) with type 1- and/or type 2 diabetes or

diabetes related traits as well as breast cancer, stroke and

hypothyroidism used as evaluation references. To gain better

reference coverage in the overlap between reported SNPs in the

GWAS catalog and identified mQTL/eQTL SNPs in the islets, a

SNP annotation and proxy (SNAP) [58] search was performed to

identify SNPs in LD with the identified mQTL/eQTL SNPs. The

search of LD SNPs was based on pairwise LD calculations of

genotype data from the 1000 Genomes project of the CEU

population panel, with r2 threshold .0.8 and a distance limit of

500 kb from the query SNP. The published diabetes SNPs from

the GWAS catalog were then merged with the identified mQTL/

eQTL SNPs, together with LD SNPs, to search for overlap

between the two datasets.

Publicly available data from the DIAGRAM consortium and

MAGIC investigators were also used to look for overlap between

identified mQTL-SNPs and SNPs showing associations with

diabetes or related traits (P,0.05).

Associations between DNA methylation and mRNA
expression

To test if DNA methylation is directly associated with gene

expression in human pancreatic islets, we performed a linear

regression between DNA methylation of CpG sites and mRNA

transcripts in cis (500 kb up- and 100 kb downstream of respective

gene), including age, gender, BMI, HbA1c, islet purity, days in

culture and batch as covariates.

Analysis of DNA methylation with Pyrosequencing
Pyrosequencing was used to biologically validate the mQTL

data for methylation of two CpG sites annotated to GPX7
(cg18087326) and SNX19 (cg08912652). EpiTect Bisulfite Kit

(Qiagen) was used for bisulfite conversion of human islet DNA.

The PyroMark Assay design Software 2.0 (Qiagen) was used

for primer design. PyroSequencing assays (PCR primers and

sequencing primer) for the selected CpG sites (Qiagen) can be

found in Table S23. The PyroMark PCR kit was used for

amplification of bisulfite converted DNA. The PyroMark ID

96 and PyroMark Gold Q96 reagents were used for pyrose-

quencing (Qiagen) according to the manufacturer’s instruc-

tions. Data were analyzed with the PyroMark Q96 2.5.7

software program.

Imputation of genotype data
Autosomal genotype data generated with the HumanOm-

niExpressBeadChip and which passed quality control for the 89

islet donors was imputed to 1000 Genomes phase 1 using

Shapeit [145] for phasing and Impute2 for imputation [146].

Imputed data were then filtered based on MAF,0.05 and

HWE,0.001.

Statistical methods
Results are expressed as mean 6 sd/sem or Box and Whisker

plots. Data were analyzed using linear regression models or

Student’s t-test. T-statistics are reported from the linear regression

analysis, where a t-statistic is defined as the effect size estimate

(slope coefficient) divided by its standard error.

Supporting Information

Figure S1 A correlation heatmap illustrating the overall

variability in DNA methylation of all analyzed probes among

the 89 donors included in the analyses.

(PNG)

Figure S2 Genomic distribution of CpG sites of significant

mQTLs in published data of human adipose tissue from

Grundberg et al. 2013. Distribution of CpG sites of significant

mQTLs in relation to (A) nearest gene and (B) CpG islands in

comparison to all analyzed CpG sites on the Infinium Human

Methylation450 BeadChip. (C) Chromosomal distribution of CpG

sites of significant mQTLs. mQTL data extracted from publicly

available data from Grundberg et al. 2013 [12]. *Significantly

different distribution (P,0.05) of CpGs of significant mQTLs from

what is expected by chance based on a Chi-squared-test when

compared with all analyzed CpG sites on the Infinium

HumanMethylation450 BeadChip.

(TIF)
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Figure S3 A correlation heatmap illustrating the overall

variability in mRNA expression in human pancreatic islets of all

analyzed probes among the 89 donors included in the analyses.

(PNG)

Figure S4 Gene Ontology of significant cis-mQTLs including

genes annotated to the CpG sites showing differential DNA

methylation in human pancreatic islets. Analysis performed using

Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt, March

2013).

(TIF)

Figure S5 Gene Ontology of genes showing differential

expression in the eQTL analysis of cis-mQTL-SNPs. Analysis

performed using Webgestalt (http://bioinfo.vanderbilt.edu/

webgestalt, March 2013).

(TIF)

Figure S6 Gene Ontology of significant trans-mQTLs including

genes annotated to CpG sites showing differential DNA

methylation in human pancreatic islets. Analysis performed using

Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt, March

2013).

(TIF)

Figure S7 Gene Ontology of genes showing differential

expression in the eQTL analysis of trans-mQTL-SNPs. Analysis

performed using Webgestalt (http://bioinfo.vanderbilt.edu/

webgestalt, March 2013).

(TIF)

Figure S8 Identification of mQTLs where DNA methylation

potentially mediates genetic associations with islet insulin secretion

in human pancreatic islets. (A) Depiction of possible relationship

models between genotype as a causal factor (G), DNA methylation

as a potential mediator (M) and islet insulin secretion as

phenotypic outcome (I). Left diagram: The causal or methylation

mediated model. Middle diagram: The reactive or methylation-

consequential model (reverse causality). Right diagram: The

independent model. (B) Illustration of the study approach to

identify if DNA methylation of CpG sites potentially mediates the

causal association between SNPs and islet insulin secretion. Left:

Workflow steps. Middle: Tested relationships between G, M and I

in the different steps. Right: Number of identified sites in each

step. Bottom: Conditions that must be fulfilled to conclude a

mathematical definition of a causal relationship between G, M and

I. CIT not corrected for multiple testing and P-value,0.05

considered significant.

(TIF)

Table S1 Islet donor characteristics and glucose-stimulated

insulin secretion in human pancreatic islets included in the study.

(PDF)

Table S2 Identified cis-mQTLs. (Sheet a) Presents all cis-
mQTLs showing significant association between SNP genotype

and CpG DNA methylation after correction for multiple testing.

The maximum distance of 500 kb between SNPs and CpG sites

were used to define cis-mQTLs. (Sheet b) Annotation of SNPs to

significant cis-mQTLs. Annotation based on HumanOmniEx-

press-12v1_J_Gene_Annotation_build37 (Illumina). (Sheet c) An-

notation of CpGs to significant cis-mQTLs. Annotation based on

Infinium HumanMethylation 450 BeadChip (Illumina) [39]. Long

stretch enhancers for human pancreatic islets: Based on publicly

available data from Parker et al. (2013) [42]. Active enhancer

regions in human pancreatic islets: Based on data from Pasquali et

al. (2014) [43]. Cross-reactive probes: Maximum number of bases

($47) matched to cross-reactive target and number of targets as

reported by Chen et al.(2013) [33]. Probe SNPs reported by Chen

et al. (2013) [33]: SNPs reported by the 1000 Genomes project

(release 20110521) that are located within HumanMethylation450

probes, either in sequence of hybridization or at position of single

base extension (SBE). Locations of probe-SNPs are presented in

relation to MAPINFO of CpG sites, where SBE occurs. Global

allele frequencies (AF) and European continental allele frequencies

(EUR_AF) of reported probe-SNPs are included in the file.

(XLSX)

Table S3 Identified trans-mQTLs. (Sheet a) Presents all trans-
mQTLs showing significant association between SNP genotype

and DNA methylation of CpG sites after correction for multiple

testing. All SNP-CpG pairs not located in cis were considered as

trans-mQTLs. (Sheet b) Annotation of SNPs to significant trans-
mQTLs. Annotation based on HumanOmniExpress-12v1_J_Ge-

ne_Annotation_build37 (Illumina). (Sheet c) Annotation of CpGs

to significant trans-mQTLs. Annotation based on Infinium

HumanMethylation 450 BeadChip [39]. Long stretch enhancers

for human pancreatic islets: Based on publicly available data from

Parker et al. (2013) [42]. Active enhancer regions in human

pancreatic islets: Based on data from Pasquali et al. (2014) [43].

Cross-reactive probes: Maximum number of bases ($47) matched

to cross-reactive target and number of targets as reported by Chen

et al. (2013) [33]. Probe SNPs reported by Chen et al. (2013) [33]:

SNPs reported by the 1000 Genomes project (release 20110521)

that are located within HumanMethylation450 probes, either in

sequence of hybridization or at position of single base extension

(SBE). Locations of probe-SNPs are presented in relation to

MAPINFO of CpG sites, where SBE occurs. Global allele

frequencies (AF) and European continental allele frequencies

(EUR_AF) of reported probe-SNPs are included in the file.

(XLSX)

Table S4 Distribution P-values of CpG sites of significant

mQTLs in relation to (A) chromosomes, (B) nearest gene, and (C)

CpG islands. Supporting information to Figure 3A, 3C and 3D.

(PDF)

Table S5 Identified eQTLs of significant cis-mQTL-SNPs.

(Sheet a) Presents all eQTLs showing significant association

between genotype of cis-mQTL-SNPs and mRNA expression after

correction for multiple testing. SNPs regressed against mRNA

expression of mRNA probe sets located in cis (#500 kb). (Sheet b)

Annotation of SNPs to significant eQTLs. (Sheet c) Annotation of

mRNA probesets to significant eQTLs. Annotation based on

HuGene-1_0-st-v1.na32.hg19.transcript (Affymetrix).

(XLSX)

Table S6 Identified eQTLs of significant trans-mQTL-SNPs.

(Sheet a) Presents all eQTLs showing significant association

between genotype of trans-mQTL-SNPs and mRNA expression

after correction for multiple testing. No distance limit between

SNPs and mRNA probesets. (Sheet b) Annotation of SNPs to

significant eQTLs. (Sheet c) Annotation of mRNA probesets to

significant eQTLs. Annotation based on HuGene-1_0-st-

v1.na32.hg19.transcript (Affymetrix).

(XLSX)

Table S7 CIT of significant cis-mQTLs/eQTLs identified in

human pancreatic islets hypothesizing relationship models be-

tween genotypes, DNA methylation and mRNA expression. CIT,

causal inference test [32]. Genotype of SNPs identified in the cis-
mQTL/eQTL analysis are considered as causal factor (G), DNA

methylation of CpG sites identified in the cis-mQTL analysis as

potential mediator (M) and mRNA expression identified in the cis-
eQTL as phenotypic outcome (E) (see Figure 4A for potential
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relationships between factors). Called hypothesis models in the CIT

analysis: Causal relationship (causal P-value,0.05 and reactive

P-value.0.05); Reactive relationship (causal P-value.0.05 and

reactive P-value,0.05); Independent relationship (causal P-value.

0.05 and reactive P-value.0.05); and No-call (causal

P-value,0.05 and reactive P-value,0.05). Highlighted in bold

shows causal relationships with FDR,5% (Causal Q-value,0.05).

(XLSX)

Table S8 CIT of significant trans-mQTLs/eQTLs identified in

human pancreatic islets hypothesizing relationship models be-

tween genotypes, DNA methylation and mRNA expression. CIT,

causal inference test [32]. Genotype of SNPs identified in the

trans-mQTL/eQTL analysis are considered as causal factor (G),

DNA methylation of CpG sites identified in the trans-mQTL

analysis as potential mediator (M) and mRNA expression

identified in the trans-eQTL as phenotypic outcome (E) (see
Figure 4A for potential relationships between factors). Called

hypothesis models in the CIT analysis: Causal relationship (causal

P-value,0.05 and reactive P-value.0.05); Reactive relationship
(causal P-value.0.05 and reactive P-value,0.05); Independent
relationship (causal P-value.0.05 and reactive P-value.0.05); and

No-call (causal P-value,0.05 and reactive P-value,0.05). High-

lighted in bold shows causal relationships with FDR,5% (Causal

Q-value,0.05).

(XLSX)

Tables S9 KEGG pathways with enrichment of genes showing

differential expression between genotype groups in the eQTL

analysis of cis-mQTL-SNPs. Analysis performed using Webgestalt

(http://bioinfo.vanderbilt.edu/webgestalt, March 2013).

(PDF)

Table S10 KEGG pathways with enrichment of genes annotat-

ed to CpG sites of significant trans-mQTLs in human pancreatic

islets. Analysis performed using Webgestalt (http://bioinfo.

vanderbilt.edu/webgestalt, March 2013).

(PDF)

Table S11 Associations between significant cis-mQTL-SNPs

identified in human pancreatic islets and islet insulin secretion.

(XLSX)

Table S12 Associations between significant trans-mQTL-SNPs

identified in human pancreatic islets and islet insulin secretion.

(XLSX)

Table S13 Identified cis-mQTLs where methylation of CpG

sites is a potential mediator of genetic association with insulin

secretion in human pancreatic islets based on causal inference test

(causal P-value,0.05).
(PDF)

Table S14 Overlap between significant cis-mQTL-SNPs iden-

tified in human pancreatic islets and SNPs reported to associate

with type 1 diabetes, type 2 diabetes, glucose traits, insulin traits or

proinsulin traits in the GWAS catalog (www.genome.gov/

gwastudies, accessed March 2013). (Sheet a) Reported GWAS

catalog SNPs or proxy SNPs in linkage (r2.0.8) overlapping with

significant cis-mQTL-SNPs. Proxy search performed by using

SNAP (1000 Genomes project, CEU population panel, r2.0.8,

distance limit 500 kb) [58]. (Sheet b) Extracted information from

the GWAS catalog about reported diabetes SNPs.

(XLSX)

Table S15 Overlap between significant cis-mQTL-SNPs iden-

tified in human pancreatic islets and data from the DIAGRAM

consortium or MAGIC investigators. (Sheet a) Association of SNPs

with type 2 diabetes reported in DIAGRAM (P,0.05) [59]. Data

available at www.diagram-consortium.org. (Sheet b) Association of

SNPs with HbA1c [62], (Sheet c) fasting glucose [60], (Sheet d)

fasting insulin [60], (Sheet e) HOMA-B [60], (Sheet f) HOMA-IR

[60], (Sheet g) fasting proinsulin [63], (Sheet h) BMI adjusted

fasting glucose [64], (Sheet i) BMI adjusted fasting insulin [64],

and (Sheet j) BMI adjusted 2 h glucose [61] reported in MAGIC

(P,0.05). Data downloaded from www.magicinvestigators.org.

(XLSX)

Table S16 Overlap between significant trans-mQTL-SNPs

identified in human pancreatic islets and data from the

DIAGRAM consortium or MAGIC investigators. (Sheet a)

Association of SNPs with type 2 diabetes reported in DIAGRAM

(P,0.05) [59]. Data available at www.diagram-consortium.org.

(Sheet b) Association of SNPs with HbA1c [62], (Sheet c) fasting

glucose [60], (Sheet d) fasting insulin [60], (Sheet e) HOMA-B

[60], (Sheet f) HOMA-IR [60], (Sheet g) fasting proinsulin [63],

(Sheet h) BMI adjusted fasting glucose [64], (Sheet i) BMI adjusted

fasting insulin [64], and (Sheet j) BMI adjusted 2 h glucose [61]

reported in MAGIC (P,0.05). Data downloaded from www.

magicinvestigators.org.

(XLSX)

Table S17 Associations between DNA methylation and mRNA

expression in human pancreatic islets. (Sheet a) All significant

combinations of CpG sites and mRNA expression probe-sets

showing associations between DNA methylation mRNA expres-

sions after correction for multiple testing using false discovery rate

,5%. (Sheet b) Merged mQTL/eQTL data where CpG sites and

mRNA expression probe-sets where both were significantly

affected by the same SNP. (Sheet c) Overlap between mQTL/

eQTL data and direct association between DNA methylation and

mRNA levels.

(XLSX)

Table S18 Islet donor characteristics and glucose-stimulated

insulin secretion in human pancreatic islets included in the

validation cohort.

(PDF)

Table S19 Overlap between significant CpG sites in our cis-
mQTL study in human pancreatic islets and previously published

cis-mQTL studies in other human tissues. Previously published

human mQTL studies in the overlap analysis includes: Zhang et

al. 2010 [8]; Gibbs et al. 2010 [9]; Gutierrez-Arceleus et al. 2013

[13]; Grundberg et al. 2013 [12]; and Wagner et al. 2014 [14].

(PDF)

Table S20 KEGG pathways with enrichment of genes annotated

to CpG sites of significant cis-mQTLs only identified in human

pancreatic islets (i.e. the pathway analysis includes CpG sites in

significant cis-mQTLs annotated to unique genes in our islet mQTL

analysis that cannot be replicated in any previously published

human mQTL study [8,9,12–14]. Analysis performed using

Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt, June 2013).

(PDF)

Table S21 Identified cis-mQTLs of imputed genotype data.

Presents all cis-mQTLs showing significant association between

SNP genotype including imputed genotype data and CpG DNA

methylation after correction for multiple testing. Imputed

autosomal genotype data generated with the HumanOmniEx-

pressBeadChip for islet donors to the 1000 Genomes phase 1. The

maximum distance of 500 kb between SNPs and CpG sites were

used to define cis-mQTLs. Annotation of SNPs to significant cis-
mQTLs based on genome build 37. Annotation of CpGs based on
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genome build 37 and Infinium HumanMethylation 450 BeadChip

(Illumina) [39]. Note: Data file is large (.90 MB).

(XLSX)

Table S22 Identified trans-mQTLs of imputed genotype data.

Presents all trans-mQTLs showing significant association between

SNP genotype including imputed genotype data and CpG DNA

methylation after correction for multiple testing. Imputed

autosomal genotype data generated with the HumanOmniEx-

pressBeadChip for islet donors to the 1000 Genomes phase 1. All

SNP-CpG pairs not located in cis were considered as trans-
mQTLs. Annotation of SNPs to significant cis-mQTLs based on

genome build 37. Annotation of CpGs based on genome build 37

and Infinium HumanMethylation 450 BeadChip (Illumina) [39].

(XLSX)

Table S23 DNA sequences for pyrosequencing forward, reverse

and sequencing primers.

(XLSX)
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Endocrinology) for analysis of genotype data. We also thank SCIBLU

(Swegene Center for Integrative Biology at Lund University) Genomics

Facility for analysis of DNA methylation and gene expression. Summary

data of SNPs associated with type 2 diabetes have been downloaded from

the DIAGRAM consortium and are available at www.diagram-

consortium.org. Data on glycemic traits have been contributed by MAGIC

investigators and have been downloaded from www.magicinvestigators.

org. We thank Lorenzo Pasquali for providing data of active enhancers in

pancreatic islets.

Author Contributions

Conceived and designed the experiments: AHO PV KB TD EH EAN CLa

TR CLi. Performed the experiments: AHO KB EH. Analyzed the data:

AHO PV KB TD EH EAN CLa TR CLi. Contributed reagents/

materials/analysis tools: AHO PV KB EH TR. Wrote the paper: AHO

KB TR CLi. Reviewed and revised the manuscript critically: AHO PV KB

TD EH EAN CLa TR CLi.

References

1. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev

16: 6–21.

2. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, et al. (2009) Human

DNA methylomes at base resolution show widespread epigenomic differences.
Nature 462: 315–322.

3. Robertson KD, Wolffe AP (2000) DNA methylation in health and disease. Nat
Rev Genet 1: 11–19.

4. Chong S, Whitelaw E (2004) Epigenetic germline inheritance. Curr Opin
Genet Dev 14: 692–696.

5. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic

transgenerational actions of endocrine disruptors and male fertility. Science
308: 1466–1469.

6. Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, et al. (2009) DNA
methylation profiles in monozygotic and dizygotic twins. Nat Genet 41: 240–

245.

7. Ollikainen M, Smith KR, Joo EJ, Ng HK, Andronikos R, et al. (2010) DNA

methylation analysis of multiple tissues from newborn twins reveals both

genetic and intrauterine components to variation in the human neonatal
epigenome. Hum Mol Genet 19: 4176–4188.

8. Zhang D, Cheng L, Badner JA, Chen C, Chen Q, et al. (2010) Genetic control
of individual differences in gene-specific methylation in human brain.

Am J Hum Genet 86: 411–419.

9. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, et al.

(2010) Abundant quantitative trait loci exist for DNA methylation and gene

expression in human brain. PLoS Genet 6: e1000952.

10. Numata S, Ye T, Hyde TM, Guitart-Navarro X, Tao R, et al. (2012) DNA

methylation signatures in development and aging of the human prefrontal
cortex. Am J Hum Genet 90: 260–272.

11. Drong AW, Nicholson G, Hedman AK, Meduri E, Grundberg E, et al. (2013)
The presence of methylation quantitative trait loci indicates a direct genetic

influence on the level of DNA methylation in adipose tissue. PLoS One 8:

e55923.

12. Grundberg E, Meduri E, Sandling JK, Hedman AK, Keildson S, et al. (2013)

Global analysis of DNA methylation variation in adipose tissue from twins
reveals links to disease-associated variants in distal regulatory elements.

Am J Hum Genet 93: 876–890.

13. Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H, et al.
(2013) Passive and active DNA methylation and the interplay with genetic

variation in gene regulation. eLife 2: e00523.

14. Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, et al. (2014) The

relationship between DNA methylation, genetic and expression inter-individual
variation in untransformed human fibroblasts. Genome Biol 15: R37.

15. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, et al. (2009)

Genome-wide association study and meta-analysis find that over 40 loci affect
risk of type 1 diabetes. Nat Genet 41: 703–707.

16. Bradfield JP, Qu HQ, Wang K, Zhang H, Sleiman PM, et al. (2011) A
genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple

associated loci. PLoS Genet 7: e1002293.

17. Burren OS, Adlem EC, Achuthan P, Christensen M, Coulson RM, et al. (2011)

T1DBase: update 2011, organization and presentation of large-scale data sets

for type 1 diabetes research. Nucleic Acids Res 39: D997–1001.

18. Fung EY, Smyth DJ, Howson JM, Cooper JD, Walker NM, et al. (2009)

Analysis of 17 autoimmune disease-associated variants in type 1 diabetes

identifies 6q23/TNFAIP3 as a susceptibility locus. Genes Immun 10: 188–191.

19. Grant SF, Qu HQ, Bradfield JP, Marchand L, Kim CE, et al. (2009) Follow-up

analysis of genome-wide association data identifies novel loci for type 1

diabetes. Diabetes 58: 290–295.

20. Groop L, Pociot F (2013) Genetics of diabetes - Are we missing the genes or the

disease? Mol Cell Endocrinol 382: 726–739.

21. Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, et al. (2007) A

genome-wide association study identifies KIAA0350 as a type 1 diabetes gene.

Nature 448: 591–594.

22. Lowe CE, Cooper JD, Brusko T, Walker NM, Smyth DJ, et al. (2007) Large-

scale genetic fine mapping and genotype-phenotype associations implicate

polymorphism in the IL2RA region in type 1 diabetes. Nat Genet 39: 1074–

1082.

23. Pociot F, Akolkar B, Concannon P, Erlich HA, Julier C, et al. (2010) Genetics

of type 1 diabetes: what’s next? Diabetes 59: 1561–1571.

24. Qu HQ, Grant SF, Bradfield JP, Kim C, Frackelton E, et al. (2009) Association

of RASGRP1 with type 1 diabetes is revealed by combined follow-up of two

genome-wide studies. J Med Genet 46: 553–554.

25. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, et al. (2007)

Genome-wide association analysis identifies loci for type 2 diabetes and

triglyceride levels. Science 316: 1331–1336.

26. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al. (2007) A genome-

wide association study of type 2 diabetes in Finns detects multiple susceptibility

variants. Science 316: 1341–1345.

27. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, et al. (2007) A genome-wide

association study identifies novel risk loci for type 2 diabetes. Nature 445: 881–

885.

28. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir

T, et al. (2007) A variant in CDKAL1 influences insulin response and risk of

type 2 diabetes. Nat Genet 39: 770–775.

29. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. (2007)

Replication of genome-wide association signals in UK samples reveals risk loci

for type 2 diabetes. Science 316: 1336–1341.

30. Prokopenko I, Poon W, Magi R, Prasad BR, Salehi SA, et al. (2014) A central

role for GRB10 in regulation of islet function in man. PLoS Genet 10:

e1004235.

31. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, et al. (2010)

Twelve type 2 diabetes susceptibility loci identified through large-scale

association analysis. Nat Genet 42: 579–589.

32. Millstein J, Zhang B, Zhu J, Schadt EE (2009) Disentangling molecular

relationships with a causal inference test. BMC Genet 10: 23.

33. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, et al. (2013)

Discovery of cross-reactive probes and polymorphic CpGs in the Illumina

Infinium HumanMethylation450 microarray. Epigenetics 8: 203–209.

34. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, et al. (2009) Differential

methylation of tissue- and cancer-specific CpG island shores distinguishes

human induced pluripotent stem cells, embryonic stem cells and fibroblasts.

Nat Genet 41: 1350–1353.

Genome-Wide Interactions Genetics and Epigenetics

PLOS Genetics | www.plosgenetics.org 25 November 2014 | Volume 10 | Issue 11 | e1004735

www.diagram-consortium.org
www.diagram-consortium.org
www.magicinvestigators.org
www.magicinvestigators.org


35. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, et al. (2009) The
human colon cancer methylome shows similar hypo- and hypermethylation at

conserved tissue-specific CpG island shores. Nat Genet 41: 178–186.

36. Lindgren CM, Mahtani MM, Widen E, McCarthy MI, Daly MJ, et al. (2002)
Genomewide search for type 2 diabetes mellitus susceptibility loci in Finnish

families: the Botnia study. American journal of human genetics 70: 509–516.

37. Pociot F, McDermott MF (2002) Genetics of type 1 diabetes mellitus. Genes

Immun 3: 235–249.

38. Shiina T, Inoko H, Kulski JK (2004) An update of the HLA genomic region,
locus information and disease associations: 2004. Tissue Antigens 64: 631–649.

39. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, et al. (2011) High density
DNA methylation array with single CpG site resolution. Genomics 98: 288–

295.

40. Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, et al. (2012)
Increased DNA methylation and decreased expression of PDX-1 in pancreatic

islets from patients with type 2 diabetes. Mol Endocrinol 26: 1203–1212.

41. Sandovici I, Smith NH, Nitert MD, Ackers-Johnson M, Uribe-Lewis S, et al.
(2011) Maternal diet and aging alter the epigenetic control of a promoter-

enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad
Sci U S A 108: 5449–5454.

42. Parker SC, Stitzel ML, Taylor DL, Orozco JM, Erdos MR, et al. (2013)

Chromatin stretch enhancer states drive cell-specific gene regulation and
harbor human disease risk variants. Proc Natl Acad Sci U S A 110: 17921–

17926.

43. Pasquali L, Gaulton KJ, Rodriguez-Segui SA, Mularoni L, Miguel-Escalada I,

et al. (2014) Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-

associated variants. Nat Genet 46: 136–143.

44. Bird A (2007) Perceptions of epigenetics. Nature 447: 396–398.

45. Gilad Y, Rifkin SA, Pritchard JK (2008) Revealing the architecture of gene
regulation: the promise of eQTL studies. Trends Genet 24: 408–415.

46. Mantel N (1967) The detection of disease clustering and a generalized

regression approach. Cancer research 27: 209–220.

47. Bekris LM, Shephard C, Peterson M, Hoehna J, Van Yserloo B, et al. (2005)

Glutathione-s-transferase M1 and T1 polymorphisms and associations with

type 1 diabetes age-at-onset. Autoimmunity 38: 567–575.

48. Circu ML, Aw TY (2008) Glutathione and apoptosis. Free Radic Res 42: 689–

706.

49. Robertson RP, Harmon JS (2007) Pancreatic islet beta-cell and oxidative stress:

the importance of glutathione peroxidase. FEBS Lett 581: 3743–3748.

50. Harashima SI, Harashima C, Nishimura T, Hu Y, Notkins AL (2007)
Overexpression of the autoantigen IA-2 puts beta cells into a pre-apoptotic

state: autoantigen-induced, but non-autoimmune-mediated, tissue destruction.
Clin Exp Immunol 150: 49–60.

51. Nguyen VD, Saaranen MJ, Karala AR, Lappi AK, Wang L, et al. (2011) Two

endoplasmic reticulum PDI peroxidases increase the efficiency of the use of
peroxide during disulfide bond formation. J Mol Biol 406: 503–515.

52. Peng D, Belkhiri A, Hu T, Chaturvedi R, Asim M, et al. (2012) Glutathione
peroxidase 7 protects against oxidative DNA damage in oesophageal cells. Gut

61: 1250–1260.

53. Utomo A, Jiang X, Furuta S, Yun J, Levin DS, et al. (2004) Identification of a
novel putative non-selenocysteine containing phospholipid hydroperoxide

glutathione peroxidase (NPGPx) essential for alleviating oxidative stress
generated from polyunsaturated fatty acids in breast cancer cells. J Biol Chem

279: 43522–43529.

54. Lu J, Li Q, Xie H, Chen ZJ, Borovitskaya AE, et al. (1996) Identification of a
second transmembrane protein tyrosine phosphatase, IA-2beta, as an

autoantigen in insulin-dependent diabetes mellitus: precursor of the 37-kDa
tryptic fragment. Proc Natl Acad Sci U S A 93: 2307–2311.

55. Notkins AL, Lernmark A (2001) Autoimmune type 1 diabetes: resolved and

unresolved issues. J Clin Invest 108: 1247–1252.

56. McCarthy MI (2010) Genomics, type 2 diabetes, and obesity. N Engl J Med

363: 2339–2350.

57. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009)
Potential etiologic and functional implications of genome-wide association loci

for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367.

58. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, et al.

(2008) SNAP: a web-based tool for identification and annotation of proxy SNPs

using HapMap. Bioinformatics 24: 2938–2939.

59. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, et al. (2012)

Large-scale association analysis provides insights into the genetic architecture
and pathophysiology of type 2 diabetes. Nat Genet 44: 981–990.

60. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, et al. (2010)

New genetic loci implicated in fasting glucose homeostasis and their impact on
type 2 diabetes risk. Nat Genet 42: 105–116.

61. Saxena R, Hivert MF, Langenberg C, Tanaka T, Pankow JS, et al. (2010)
Genetic variation in GIPR influences the glucose and insulin responses to an

oral glucose challenge. Nat Genet 42: 142–148.

62. Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, et al. (2010) Common
variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic

and nonglycemic pathways. Diabetes 59: 3229–3239.

63. Strawbridge RJ, Dupuis J, Prokopenko I, Barker A, Ahlqvist E, et al. (2011)
Genome-wide association identifies nine common variants associated with

fasting proinsulin levels and provides new insights into the pathophysiology of
type 2 diabetes. Diabetes 60: 2624–2634.

64. Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, et al. (2012)
A genome-wide approach accounting for body mass index identifies genetic

variants influencing fasting glycemic traits and insulin resistance. Nat Genet 44:

659–669.

65. Dayeh TA, Olsson AH, Volkov P, Almgren P, Ronn T, et al. (2013)
Identification of CpG-SNPs associated with type 2 diabetes and differential

DNA methylation in human pancreatic islets. Diabetologia 56: 1036–1046.

66. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies
and beyond. Nat Rev Genet 13: 484–492.

67. Ling C, Groop L (2009) Epigenetics: a molecular link between environmental

factors and type 2 diabetes. Diabetes 58: 2718–2725.

68. Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, et al. (2011)
Insulin promoter DNA methylation correlates negatively with insulin gene

expression and positively with HbA(1c) levels in human pancreatic islets.
Diabetologia 54: 360–367.

69. Ling C, Del Guerra S, Lupi R, Ronn T, Granhall C, et al. (2008) Epigenetic

regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin
secretion. Diabetologia 51: 615–622.

70. Ling C, Poulsen P, Simonsson S, Ronn T, Holmkvist J, et al. (2007) Genetic

and epigenetic factors are associated with expression of respiratory chain
component NDUFB6 in human skeletal muscle. J Clin Invest 117: 3427–3435.

71. Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, et al. (2012) Impact of an

exercise intervention on DNA methylation in skeletal muscle from first-degree

relatives of patients with type 2 diabetes. Diabetes 61: 3322–3332.

72. Ronn T, Volkov P, Davegardh C, Dayeh T, Hall E, et al. (2013) A Six Months

Exercise Intervention Influences the Genome-wide DNA Methylation Pattern

in Human Adipose Tissue. PLoS Genet 9: e1003572.

73. Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, et al.

(2012) DNA methylation profiling identifies epigenetic dysregulation in

pancreatic islets from type 2 diabetic patients. EMBO J 31: 1405–1426.

74. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, et al. (2007) Robust
associations of four new chromosome regions from genome-wide analyses of

type 1 diabetes. Nat Genet 39: 857–864.

75. Moore F, Colli ML, Cnop M, Esteve MI, Cardozo AK, et al. (2009) PTPN2, a
candidate gene for type 1 diabetes, modulates interferon-gamma-induced

pancreatic beta-cell apoptosis. Diabetes 58: 1283–1291.

76. Wellcome Trust Case Control Consortium (2007) Genome-wide association
study of 14,000 cases of seven common diseases and 3,000 shared controls.

Nature 447: 661–678.

77. Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, et al. (2008) Shared
and distinct genetic variants in type 1 diabetes and celiac disease.

N Engl J Med 359: 2767–2777.

78. de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, et al. (2006) A
high-resolution HLA and SNP haplotype map for disease association studies in

the extended human MHC. Nat Genet 38: 1166–1172.

79. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, et al. (2008) Meta-
analysis of genome-wide association data and large-scale replication identifies

additional susceptibility loci for type 2 diabetes. Nat Genet 40: 638–645.

80. Jacobsen SC, Brons C, Bork-Jensen J, Ribel-Madsen R, Yang B, et al. (2012)

Effects of short-term high-fat overfeeding on genome-wide DNA methylation in
the skeletal muscle of healthy young men. Diabetologia 55: 3341–3349.

81. Gillberg L, Jacobsen SC, Ronn T, Brons C, Vaag A (2014) PPARGC1A DNA

methylation in subcutaneous adipose tissue in low birth weight subjects - impact
of 5days of high-fat overfeeding. Metabolism 63: 263–271.

82. Brons C, Jacobsen S, Nilsson E, Ronn T, Jensen CB, et al. (2010)

Deoxyribonucleic acid methylation and gene expression of PPARGC1A in
human muscle is influenced by high-fat overfeeding in a birth-weight-

dependent manner. J Clin Endocrinol Metab 95: 3048–3056.

83. Florez JC (2008) Newly identified loci highlight beta cell dysfunction as a key
cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia

51: 1100–1110.

84. Rosengren AH, Braun M, Mahdi T, Andersson SA, Travers ME, et al. (2012)
Reduced insulin exocytosis in human pancreatic beta-cells with gene variants

linked to type 2 diabetes. Diabetes 61: 1726–1733.

85. Ruchat SM, Elks CE, Loos RJ, Vohl MC, Weisnagel SJ, et al. (2009)
Association between insulin secretion, insulin sensitivity and type 2 diabetes

susceptibility variants identified in genome-wide association studies. Acta

Diabetol 46: 217–226.

86. Cooper JD, Smyth DJ, Smiles AM, Plagnol V, Walker NM, et al. (2008) Meta-
analysis of genome-wide association study data identifies additional type 1

diabetes risk loci. Nat Genet 40: 1399–1401.

87. Perry JR, Voight BF, Yengo L, Amin N, Dupuis J, et al. (2012) Stratifying type
2 diabetes cases by BMI identifies genetic risk variants in LAMA1 and

enrichment for risk variants in lean compared to obese cases. PLoS Genet 8:
e1002741.

88. Santin I, Eizirik DL (2013) Candidate genes for type 1 diabetes modulate

pancreatic islet inflammation and beta-cell apoptosis. Diabetes Obes Metab 15
Suppl 3: 71–81.

89. Kaneto H, Miyatsuka T, Kawamori D, Yamamoto K, Kato K, et al. (2008)

PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and
maintenance of mature beta-cell function. Endocr J 55: 235–252.

90. Dutta S, Gannon M, Peers B, Wright C, Bonner-Weir S, et al. (2001)

PDX:PBX complexes are required for normal proliferation of pancreatic cells

during development. Proc Natl Acad Sci U S A 98: 1065–1070.

Genome-Wide Interactions Genetics and Epigenetics

PLOS Genetics | www.plosgenetics.org 26 November 2014 | Volume 10 | Issue 11 | e1004735



91. Dayeh T, Volkov P, Salo S, Hall E, Nilsson E, et al. (2014) Genome-wide DNA

methylation analysis of human pancreatic islets from type 2 diabetic and non-

diabetic donors identifies candidate genes that influence insulin secretion. PLoS

Genet 10: e1004160.

92. Caromile LA, Oganesian A, Coats SA, Seifert RA, Bowen-Pope DF (2010) The

neurosecretory vesicle protein phogrin functions as a phosphatidylinositol

phosphatase to regulate insulin secretion. J Biol Chem 285: 10487–10496.

93. Doi A, Shono T, Nishi M, Furuta H, Sasaki H, et al. (2006) IA-2beta, but not

IA-2, is induced by ghrelin and inhibits glucose-stimulated insulin secretion.

Proc Natl Acad Sci U S A 103: 885–890.

94. Cai T, Hirai H, Zhang G, Zhang M, Takahashi N, et al. (2011) Deletion of Ia-2

and/or Ia-2beta in mice decreases insulin secretion by reducing the number of

dense core vesicles. Diabetologia 54: 2347–2357.

95. Torii S, Saito N, Kawano A, Hou N, Ueki K, et al. (2009) Gene silencing of

phogrin unveils its essential role in glucose-responsive pancreatic beta-cell

growth. Diabetes 58: 682–692.

96. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, et al. (2013)

Epigenome-wide association data implicate DNA methylation as an interme-

diary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31: 142–147.

97. Storling J, Overgaard AJ, Brorsson CA, Piva F, Bang-Berthelsen CH, et al.

(2013) Do post-translational beta cell protein modifications trigger type 1

diabetes? Diabetologia 56: 2347–2354.

98. Kelly C, McClenaghan NH, Flatt PR (2011) Role of islet structure and cellular

interactions in the control of insulin secretion. Islets 3: 41–47.

99. Sabra G, Dubiel EA, Kuehn C, Khalfaoui T, Beaulieu JF, et al. (2013) INS-1

cell glucose-stimulated insulin secretion is reduced by the downregulation of the

67 kDa laminin receptor. Journal of tissue engineering and regenerative

medicine 10.1002/term.1689.

100. Smith GC, Konycheva G, Dziadek MA, Ravelich SR, Patel S, et al. (2011) Pre-

and postnatal methyl deficiency in the rat differentially alters glucose

homeostasis. Journal of nutrigenetics and nutrigenomics 4: 175–191.

101. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, et al. (2005) Mechanisms of

pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few

similarities. Diabetes 54 Suppl 2: S97–107.

102. Lernmark A, Larsson HE (2013) Immune therapy in type 1 diabetes mellitus.

Nat Rev Endocrinol 9: 92–103.

103. Yang SN, Berggren PO (2005) Beta-cell CaV channel regulation in physiology

and pathophysiology. Am J Physiol Endocrinol Metab 288: E16–28.

104. Calderon B, Carrero JA, Unanue ER (2014) The central role of antigen

presentation in islets of Langerhans in autoimmune diabetes. Current opinion

in immunology 26: 32–40.

105. Guo Y, Zhu LR, Lu G, Wang H, Hong JY (2012) Selective expression of

CYP2A13 in human pancreatic alpha-islet cells. Drug metabolism and

disposition: the biological fate of chemicals 40: 1878–1882.

106. In’t Veld PA, Pipeleers DG (1988) In situ analysis of pancreatic islets in rats

developing diabetes. Appearance of nonendocrine cells with surface MHC class

II antigens and cytoplasmic insulin immunoreactivity. J Clin Invest 82: 1123–

1128.

107. Standop J, Schneider M, Ulrich A, Buchler MW, Pour PM (2003) Differences

in immunohistochemical expression of xenobiotic-metabolizing enzymes

between normal pancreas, chronic pancreatitis and pancreatic cancer.

Toxicologic pathology 31: 506–513.

108. Tso TK, Huang HY, Chang CK, Liao YJ, Huang WN (2004) Clinical

evaluation of insulin resistance and beta-cell function by the homeostasis model

assessment in patients with systemic lupus erythematosus. Clinical rheumatol-

ogy 23: 416–420.

109. Vergani A, Fotino C, D’Addio F, Tezza S, Podetta M, et al. (2013) Effect of the

purinergic inhibitor oxidized ATP in a model of islet allograft rejection.

Diabetes 62: 1665–1675.

110. Zeng YJ, Zeng FQ, Dai L, Yang C, Lin BZ, et al. (2011) [Insulin sensitivity and

beta cell function in female systemic lupus erythematosus patients]. Zhonghua

nei ke za zhi 50: 18–22.

111. Zhang L, Moffatt-Bruce SD, Gaughan AA, Wang JJ, Rajab A, et al. (2009) An

anti-CD103 immunotoxin promotes long-term survival of pancreatic islet

allografts. American journal of transplantation: official journal of the American

Society of Transplantation and the American Society of Transplant Surgeons

9: 2012–2023.

112. Quon G, Lippert C, Heckerman D, Listgarten J (2013) Patterns of methylation

heritability in a genome-wide analysis of four brain regions. Nucleic Acids Res

41: 2095–2104.

113. Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, et al. (2011) DNA

methylation patterns associate with genetic and gene expression variation in

HapMap cell lines. Genome Biol 12: R10.

114. Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, et al. (2014) Altered

DNA methylation and differential expression of genes influencing metabolism

and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes

63: 2962–2976.

115. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, et al. (2014) Obesity-

associated variants within FTO form long-range functional connections with

IRX3. Nature 507: 371–375.

116. Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK (2012) On the presence

and role of human gene-body DNA methylation. Oncotarget 3: 462–474.

117. Zhi D, Aslibekyan S, Irvin MR, Claas SA, Borecki IB, et al. (2013) SNPs
located at CpG sites modulate genome-epigenome interaction. Epigenetics 8:

802–806.

118. Reynard LN, Bui C, Syddall CM, Loughlin J (2014) CpG methylation
regulates allelic expression of GDF5 by modulating binding of SP1 and SP3

repressor proteins to the osteoarthritis susceptibility SNP rs143383. Hum Genet

133: 1059–1073.

119. Taqi MM, Bazov I, Watanabe H, Sheedy D, Harper C, et al. (2011)

Prodynorphin CpG-SNPs associated with alcohol dependence: elevated
methylation in the brain of human alcoholics. Addiction biology 16: 499–509.

120. Park JH, Lee J, Kim CH, Lee S (2014) The polymorphism (2600 C.A) of

CpG methylation site at the promoter region of CYP17A1 and its association of
male infertility and testosterone levels. Gene 534: 107–112.

121. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, et al.

(2010) Conserved role of intragenic DNA methylation in regulating alternative
promoters. Nature 466: 253–257.

122. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription.

Genes Dev 25: 1010–1022.

123. Deaton AM, Webb S, Kerr AR, Illingworth RS, Guy J, et al. (2011) Cell type-
specific DNA methylation at intragenic CpG islands in the immune system.

Genome Res 21: 1074–1086.

124. Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, et al. (2011)

CTCF-promoted RNA polymerase II pausing links DNA methylation to

splicing. Nature 479: 74–79.

125. Sigurdsson MI, Smith AV, Bjornsson HT, Jonsson JJ (2009) HapMap

methylation-associated SNPs, markers of germline DNA methylation, positively

correlate with regional levels of human meiotic recombination. Genome Res
19: 581–589.

126. Rakyan VK, Beyan H, Down TA, Hawa MI, Maslau S, et al. (2011)

Identification of type 1 diabetes-associated DNA methylation variable positions
that precede disease diagnosis. PLoS Genet 7: e1002300.

127. Chen H, Kazemier HG, de Groote ML, Ruiters MH, Xu GL, et al. (2014)
Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the

human ICAM-1 promoter. Nucleic Acids Res 42: 1563–1574.

128. Christensen DP, Dahllof M, Lundh M, Rasmussen DN, Nielsen MD, et al.
(2011) Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes

mellitus. Molecular medicine 17: 378–390.

129. Christensen DP, Gysemans C, Lundh M, Dahllof MS, Noesgaard D, et al.
(2014) Lysine deacetylase inhibition prevents diabetes by chromatin-indepen-

dent immunoregulation and beta-cell protection. Proc Natl Acad Sci U S A

111: 1055–1059.

130. Krus U, King BC, Nagaraj V, Gandasi NR, Sjolander J, et al. (2014) The

complement inhibitor CD59 regulates insulin secretion by modulating
exocytotic events. Cell Metab 19: 883–890.

131. Mahdi T, Hanzelmann S, Salehi A, Muhammed SJ, Reinbothe TM, et al.

(2012) Secreted frizzled-related protein 4 reduces insulin secretion and is
overexpressed in type 2 diabetes. Cell Metab 16: 625–633.

132. Taneera J, Lang S, Sharma A, Fadista J, Zhou Y, et al. (2012) A systems

genetics approach identifies genes and pathways for type 2 diabetes in human
islets. Cell Metab 16: 122–134.

133. Olsson AH, Yang BT, Hall E, Taneera J, Salehi A, et al. (2011) Decreased

expression of genes involved in oxidative phosphorylation in human pancreatic
islets from patients with type 2 diabetes. Eur J Endocrinol 165: 589–595.

134. Stahle MU, Brandhorst D, Korsgren O, Knutson F (2011) Pathogen

inactivation of human serum facilitates its clinical use for islet cell culture
and subsequent transplantation. Cell Transplant 20: 775–781.

135. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)

PLINK: a tool set for whole-genome association and population-based linkage
analyses. Am J Hum Genet 81: 559–575.

136. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Gayther SA, et al.

(2009) An epigenetic signature in peripheral blood predicts active ovarian
cancer. PLoS One 4: e8274.

137. Du P, Kibbe WA, Lin SM (2008) lumi: a pipeline for processing Illumina
microarray. Bioinformatics 24: 1547–1548.

138. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, et al. (2010) Comparison of

Beta-value and M-value methods for quantifying methylation levels by
microarray analysis. BMC Bioinformatics 11: 587.

139. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of

normalization methods for high density oligonucleotide array data based on
variance and bias. Bioinformatics 19: 185–193.

140. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray

expression data using empirical Bayes methods. Biostatistics 8: 118–127.

141. Shabalin AA (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix
operations. Bioinformatics 28: 1353–1358.

142. Hohmeier HE, Mulder H, Chen G, Henkel-Rieger R, Prentki M, et al. (2000)
Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-

dependent and -independent glucose-stimulated insulin secretion. Diabetes 49:

424–430.

143. Weiss T, Grell M, Hessabi B, Bourteele S, Muller G, et al. (1997) Enhancement

of TNF receptor p60-mediated cytotoxicity by TNF receptor p80: requirement

of the TNF receptor-associated factor-2 binding site. J Immunol 158: 2398–
2404.

144. Malmgren S, Spegel P, Danielsson AP, Nagorny CL, Andersson LE, et al.

(2013) Coordinate changes in histone modifications, mRNA levels, and

Genome-Wide Interactions Genetics and Epigenetics

PLOS Genetics | www.plosgenetics.org 27 November 2014 | Volume 10 | Issue 11 | e1004735



metabolite profiles in clonal INS-1 832/13 beta-cells accompany functional

adaptations to lipotoxicity. J Biol Chem 288: 11973–11987.
145. O’Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, et al. (2014) A

general approach for haplotype phasing across the full spectrum of relatedness.

PLoS Genet 10: e1004234.

146. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype

imputation method for the next generation of genome-wide association studies.

PLoS Genet 5: e1000529.

Genome-Wide Interactions Genetics and Epigenetics

PLOS Genetics | www.plosgenetics.org 28 November 2014 | Volume 10 | Issue 11 | e1004735


