Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N'-(3,5-Dibromo-2-hydroxybenzylidene)-3,4-methylenedioxybenzohydrazide

Ya-Li Sang* and Xue-Song Lin

Department of Chemistry, Chifeng University, Chifeng 024001, People's Republic of China

Correspondence e-mail: sangyali0814@126.com

Received 8 June 2009; accepted 13 June 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.049; wR factor = 0.141; data-to-parameter ratio = 15.7.

In the asymmetric unit of the title hydrazone compound, $C_{15}H_{10}Br_2N_2O_4$, there are two independent molecules. In each molecule, the five-membered ring adopts a flattened envelope conformation; the flap atoms are displaced by 0.114 (2) and 0.219 (2) Å from the planes of the other four atoms. In one molecule the dihedral angle between the two benzene rings is 22.8 (2)°, while in the other it is 40.8 (2)°. Each molecule displays an *E* configuration with respect to the C=N bond. In both molecules, intramolecular O-H···N hydrogen bonds are observed. In the crystal structure, molecules are linked through intermolecular N-H···O hydrogen bonds, forming chains along the *a* axis.

Related literature

For the biological properties of hydrazones, see: Khattab et al. (2005); Küçükgüzel et al. (2003); Cukurovali et al. (2006). For their coordination chemistry, see: Iskander et al. (2001); Bernhardt et al. (2004); Aggarwal et al. (1981); Thomas et al. (1979). For the crystal structures of other reported hydrazones, see: Fun et al. (2008); Wei et al. (2009); Khaledi et al. (2008); Yang et al. (2008). For reference structural data, see: Allen et al. (1987).

Experimental

Crystal data

$C_{15}H_{10}Br_2N_2O_4$	$\gamma = 75.911 \ (2)^{\circ}$
$M_r = 442.07$	V = 1604.5 (4) Å ³
Triclinic, $P\overline{1}$	Z = 4
a = 9.793 (1) Å	Mo $K\alpha$ radiation
b = 13.188 (2) Å	$\mu = 5.07 \text{ mm}^{-1}$
c = 13.342 (2) Å	$T = 298 { m K}$
$\alpha = 76.282 \ (2)^{\circ}$	$0.23 \times 0.21 \times 0.2$
$\beta = 78.350 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.388, T_{\max} = 0.416$ (expected range = 0.322 - 0.345)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	
$wR(F^2) = 0.141$	
S = 0.98	
6633 reflections	
423 parameters	
2 restraints	

adiation mm^{-1} $21 \times 0.21 \text{ mm}$

9190 measured reflections 6633 independent reflections 4090 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.026$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 1.55 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond	geometry (A	Ă, °)
---------------	-------------	-------

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$D1 - H1 \cdots N1$	0.82	2.00	2.654 (4)	137
$D5 - H5 \cdots N3$	0.82	1.86	2.582 (4)	146
$N2 - H2 \cdots O6^{i}$	0.91 (4)	1.99 (3)	2.833 (5)	155 (6)
$N4 - H4A \cdots O2^{ii}$	0.90 (3)	2.04 (3)	2.888 (5)	158 (6)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We are very grateful to Chifeng University for research funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2332).

References

- Aggarwal, R. C., Singh, N. K. & Singh, R. P. (1981). Inorg. Chem. 20, 2794-2798
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernhardt, P. V., Chin, P. & Richardson, D. R. (2004). Dalton Trans. pp. 3342-3346
- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.
- Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.
- Iskander, M. F., Khalil, T. E., Haase, W., Werner, R., Svoboda, I. & Fuess, H. (2001). Polyhedron, 20, 2787–2798.

- Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481. Khattab, S. N. (2005). Molecules, 10, 1218–1228.
- Küçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Thomas, J. E., Palenik, R. C. & Palenik, G. J. (1979). Inorg. Chim. Acta, 37, L459-L460.
- Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). *Acta Cryst.* E**65**, o688. Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). *Acta Cryst.* E**64**, o1186.

Acta Cryst. (2009). E65, 01631-01632 [doi:10.1107/S160053680902282X]

N'-(3,5-Dibromo-2-hydroxybenzylidene)-3,4-methylenedioxybenzohydrazide

Y.-L. Sang and X.-S. Lin

Comment

Hydrazone compounds have been widely investigated due to their interesting biological properties, such as antibacterial and antitumor activities (Khattab *et al.*, 2005; Küçükgüzel *et al.*, 2003; Cukurovali *et al.*, 2006). Furthermore, hydrazones are excellent ligands in coordination chemistry, forming a large number of metal complexes (Iskander *et al.*, 2001; Bernhardt *et al.*, 2004; Aggarwal *et al.*, 1981; Thomas *et al.*, 1979). Recently, the crystal structures of a large number of hydrazone derivatives have been reported (Fun *et al.*, 2008; Wei *et al.*, 2009; Khaledi *et al.*, 2008; Yang *et al.*, 2008). In this paper, the crystal structure of the new title hydrazone compound is reported.

In the asymmetric unit there are two independent molecules (Fig. 1), which assume *E* configurations with respect to the C=N bonds. In each molecule the five-membered ring adopts a flattened envelope conformation; the flap atoms C15 and C30 are displaced by 0.114 (2) and 0.219 (2) Å, respectively, from the planes of the other four atoms. In one molecule the dihedral angle between the two benzene rings is 22.8 (2)°; in the other it is 40.8 (2)°. All bond lengths are within normal values (Allen *et al.*, 1987). In both molecules, intramolecular O—H…N hydrogen bonds (Table 1) are observed. In the crystal structure, molecules are linked through intermolecular N—H…O hydrogen bonds (Table 1), forming chains along the *a* axis, as shown in Fig. 2.

Experimental

3,4-(Methylenedioxy)benzohydrazide (1.0 mmol, 180.2 mg) and 3,5-dibromo-2-hydroxybenzaldehyde (1.0 mmol, 280.0 mg) were mixed and refluxed in aqueous ethanol (95% ethanol : 5% water; 50 ml). The mixture was stirred for 1 h to give a clear colorless solution. Colorless crystals of the title compound were formed by slow evaporation of the solution in air.

Refinement

H2 attached to N2 and H4A attached to N4 were located in a difference map and refined with an N—H distance restraint of 0.90 (1) Å. The other H atoms were positioned geometrically [d(C-H) = 0.93-0.97 Å, d(O-H) = 0.82 Å], and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$. The structure contains solvent accessible voids of 79.0 Å³, which might accommodate a disordered water molecule. The maximum residual electron density peak is located 3.28 Å from H21.

Figures

Fig. 1. The molecular structure of the asymmetric unit, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius. The intramolecular O—H···N hydrogen bonds are shown as dashed lines.

Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.

N'-(3,5-Dibromo-2-hydroxybenzylidene)-3,4-methylenedioxybenzohydrazide

Crystal	data
---------	------

$C_{15}H_{10}Br_2N_2O_4$	Z = 4
$M_r = 442.07$	$F_{000} = 864$
Triclinic, PT	$D_{\rm x} = 1.830 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.793 (1) Å	Cell parameters from 2697 reflections
b = 13.188 (2) Å	$\theta = 2.8 - 25.0^{\circ}$
c = 13.342 (2) Å	$\mu = 5.07 \text{ mm}^{-1}$
$\alpha = 76.282 \ (2)^{\circ}$	T = 298 K
$\beta = 78.350 \ (2)^{\circ}$	Block, colorless
$\gamma = 75.911 \ (2)^{\circ}$	$0.23\times0.21\times0.21~mm$
V = 1604.5 (4) Å ³	

Data collection

Bruker SMART CCD area-detector diffractometer	6633 independent reflections
Radiation source: fine-focus sealed tube	4090 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 298 K	$\theta_{\text{max}} = 27.0^{\circ}$
ω scans	$\theta_{\min} = 4.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.388, T_{\max} = 0.416$	$k = -16 \rightarrow 15$
9190 measured reflections	$l = -17 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.141$	$w = 1/[\sigma^2(F_o^2) + (0.0781P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.98	$(\Delta/\sigma)_{max} < 0.001$
6633 reflections	$\Delta \rho_{max} = 1.55 \text{ e } \text{\AA}^{-3}$
423 parameters	$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.88068 (7)	-0.00513 (5)	0.23288 (6)	0.0870 (3)
Br2	0.34278 (8)	0.02682 (5)	0.11846 (5)	0.0719 (2)
Br3	-0.32989 (6)	0.72142 (5)	1.11784 (4)	0.0662 (2)
Br4	0.22028 (8)	0.81059 (6)	1.05222 (5)	0.0793 (2)
O1	0.7359 (3)	0.2022 (3)	0.2943 (3)	0.0472 (8)
H1	0.6914	0.2499	0.3252	0.071*
O2	0.6613 (3)	0.4996 (2)	0.3674 (3)	0.0436 (8)
O3	0.2556 (4)	0.9420 (3)	0.4051 (3)	0.0590 (10)
O4	0.4456 (4)	0.8602 (3)	0.4941 (3)	0.0544 (9)
05	-0.2006 (3)	0.6068 (3)	0.9410 (3)	0.0479 (8)
Н5	-0.1640	0.5740	0.8939	0.072*
O6	-0.1740 (3)	0.4855 (3)	0.7024 (3)	0.0524 (9)
07	0.1423 (4)	0.1701 (3)	0.4070 (3)	0.0612 (10)
08	-0.0796 (3)	0.2781 (3)	0.3989 (2)	0.0488 (8)
N1	0.5281 (4)	0.3734 (3)	0.3031 (3)	0.0369 (8)
N2	0.4637 (4)	0.4735 (3)	0.3238 (3)	0.0380 (9)
N3	-0.0003 (4)	0.5372 (3)	0.8002 (3)	0.0347 (8)
N4	0.0506 (4)	0.4792 (3)	0.7230 (3)	0.0350 (8)
C1	0.5062 (5)	0.2213 (3)	0.2451 (3)	0.0380 (10)
C2	0.6449 (5)	0.1653 (3)	0.2556 (3)	0.0379 (10)
C3	0.6891 (6)	0.0677 (4)	0.2253 (4)	0.0510 (13)
C4	0.6019 (6)	0.0259 (4)	0.1848 (4)	0.0532 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H4	0.6347	-0.0397	0.1644	0.064*
C5	0.4658 (6)	0.0817 (4)	0.1746 (4)	0.0469 (12)
C6	0.4184 (5)	0.1777 (4)	0.2045 (4)	0.0426 (11)
H6	0.3258	0.2147	0.1977	0.051*
C7	0.4504 (5)	0.3269 (4)	0.2715 (4)	0.0406 (11)
H7	0.3564	0.3604	0.2651	0.049*
28	0.5382 (4)	0.5336 (3)	0.3505 (3)	0.0317 (9)
C9	0.4569 (4)	0.6426 (3)	0.3609 (3)	0.0317 (9)
210	0.3485 (5)	0.6950 (3)	0.3049 (3)	0.0384 (10)
H10	0.3239	0.6611	0.2595	0.046*
211	0.2739 (5)	0.7982 (4)	0.3140 (4)	0.0419 (11)
H11	0.2002	0.8332	0.2761	0.050*
C12	0.3136 (5)	0.8447 (3)	0.3803 (4)	0.0396 (10)
213	0.4260 (5)	0.7940 (3)	0.4349 (3)	0.0358 (10)
214	0.4984 (5)	0.6931 (4)	0.4290 (3)	0.0366 (10)
ł14	0.5715	0.6590	0.4678	0.044*
215	0.3443 (6)	0.9581 (4)	0.4691 (4)	0.0577 (14)
1 15A	0.2874	0.9781	0.5326	0.069*
415B	0.3936	1.0149	0.4326	0.069*
216	0.0381 (5)	0.6371 (3)	0.9138 (3)	0.0367 (10)
C17	-0.1030 (5)	0.6495 (3)	0.9648 (3)	0.0366 (10)
C18	-0.1420 (5)	0.7085 (4)	1.0440 (3)	0.0440 (11)
219	-0.0483 (6)	0.7567 (4)	1.0706 (3)	0.0521 (13)
119	-0.0774	0.7972	1.1224	0.062*
220	0.0896 (6)	0.7436 (4)	1.0186 (4)	0.0506 (12)
221	0.1344 (5)	0.6834 (4)	0.9426 (3)	0.0424 (11)
121	0.2289	0.6734	0.9103	0.051*
222	0.0877 (5)	0.5754 (3)	0.8309 (3)	0.0364 (10)
122	0.1831	0.5642	0.8007	0.044*
223	-0.0460(4)	0.4517 (3)	0.6800 (3)	0.0336 (9)
224	0.0118 (4)	0.3775 (3)	0.6071 (3)	0.0317 (9)
225	0.1441 (5)	0.3100 (4)	0.6128 (4)	0.0473 (12)
125	0.1990	0.3145	0.6603	0.057*
226	0.1955 (5)	0.2359 (4)	0.5486 (5)	0.0587 (15)
126	0.2835	0.1896	0.5527	0.070*
227	0.1127 (5)	0.2339 (4)	0.4800 (4)	0.0415 (11)
228	-0.0185 (4)	0.2998 (3)	0.4727 (3)	0.0334 (9)
229	-0.0732 (4)	0.3735 (3)	0.5354 (3)	0.0342 (9)
129	-0.1619	0.4185	0.5307	0.041*
230	0.0117 (6)	0.1849 (4)	0.3679 (4)	0.0559 (14)
130A	0.0291	0.1941	0.2924	0.067*
130B	-0.0318	0.1234	0.3967	0.067*
12	0.377 (3)	0.505 (5)	0.305 (5)	0.080*
	0.142((10)	0 467 (5)	0 607 (4)	0.080*

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
		•			

Br1	0.0757 (4)	0.0627 (4)	0.1261 (6)	0.0277 (3)	-0.0345 (4)	-0.0524 (4)
Br2	0.1068 (5)	0.0619 (4)	0.0702 (4)	-0.0450 (3)	-0.0267 (3)	-0.0179 (3)
Br3	0.0642 (4)	0.0676 (4)	0.0628 (4)	-0.0100 (3)	0.0140 (3)	-0.0288 (3)
Br4	0.1044 (5)	0.0985 (5)	0.0648 (4)	-0.0527 (4)	-0.0215 (3)	-0.0338 (3)
01	0.0423 (18)	0.040 (2)	0.066 (2)	0.0011 (15)	-0.0170 (16)	-0.0261 (16)
O2	0.0331 (17)	0.0389 (18)	0.064 (2)	-0.0039 (14)	-0.0126 (15)	-0.0191 (15)
O3	0.065 (2)	0.0368 (19)	0.082 (3)	0.0148 (17)	-0.0351 (19)	-0.0318 (18)
O4	0.063 (2)	0.045 (2)	0.065 (2)	0.0106 (17)	-0.0285 (18)	-0.0352 (17)
05	0.0418 (17)	0.053 (2)	0.056 (2)	-0.0102 (16)	-0.0053 (15)	-0.0247 (16)
O6	0.0313 (17)	0.062 (2)	0.076 (2)	-0.0016 (15)	-0.0097 (15)	-0.0445 (19)
07	0.052 (2)	0.059 (2)	0.088 (3)	0.0105 (17)	-0.0254 (19)	-0.053 (2)
08	0.0481 (18)	0.051 (2)	0.056 (2)	0.0064 (15)	-0.0226 (16)	-0.0316 (16)
N1	0.040 (2)	0.0268 (19)	0.045 (2)	-0.0009 (16)	-0.0092 (16)	-0.0143 (16)
N2	0.0318 (19)	0.0283 (19)	0.059 (2)	0.0029 (15)	-0.0149 (17)	-0.0211 (17)
N3	0.0373 (19)	0.036 (2)	0.0343 (19)	-0.0067 (16)	-0.0067 (15)	-0.0141 (16)
N4	0.0303 (18)	0.038 (2)	0.042 (2)	-0.0048 (16)	-0.0051 (16)	-0.0200 (16)
C1	0.043 (3)	0.031 (2)	0.045 (3)	-0.004 (2)	-0.011 (2)	-0.0160 (19)
C2	0.047 (3)	0.030(2)	0.039 (2)	-0.006 (2)	-0.008 (2)	-0.0133 (19)
C3	0.060 (3)	0.035 (3)	0.055 (3)	0.005 (2)	-0.012 (2)	-0.014 (2)
C4	0.077 (4)	0.032 (3)	0.055 (3)	-0.006 (3)	-0.012 (3)	-0.020 (2)
C5	0.069 (3)	0.038 (3)	0.043 (3)	-0.026 (3)	-0.012 (2)	-0.008 (2)
C6	0.047 (3)	0.037 (3)	0.047 (3)	-0.014 (2)	-0.006 (2)	-0.009 (2)
C7	0.037 (2)	0.034 (2)	0.055 (3)	-0.003 (2)	-0.012 (2)	-0.017 (2)
C8	0.028 (2)	0.032 (2)	0.037 (2)	-0.0064 (18)	-0.0020 (17)	-0.0125 (18)
C9	0.031 (2)	0.031 (2)	0.035 (2)	-0.0070 (18)	-0.0026 (17)	-0.0096 (18)
C10	0.042 (2)	0.031 (2)	0.048 (3)	-0.0060 (19)	-0.016 (2)	-0.012 (2)
C11	0.046 (3)	0.031 (2)	0.051 (3)	0.002 (2)	-0.024 (2)	-0.011 (2)
C12	0.046 (3)	0.026 (2)	0.045 (3)	0.0014 (19)	-0.008 (2)	-0.0113 (19)
C13	0.040 (2)	0.035 (2)	0.036 (2)	-0.0028 (19)	-0.0084 (19)	-0.0186 (19)
C14	0.036 (2)	0.037 (2)	0.039 (2)	-0.0025 (19)	-0.0119 (18)	-0.0128 (19)
C15	0.067 (3)	0.045 (3)	0.066 (3)	0.009 (3)	-0.023 (3)	-0.033 (3)
C16	0.047 (3)	0.032 (2)	0.035 (2)	-0.006 (2)	-0.0144 (19)	-0.0099 (18)
C17	0.041 (2)	0.031 (2)	0.038 (2)	-0.0076 (19)	-0.0064 (19)	-0.0072 (19)
C18	0.054 (3)	0.035 (3)	0.040 (3)	-0.005 (2)	-0.005 (2)	-0.006 (2)
C19	0.076 (4)	0.050 (3)	0.033 (3)	-0.013 (3)	-0.005 (2)	-0.016 (2)
C20	0.071 (3)	0.054 (3)	0.039 (3)	-0.024 (3)	-0.016 (2)	-0.015 (2)
C21	0.047 (3)	0.049 (3)	0.038 (2)	-0.017 (2)	-0.008(2)	-0.013 (2)
C22	0.035 (2)	0.039 (3)	0.037 (2)	-0.0048 (19)	-0.0068 (18)	-0.012 (2)
C23	0.030(2)	0.035 (2)	0.039 (2)	-0.0068 (18)	-0.0081 (18)	-0.0116 (19)
C24	0.029 (2)	0.024 (2)	0.044 (2)	-0.0033 (17)	-0.0066 (18)	-0.0111 (18)
C25	0.042 (3)	0.047 (3)	0.064 (3)	-0.003 (2)	-0.024 (2)	-0.025 (2)
C26	0.041 (3)	0.050 (3)	0.097 (4)	0.015 (2)	-0.028 (3)	-0.048 (3)
C27	0.035 (2)	0.034 (2)	0.063 (3)	-0.0030 (19)	-0.010 (2)	-0.027 (2)
C28	0.036 (2)	0.031 (2)	0.035 (2)	-0.0048 (18)	-0.0124 (18)	-0.0071 (18)
C29	0.030 (2)	0.033 (2)	0.042 (2)	-0.0013 (18)	-0.0088 (18)	-0.0134 (19)
C30	0.058 (3)	0.051 (3)	0.068 (3)	0.004 (3)	-0.021 (3)	-0.037 (3)
	· · ·	· · ·	× /		· · ·	× /

Geometric parameters (Å, °)

Br1—C3	1.899 (5)	С7—Н7	0.9300
Br2—C5	1.893 (5)	C8—C9	1.488 (6)
Br3—C18	1.892 (5)	C9—C10	1.372 (6)
Br4—C20	1.895 (5)	C9—C14	1.415 (6)
O1—C2	1.347 (5)	C10—C11	1.399 (6)
O1—H1	0.8200	C10—H10	0.9300
O2—C8	1.226 (5)	C11—C12	1.348 (6)
O3—C12	1.361 (5)	C11—H11	0.9300
O3—C15	1.415 (6)	C12—C13	1.387 (6)
O4—C13	1.377 (5)	C13—C14	1.358 (6)
O4—C15	1.437 (6)	C14—H14	0.9300
O5—C17	1.343 (5)	C15—H15A	0.9700
O5—H5	0.8200	C15—H15B	0.9700
O6—C23	1.225 (5)	C16—C21	1.396 (6)
O7—C27	1.377 (5)	C16—C17	1.400 (6)
O7—C30	1.430 (6)	C16—C22	1.463 (6)
O8—C28	1.366 (5)	C17—C18	1.396 (6)
O8—C30	1.428 (5)	C18—C19	1.377 (7)
N1—C7	1.269 (6)	C19—C20	1.378 (7)
N1—N2	1.384 (5)	С19—Н19	0.9300
N2—C8	1.345 (5)	C20—C21	1.372 (6)
N2—H2	0.91 (4)	C21—H21	0.9300
N3—C22	1.271 (5)	C22—H22	0.9300
N3—N4	1.370 (5)	C23—C24	1.477 (5)
N4—C23	1.357 (5)	C24—C25	1.386 (6)
N4—H4A	0.90 (3)	C24—C29	1.406 (6)
C1—C6	1.393 (6)	C25—C26	1.388 (6)
C1—C2	1.396 (6)	С25—Н25	0.9300
C1—C7	1.465 (6)	C26—C27	1.348 (6)
C2—C3	1.384 (6)	С26—Н26	0.9300
C3—C4	1.371 (7)	C27—C28	1.373 (6)
C4—C5	1.373 (7)	C28—C29	1.371 (6)
C4—H4	0.9300	С29—Н29	0.9300
C5—C6	1.362 (6)	C30—H30A	0.9700
С6—Н6	0.9300	С30—Н30В	0.9700
C2—O1—H1	109.5	C9—C14—H14	121.7
C12—O3—C15	106.3 (3)	O3—C15—O4	108.3 (4)
C13—O4—C15	105.3 (3)	O3—C15—H15A	110.0
С17—О5—Н5	109.5	O4—C15—H15A	110.0
C27—O7—C30	105.6 (3)	O3—C15—H15B	110.0
C28—O8—C30	105.7 (3)	O4—C15—H15B	110.0
C7—N1—N2	115.5 (3)	H15A—C15—H15B	108.4
C8—N2—N1	120.9 (3)	C21—C16—C17	119.9 (4)
C8—N2—H2	118 (4)	C21—C16—C22	118.8 (4)
N1—N2—H2	120 (4)	C17—C16—C22	121.3 (4)
C22—N3—N4	117.8 (3)	O5—C17—C18	119.3 (4)

C23—N4—N3	117.6 (3)		O5-C17-C16		122.7 (4)
C23—N4—H4A	121 (4)		C18—C17—C16		118.0 (4)
N3—N4—H4A	121 (4)		C19-C18-C17		122.3 (4)
C6—C1—C2	119.3 (4)		C19-C18-Br3		119.0 (4)
C6—C1—C7	118.2 (4)		C17-C18-Br3		118.7 (4)
C2—C1—C7	122.4 (4)		C18—C19—C20		118.4 (4)
O1—C2—C3	119.3 (4)		С18—С19—Н19		120.8
O1—C2—C1	122.7 (4)		С20—С19—Н19		120.8
C3—C2—C1	118.0 (4)		C21—C20—C19		121.5 (5)
C4—C3—C2	122.1 (4)		C21-C20-Br4		119.1 (4)
C4—C3—Br1	119.7 (4)		C19-C20-Br4		119.3 (4)
C2—C3—Br1	118.0 (4)		C20-C21-C16		119.9 (4)
C3—C4—C5	119.4 (4)		C20-C21-H21		120.1
C3—C4—H4	120.3		C16-C21-H21		120.1
C5—C4—H4	120.3		N3-C22-C16		119.6 (4)
C6—C5—C4	120.1 (5)		N3—C22—H22		120.2
C6—C5—Br2	119.4 (4)		C16—C22—H22		120.2
C4—C5—Br2	120.5 (4)		O6-C23-N4		121.2 (4)
C5—C6—C1	121.1 (4)		O6—C23—C24		122.4 (4)
С5—С6—Н6	119.4		N4—C23—C24		116.4 (3)
С1—С6—Н6	119.4		C25—C24—C29		120.9 (4)
N1—C7—C1	121.1 (4)		C25—C24—C23		120.5 (4)
N1—C7—H7	119.5		C29—C24—C23		118.5 (3)
С1—С7—Н7	119.5		C24—C25—C26		120.8 (4)
O2—C8—N2	122.4 (4)		C24—C25—H25		119.6
02—C8—C9	123.4 (4)		С26—С25—Н25		119.6
N2—C8—C9	114.2 (3)		C27—C26—C25		117.3 (4)
C10—C9—C14	120.3 (4)		С27—С26—Н26		121.4
C10—C9—C8	122.2 (4)		С25—С26—Н26		121.4
C14—C9—C8	117.5 (4)		C26—C27—C28		123.0 (4)
C9—C10—C11	121.8 (4)		C26—C27—O7		127.8 (4)
C9—C10—H10	119.1		C28—C27—O7		109.1 (4)
С11—С10—Н10	119.1		O8—C28—C29		128.4 (4)
C12—C11—C10	117.1 (4)		O8—C28—C27		110.3 (4)
C12—C11—H11	121.4		C29—C28—C27		121.3 (4)
С10—С11—Н11	121.4		C28—C29—C24		116.6 (4)
C11—C12—O3	128.3 (4)		С28—С29—Н29		121.7
C11—C12—C13	121.7 (4)		С24—С29—Н29		121.7
O3—C12—C13	110.0 (4)		08—C30—O7		107.0 (3)
C14—C13—O4	128.2 (4)		O8—C30—H30A		110.3
C14—C13—C12	122.4 (4)		O7—C30—H30A		110.3
04—C13—C12	109.4 (4)		O8—C30—H30B		110.3
C13—C14—C9	116.6 (4)		O7—C30—H30B		110.3
C13—C14—H14	121.7		H30A—C30—H30B		108.6
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1—H1…N1		0.82	2.00	2.654 (4)	137

O5—H5…N3	0.82	1.86	2.582 (4)	146	
N2—H2···O6 ⁱ	0.91 (4)	1.99 (3)	2.833 (5)	155 (6)	
N4—H4A····O2 ⁱⁱ	0.90 (3)	2.04 (3)	2.888 (5)	158 (6)	
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$; (ii) $-x+1$, $-y+1$, $-z+1$.					

Fig. 1

