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The human diet and dietary patterns are closely linked to the health status. High-calorie

Western-style diets have increasingly come under scrutiny as their caloric load and

composition contribute to the development of non-communicable diseases, such as

diabetes, cancer, obesity, and cardiovascular disorders. On the other hand, calorie-

reduced and health-promoting diets have shown promising results in maintaining health

and reducing disease burden throughout aging. More recently, pharmacological Caloric

Restriction Mimetics (CRMs) have gained interest of the public and scientific community

as promising candidates that mimic some of the myriad of effects induced by caloric

restriction. Importantly, many of the CRMcandidates activate autophagy, prolong life- and

healthspan in model organisms and ameliorate diverse disease symptoms without the

need to cut calories. Among others, glycolytic inhibitors (e.g., D-allulose, D-glucosamine),

hydroxycitric acid, NAD+ precursors, polyamines (e.g., spermidine), polyphenols (e.g.,

resveratrol, dimethoxychalcones, curcumin, EGCG, quercetin) and salicylic acid qualify

as CRM candidates, which are naturally available via foods and beverages. However, it

is yet unclear how these bioactive substances contribute to the benefits of healthy diets.

In this review, we thus discuss dietary sources, availability and intake levels of dietary

CRMs. Finally, since translational research on CRMs has entered the clinical stage, we

provide a summary of their effects in clinical trials.

Keywords: caloric restriction mimetics, nutrition, spermidine, clinical trials, polyphenols, polyamines, healthy diet

INTRODUCTION

In addition to genetic, environmental and lifestyle factors, nutrition plays a vital role in shaping
health throughout human aging (1, 2). Recently, health was defined as the sum of several hallmarks,
including, the ability to react to environmental and cellular stress, integrity of barriers and
maintenance of cellular and organismal homeostasis (3), of which many cross-talk with dietary
factors. In opposition to health, diseases are more described and defined and nutrition takes a
central part in these processes as well, prominently in type 2 diabetes, malnutrition-caused diseases,
eating disorders, obesity, chronic inflammation and undernutrition, among others (1).

While a moderate consensus has been reached on what defines an unhealthy diet, the
constitution of a healthy diet remains debated and subject to different beliefs (4). In principle,
healthy diets should have positive effects on diverse health parameters, while not evoking negative
effects (1, 4–6). Different concepts of healthy dietary plans, including the Healthy Eating Index-
2010 (HEI-2010), Dietary Approaches to Stop Hypertension (DASH), Alternative Healthy Eating
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Index-2010 (AHEI-2010) and the alternate Mediterranean Diet
(aMED) have been developed. These indices estimate and rate
the intake of 8–12 components (for instance whole grain, nuts,
legumes, fruit, vegetable, alcohol, etc.) and good scores are
linked to lower cardiovascular disease (CVD) incidence and
cancer mortality (2). In comparison to a Western diet, which
is high in processed meat, salt, sugar, saturated fat and low
in fresh plant-derived ingredients, these health-optimized diets
are richer in plant-based food (fruits, vegetables, whole grains,
nuts, and legumes), unprocessedmeal components and restricted
in animal-based foods (focusing on processed and red meat)
(1). The famous Mediterranean diet, which comes in different
variations, is roughly composed of daily servings of olive oil,
vegetables, fruits, cereals, moderate amounts of fish, meat and
sweets and represents one form of a healthy diet which is linked
to general health promotion (7–9). In agreement, meta analyses
suggest that diets preferring non-hydrogenated unsaturated fats,
whole grains, lots of vegetables and fruits are efficient measures
against coronary heart disease (10). Given the average Western
diet, it thus comes unsurprising that half of cardiovascular and
type 2 diabetes related deaths are attributed to unhealthy dietary
habits in the United States (11).

Accumulating evidence suggests that caloric restriction (CR)
and various forms of fasting (intermittent fasting, time restricted
eating, periodic fasting), avoiding malnutrition and including
an adequate intake of macro- and micronutrients, present yet
additional possibilities to promote the health status by reducing
CVDs and cancer, among other beneficial effects (12–14).

Recently, the concept of caloric restriction mimetics (CRMs)
was developed to describe pharmacologically active substances
that mimic some of CR’s myriads of effects (15–20). At the
core of the CRM definition, we and others argue that potential
CR-mimicking compounds should in principle increase life-
and/or healthspan and ameliorate age-associated diseases in
model organisms, thus often the simultaneous use of the
term “anti-aging substances.” Additionally, CRMs should be
capable of inducing autophagy, a homeostasis-regulating cellular
recycling mechanisms that degrades obsolete, damaged or
otherwise unneeded proteins, cellular structures or organelles
(20, 21), as well as reducing the acetylation status of proteins
(e.g., via activation of deacetylases, inhibition of acetylases
or depletion of acetyl-CoA) (22–24). The most physiological
inducer of autophagy is nutrient and energy deprivation, such
as CR and fasting. Genetic and pharmacological induction of
autophagy can prolong lifespan in various model organisms,
counteract neurodegenerative, cardiovascular diseases, various
types of cancer and delay the onset of frailty during aging,
among others (21, 25–28). Autophagy naturally declines during
aging and diminished autophagic capacity can contribute to
progressive age-associated deteriorations and is implicated in
neurodegenerative as well as cardiovascular diseases (29–32).
Further denominators of CRMs include the capabilities to mimic
more general metabolic, physiological, and hormonal alterations
induced by CR, activation of stress response pathways and
increased stress resilience (17). Different selections of these
criteria are used to define CRMs in literature and, due to
the rapidly evolving nature of the field and the broad effects

attributed to CR, multiple definitions may exist in parallel.
Several chemically diverse CRM candidates have been identified
and possible sources span multiple different areas and chemical
classes, such as glycolysis inhibitors, inhibitors of fat and
carbohydrate metabolism, mTOR inhibitors, AMPK activators,
sirtuin activators, polyamines and polyphenols, among others.

While CR and fasting are approaching clinical settings,
experimental CRM candidates are rare in clinical research. Given
the psychologic limitations of CR and fasting applications in
humans, these compounds hold promise for medical use. A
majority of nutrition research has focused on macronutrient
composition, food additives, dietary habits or specific food items,
as well as their level of industrial processing. The contribution of
single dietary compounds to health outcomes is often elusive and
understanding the effects of single dietary compounds on health
is crucial for determining optimal diets for individual purposes.
Ample reviews have been published on different aspects of
the CRM concept [e.g., (15–20, 33–36)]. However, the role of
naturally occurring CRM candidates in nutrition has been largely
overlooked. Hence, in this review we describe these naturally
occurring substances that harbor CR-mimicking and anti-aging
properties, focusing on their dietary sources, availability and
intake levels (Table 1). Several studies suggest that enhanced
dietary intake of these substances elicits beneficial effects on
human health throughout aging and reduces the incidence of age-
associated diseases (Figure 1). Thus, we summarize the current
status of CRMs in nutritional research and clinical trials.

GLYCOLYSIS INHIBITORS

Early on, CRM candidates were suspected among inhibitors
of glycolysis, as an obvious substance class to study for
potential CR-mimicking properties. Several compounds have
been identified that prolong life/healthspan of model organisms
and/or recapitulate other aspects of CR by inhibiting or
modulating enzymes of the glycolysis pathway (e.g., hexokinase).
Glycolysis inhibitors are comprehensively studied in cancer
research, given many cancer types’ increased dependence on
glycolysis, but are often incomprehensively studied in nutrition
and aging research. Generally, a broader research approach into
the effects of these substances is needed to evaluate their potential
as CRMs.

D-Allulose (also D-psicose), a rare monosaccharide used
as a low-calorie sweetener, inhibits glucose metabolism and
absorption from the intestinal tract, intracellular glycolysis and
starch and disaccharide metabolization in the intestines. This
suggested CRM has multiple pre-clinical effects: importantly,
nematodes treated with D-allulose have increased lifespan,
mediated via AMPK (78), while its effects on autophagy
remain elusive. It is mainly studied for its antihyperglycemic
and antiobesity effects (79). D-allulose is naturally present in
foods, though at very low concentrations, and has been found
in wheat, Itea plants, and processed cane and beet molasses
(80). Interestingly, non-enzymatic reactions during heating of
products that contain high levels of sugars, such as seasoning
sauces and confectionery items, can yield increased, quantifiable
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TABLE 1 | Summary of selected dietarily available compounds with Caloric Restriction Mimetic properties, their estimated intake levels, food sources, and comprehensive

literature reviews.

Class Compound Estimated dietary intake

levels#+

Relevant dietary

sources+

Relevant articles and

reviews

Glycolysis inhibitors Astragalin (glucoside form of

kaempferol; also a polyphenol)

Unknown Various plants, including

Astragalus, Cuscuta

(dodder), Cassia alata

(17, 37)

D-Allulose (D-psicose) Unknown Wheat, Itea, processed

cane and beet molasses,

high-sugar products (e.g.,

seasoning sauces,

especially after heating)

(17, 38)

Chrysin (5,7-dihydroxyflavone; also a

polyphenol)

Unknown Honey, propolis, passion

flowers, mushrooms

(39, 40)

Genistein (4
′

,5,7-trihydroxyisoflavone;

also a polyphenol)

2–50 mg/day (total

isoflavones of which

genistein is a major type)

Various foods, soy-based

items, legumes, fruits, nuts,

vegetables

(41–44)

D-Glucosamine Unknown Shellfish shells, cartilage,

fungi

(17, 45–47)

Mannoheptulose Unknown Unripe avocados (17, 48, 49)

Di/Polyamines Putrescine, spermidine, spermine 3–18 mg/day Various plant and

animal-based foods, soy

beans, cheese, nuts, seeds,

wheat germs

(50–55)

Polyphenols Total polyphenols 1 g/day Various (56–65)

3,4
′

-dimethoxychalcone Unknown *Unknown

4,4
′

-dimethoxychalcone Unknown *Angelica keiskei (ashitaba)

Curcumin 29.4 mg/day Curcuma longa

Flavan-3-ols (e.g., epicatechin,

EGCG)

23–384 mg/day Green tea, apples, pears,

berries, cocoa, broad beans

Gallic acid 25 mg/day Berries, citrus fruits, leaf

vegetables, soy products,

tea

Isobacachalcone Unknown *Angelica keiskei (ashitaba),

Artocarpus sp. (breadfruit),

Erythrina fusca (purple

coraltree), Morus alba (white

mulberry), Piper longum

(long pepper)

Quercetin 13.5–29.4 mg/day Onions, apples, berries

Resveratrol 0.1–8 mg/day Wines, grapes, lingonberry

and >100 other plants

Others Hydroxycitric acid (HCA) Unknown Garcinia and Hibiscus (66–70)

Salicylic acid 1.3–4.4 mg/day Berries, (citrus) fruits, fruit

juices, wines, vegetables

(asparagus, onions)

(71–74)

NAD+ precursors 21.9–41 niacin equivalents

(mg)/day

Various plant and

animal-based foods,

peanuts, nuts, tuna, fish,

pork, beef, soy beans,

cheese, wheat germs

(75–77)

*Likely present in a variety of polyphenol-rich food items. #Estimated dietary intake levels are subject to profound variations, including different methods of assessment, different dietary

habits of study cohorts, large differences of nutritional information in underlying food databases, regional and seasonal variations and diverse food processing techniques. +See main

text for more details.
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FIGURE 1 | Healthy diet plans stand opposite to Westernized Diets and counteract age-associated deteriorations. The contribution of Caloric Restriction Mimetics

(CRMs) to the effects of healthy diets is currently largely undetermined.

levels of D-allulose (e.g., 0.5 mg/100 g in coffee, 130.6 mg/100 g in
Worcester sauce) (81).

D-Glucosamine is an amino sugar that serves as a precursor
for glycosylated proteins and lipids and acts on glycolysis through
hexokinase-1 inhibition. This amino monosaccharide is a CRM
candidate due to its lifespan-prolonging effects in nematodes
and aging mice (45, 82) and its in vivo and in vitro autophagy-
activating properties (82–84). In aging mice it was also shown to
induce mitochondrial biogenesis, to lower blood glucose levels
(45), and to counteract high-fat diet induced metabolic changes
in rats (85), thus mimicking several effects of CR. D-glucosamine
is naturally occurring, butmainly present in cartilage and shells of
shellfish (e.g., shrimp, lobster, crab) where it is present as chitin
(a polysaccharide built from N-acetylglucuosamine), which are
commercially used for the production of glucosamine dietary
supplements. It is also found in fungal cell walls at relatively high
levels (86). Similar to D-allulose, the rare occurrence and low
levels in commonly used food items prevent estimations of intake
levels from normal dietary habits without supplements.

Other glycolysis inhibitors exerting some CR-mimicking
effects, which naturally occur in plants and other food
items, include, for instance, astragalin, chrysin, genistein,
mannoheptulose, and resveratrol. Astragalin is a glucoside form
of kaempferol, a bioactive flavonoid, and present in a wide range
of plants. Notable plant sources include Astragalus (roots) which
has been in medical use in Asia for more than 4,000 years,
and Cuscuta (dodder) seeds which are also traditionally used in
Asian folk medicine and Cassia alata, among many other plants
[reviewed in (37)]. Similarly, chrysin (5,7-dihydroxyflavone)
is found in various (medicinal) plants, herbs and fruits and
products thereof, including honey [up to 5.3 mg/kg in forest
honey, (87)], propolis [up to 28 g/L, (88)], passion flowers (89)
and mushrooms at varying levels below 0.5 mg/kg (90, 91),
among other sources [reviewed in (40)]. Like other polyphenols,
it exerts a wide range of biological activities, but its intake
levels from nutrition, stability in food items and bioavailability

are poorly understood. Genistein (4
′

,5,7-trihydroxyisoflavone),
another phenolic glycolysis inhibitor, belongs to the class of
isoflavones and is readily available from diverse food sources,

such as soy-based items (mature soy beans contain 5.6 to 276
mg/100 g) (92), legumes (0.2–0.6 mg/100 g), fruits, nuts, and
vegetables (41). Germination and fermentation of soy beans
have been reported to increase genistein content (93, 94).
Intake of isoflavones (of which genistein is a major type) is
estimated to range from 25 to 50 mg/day in Asian countries,
while Western countries have much lower intake levels (∼2
mg/day) (95, 96) (see also chapter on polyphenols). Resveratrol,
which is discussed later in the review in more detail, also
shows anti-glycolytic activities, as it shows inhibitory effects on
hexokinase in cell lines (97). Apart from these phenolic, plant-
based compounds, mannoheptulose, a rare sugar, also inhibits
hexokinases and was suggested as a CRM which is prominently
present in unripe avocados (98), but has produced mixed results
in preclinical work (17).

Noteworthy, as an example and prototype for glycolytic
inhibitors, 2-Deoxy-D-glucose (2DG) is a well-established and
one of the best-known glycolysis inhibitors, acting via its first
two enzymatic steps. It was considered one of the first CRM
candidates as it lowers body temperature and insulin levels
of rats fed a 2DG-containing diet (99), acts cardioprotective,
reduces heart rate and blood pressure (100), increases autophagic
flux (101), acts as an effective anti-cancer agent (102) and
prolongs lifespan, at least in the worm C. elegans (103).
However, chronic ingestion has been shown to elicit problematic
(cardio)toxic effects in rodents, including increased mortality,
and has slowed the transition of 2DG into clinical research
(17, 101), presenting general challenges for the field. 2DG does
not naturally appear in food items and is thus not present in
nutritional, epidemiological studies.

Glycolysis Inhibitors in Epidemiological
and Clinical Studies
While several inhibitors of glycolysis are widely present in various
food items, their effectiveness in humans, especially via dietary
intake, is largely elusive. For most of these substances, clinical
studies are absent or insufficient to discuss important topics
such as bioavailability, toxicity, metabolization, clinical effects
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and recommended dosages. Nevertheless, for some glycolysis
inhibitors data from clinical trials are available.

Upon consumption, D-allulose remains largely
unmetabolized and gets secreted to a large extent (104),
but seems to reduce glucose uptake from the gut lumen.
Few clinical trials (6 interventional trials and 1 meta-analysis
registered on clinicaltrials.gov) have investigated the effects
and tolerability of D-allulose in humans. One study found
decreased glucose levels upon an oral glucose tolerance test
(105), matching preclinical reports. This single dose did not
change blood glucose levels per se. Likewise, postprandial glucose
levels were reduced after pre-meal consumption of 5 g D-allulose
(106, 107) and metabolism was shifted toward higher fatty acid
oxidation and lower carbohydrate utilization over a day’s period
(107). A similar study confirmed the notion that the glucose
response is dampened upon D-allulose consumption, although
the effects did not reach statistical significance (108), while the
results on postprandial insulin levels are mixed at the moment.
In type-2-diabetes patients, increasing doses of D-allulose
also slightly lowered early glucose and insulin levels after an
oral sucrose load (109), which is in line with previous reports
(110). One randomized clinical trial that lasted for 3 months
found favorable reductions in abdominal and subcutaneous fat
depots, but no changes in various markers of liver and kidney
function, glucose, lipids or insulin (111). However, dosing
seems to be crucial for this glycolysis inhibitor, as several side
effects, including flatulence, diarrhea and general abdominal
discomfort have been reported (38, 112). Hayashi and colleagues,
however, reported no adverse events or clinical problems in a
trial studying the effects of 5 g D-allulose, taken three times a day
for 3 months (106). Single doses of up to 0.4 g/kg bodyweight
and daily consumptions below total 0.9 g/kg bodyweight seem to
be well-tolerable however (112).

Among the discussed glycolysis inhibitors, glucosamine is
one of the most extensively studied compounds in clinical
trials. It is commonly used to treat osteoarthritis, as it is a
precursor for glycosaminoglycans in cartilage and is widely
available as a dietary supplement. An estimated 7.4% of the
US population between 57 and 85 years of age regularly
use glucosamine (113) and early prospective studies reported
significantly decreased mortality upon regular usage (114, 115).
This observation is supported by several recent studies in the
US (46, 116) and the UK (47), which found reduced mortality
due to all-causes, CVDs, cancer, respiratory and/or digestive
diseases. Besides its potentially mortality-reducing effects in
humans, glucosamine has been studied for various reasons
in clinical trials, including its anti-inflammatory properties.
A 4-weeks long RCT using 1.5 g/day in combination with
1.2 g/day chondroitin sulfate (a sulfated type of glucosamine
and important structural component of cartilage, which is
often sold in combination in supplements) found reductions in
CRP (117), which is supported by several pre-clinical studies
(118) and epidemiological data (119). Interestingly, regarding
its primary reason for application, osteoarthritis, several meta-
analyses have been conducted, producing mixed results on its
effects for treating symptoms and pain (120–125). Nevertheless,
in combination with strong pre-clinical evidence and its good

safety profile, ample clinical data speaks for D-glucosamine as a
prime CRM candidate with inhibitory functions on glycolysis.

Other glycolytic inhibitors that have been studied in a
few clinical trials, include astragalin, chrysin, and genistein.
Astragalin, as an isolated compound, is largely absent in
clinical literature. However, its non-glucoside form kaempferol
has been weakly associated with anti-diabetic and anti-cancer
effects (126–128). Likewise, administration of astragalus roots
which have high astragalin content (129) has shown anti-
diabetic effects, lowering fasting glucose and insulin levels,
postprandial glucose levels and insulin resistance (130), although
the authors of this meta-analysis conclude that some underlying
studies lack quality and more rigorous studies of astragalus
administration are needed. Chrysin has shown promising results
on pre-clinical models of metabolic disorder and cancer (39,
131). It is available as a dietary supplement but shows poor
oral bioavailability (132), while not evoking problematic toxic
effects at the doses studied (single-dose of 400–500mg) (132,
133). However, its effects as a potential CRM and glycolysis
inhibitor, either from diet or as supplement, remain unknown
in humans. Similarly, genistein has been studied for its anti-
cancer properties. It has a bitter taste and is poorly soluble in
water with a low bioavailability when consumed orally (41),
which might be overcome by encapsulation or using genistin,
its glycoside form (134, 135). Evidence of genistein’s effects in
humans is weak, mainly derived from epidemiological studies
and smaller interventional trials that often do not differentiate
between multiple isoflavones and use mixtures of several
compounds (41). Searching clinicaltrials.gov for genistein reveals
72 registered trials and more can be found in literature databases.
Several meta-analyses of clinical trials have been conducted for
various purposes. For instance, genistein supplementation at 54
mg/day is associated with beneficial effects on bone mineral
density in postmenopausal women (136), longer durations of
supplementation (>6 months) may be associated with reduced
blood pressure in patients with metabolic syndrome (42) and
increased intake with lower type-2-diabetes (137–139) and
reduced breast cancer risk (138). Thus, ample data of its
effects in pre-clinical models and humans (either via nutritional
assessments or interventional supplementations), suggest this
isoflavone as an interesting CRM candidate with inhibitory
effects on glycolysis, thus warranting more research and larger
RCTs into its potential CR-mimicking properties.

HYDROXYCITRIC ACID

Hydroxycitric acid (HCA), a derivative of the TCA-cycle
metabolite citric acid, is a phytochemical compound that qualifies
as a CRM due to its autophagy-stimulating properties (24).
Mechanistically, HCA is a competitive inhibitor of ATP-citrate
lyase which is involved in lipogenesis. To date it has been
reported in two plant species: Garcinia and Hibiscus. More
specifically, HCA can be extracted from the fruit rind of Garcinia
gummi-gutta, also known as Garcinia cambogia or Malabar
Tamarind, Garcinia indica, and Garcinia atroviridis. Garcinia
trees are native to India, as well as Africa, Sri Lanka and Malaysia
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(66). The tree produces little green fruits, rich in numerous
bioactive phytochemicals, of which HCA is believed to be the
major ingredient (67). Garcinia extracts have beenmainly studied
for anti-inflammatory, -cancer and -obesity effects (66).

Besides Garcinia, HCA is present in Hibiscus sabdariffa
(Roselle) and Hibiscus rosa-sinensis (140). Hibiscus plants are
endemic in Africa and South-East-Asia. Like Garcinia, Hibiscus
plants are used in multiple ways, as food colorings, jams, cold
drinks, teas and nearly all parts of the plant (leaves, stems, fruits,
flowers) are used for cooking (68).

While numerous HCA-containing garcinia-derived extracts
with varying HCA concentrations are sold over-the-counter
mainly for weight loss promotion, no information can be found
about dietary intake levels of HCA in regions home to Garcinia
or Hibiscus.

Hydroxycitric Acid in Epidemiological and
Clinical Studies
Pre-clinical studies of HCA have shown promising results for
obesity management, including appetite suppression properties,
which is why it is commonly taken for weight management (141),
although the effectiveness is questionable. Different doses have
been used in human trials, ranging from 5 to 250 mg/kg, or up to
4.7 g, daily HCA supplementation, usually divided into smaller
sub-doses taken throughout the day (67, 142). Bioavailability is
fairly fast after HCA intake and the compound can be detected in
human plasma for several hours after acute intake (143). While
there are yet no general recommendations for HCA intake, it has
been found safe at daily doses up to 3 g for 30 days, administered
in capsules or tablets (141, 144–147). Potential adverse events
include mild gastrointestinal problems, diarrhea, nausea and
flatulence. This warrants further research into side effects of
HCA and HCA-containing extracts, focusing on long-term use
(67, 148).

Several randomized clinical trials (RCTs) were conducted
with different HCA-containing formulations which reported
inconsistent outcomes on energy intake, weight gain, fat
oxidation and appetite reduction (142). This could be partly due
to the wide range of concentrations and different study designs
used in these studies. Also, HCA occurs in different chemical
forms, with the lactone form being a less potent inhibitor
of ATP-citrate lyase than the open form (149), which might
explain some inconsistencies when using different formulations
in clinical trials.

Some clinical trials have shown that it can reduce obesity-
related visceral fat accumulation (150). However, as summarized
and discussed in Onakpoya et al., meta-analyses of RCTs using
Garcinia extracts for weight loss show only small effects on short
term weight loss (69) and the effects of HCA administration in
humans remains controversial (142), especially regarding longer
term effects. Different types of bowel disorders were treated with
the fruit rind of Garcinia (66, 151) and pre-clinical work has
shown anti-inflammatory properties of HCA (152).

In summary, HCA has shown promising effects in pre-clinical
and encouraging, yet little, evidence for its effectiveness in
humans. Its contribution to healthy diets remains elusive and its

possible application in clinical settings is yet to be studied with
more rigor, particularly in the long term.

NAD+ PRECURSORS

Nicotinic acid (NA, also named niacin or Vitamin B3),
nicotinamide (NAM), nicotinamide riboside (NR), nicotinamide
mononucleotide (NMN) and tryptophan are all dietarily available
precursors of NAD+ (nicotinamide adenine dinucleotide)
with similar biological activities (75, 76, 153). The universal
coenzyme NAD+/NADH and its phosphorylated derivatives
NADP/NADPH serve oxidoreductases, dehydrogenases, sirtuins
and are central to metabolic pathways (e.g., glycolysis, TCA
cycle) and cell signaling (153). Numerous pre-clinical studies
have shown the CRM-like properties of these precursors upon
supplementation, which can prolong life- and healthspan,
promote mitochondrial function, induce autophagy and act
cardioprotective and neuroprotective, among others (77, 153–
157). NAD+ concentrations decline with age (156, 158) and
replenishing these levels harbors therapeutic potential in humans
(157, 159–164).

NAD+ precursors are abundantly present in foods of animal
and plant origins and NAD+ levels can be increased by dietary
habits, as well as physical activity/exercise (75, 165). Taking into
account de novo synthesis from tryptophan (it is commonly
estimated that 60mg of dietary tryptophan can yield 1mg
niacin in the body, although large interindividual variability
exists), dietary supply of NAD+ precursors is calculated as
niacin equivalents (NE) (166). To avoid hypovitaminosis,
recommendations for daily NE intake are 14 to 16mg (166) and
niacin is rapidly absorbed from the gastrointestinal tract (167).

Interestingly, in the Bruneck study situated in northern Italy,
recent analysis found relative high dietary NE intake of 28.9mg
(23.5 to 35.0) inmen and 26.9mg (21.9 to 33.0) in women per day
(154), which is corroborated by similar observations made in the
US (28 and 18mg niacin/day for men and women, respectively)
and Canada (41 and 28mg niacin/day for men and women,
respectively) (76).

The highest concentrations of NE can be found in nuts,
especially peanuts, (20,833 µg NE/100 g), tuna (14,383 µg
NE/100 g), poultry (12,534 µg NE/100 g), beef (9,235 µg
NE/100 g) pork, lamb, and fish like trouts and salmons (all
>5,000µg NE/100 g). Other foods rich in NE are curd and cheese
(2,800 and 5,226 µg NE/100 g, respectively), along other dairy
products, fruits and vegetables, with wheat germs (10,020 µg
NE/100 g), mushrooms (5,220 µg NE/100 g), green peas (3,621
µg NE/100 g), garlic (2,300µg NE/100 g), dried prunes (1,730µg
NE/100 g) and bananas (1,033 µg NE/100 g) ranking among the
NE richest items. Potatoes, rice and carbohydrate-based foods,
like bread and noodles are also relatively NE-rich (>1,000 µg
NE/100 g) (154). NMN was also found to be abundantly present
in foods like tomatoes (260–300 µg/100 g), broccoli (250–1,120
µg/100 g), mushrooms (up to 1,010 µg/100 g), and raw beef
(60–420 µg/100 g) (168).

Interestingly, pellagra, a niacin- and tryptophan-deficiency
caused disease common to rural, southern areas of the US

Frontiers in Nutrition | www.frontiersin.org 6 September 2021 | Volume 8 | Article 717343

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Hofer et al. Dietary Caloric Restriction Mimetics

a century ago, was cured by substituting mainly corn-based
diets with milk, eggs and meat (169). Of note, niacin in corn
and mature grain is mainly present in bound forms that are
poorly bioavailable. Thus, nixtamalization (soaking and cooking
in alkaline solution) is often applied to render hemicellulose-
bound niacin bioavailable from these sources, a practice that was
already used by Native American populations (75, 170).

NAD+ Precursors in Epidemiological and
Clinical Studies
Due to mounting pre-clinical evidence on the beneficial effects
of NAD+ precursor supplementation and NAD+ depletion as a
possible contributor to (age-associated) human diseases, research
into the clinical feasibility of these substances beyond the
treatment of hypovitaminosis has gained traction (77). Querying
“niacin,” “NAD+,” and “nicotinamide” in clinicaltrials.gov results
in hundreds of registered trials in diverse clinical settings and
cohorts, many of them with dietary supplements.

Toxicity is low and tolerability high in rodents (161) and
several academic sponsors and companies are currently running
clinical trials on NAD+ precursors [for a comprehensive list
of completed trials see (77)]. NR, NAM, and other NAD+

precursors are being tested in clinical trials at doses up to 2 g/day,
which overall seemwell-tolerable, orally bioavailable and increase
blood NAD+ levels (77, 171–175). One study found reduced
circulating inflammatory markers and elevated muscle NAD+

metabolites upon 3 weeks of daily 1 g NR supplementation
(176). The same dose, however, failed to elicit effects on insulin
parameters and glucose tolerance after 3 months in non-diabetic
obese men (177). Daily supplementation of 500mg NR with a
detectable increase in NAD+ serum levels did not cause serious
adverse effects after 8 weeks (173). This was corroborated by a 6
week long study supplementing NR, via a commercially available
supplement, which also found reduced systolic/diastolic blood
pressure and arterial stiffness (178).

Niacin has been used in doses >1 g to treat
hypercholesterolemia, lowering LDL while raising HDL levels
(179). Of note, NAM alone at 1 g/day also evoked similar changes
in the LDL/HDL levels (180). A recent study found increased
intramuscular NAD+, muscle strength and mitochondrial
biogenesis in patients with mitochondrial myopathy after 10
months of up to 1 g/day niacin supplementation (181). This was
accompanied by a shift in the muscular metabolomes toward
those of controls. A case study found amelioration of movement
disorders in a patient with Parkinson Disease (PD) upon 1
g/day niacin supplementation (182). However, double the dose
eventually led to nightmares and skin rashes, which stopped
upon niacin discontinuing, also reinstating the initial severity of
movement disorders. Another case report also found improved
motor, cognitive and sleep measures after 0.25 g/day niacin
treatment for 1.5 months in a PD patient (183). Interestingly,
German PD patients have reportedly lower dietary niacin
consumption (184).

As summarized by Katsyuba et al. the sum of clinical trials
with NAD+ precursors supports the general safety of the
compounds at the doses indicated. However, effects on different

outcomes vary greatly between the studies (77). As outlined
before, NAD+ precursors are important dietary components and
widely spread in various foods. Analysis of dietary habits from
the Bruneck study have shown lower all-cause and cardiovascular
mortality risk, alongside lower systolic blood pressure, associated
with diets rich in NAD+ precursor (154).

POLYAMINES

The naturally occurring, ubiquitously found polyamines
spermidine and spermine have been attributed diverse health-
promoting effects in model organisms and humans [reviewed
in detail in (50, 185)]. Polyamines are available to our bodies
via the diet, microbial production in the gut, and endogenous
biosynthesis. They serve multiple biological roles, from growth,
translation, ion channels and autophagy regulation to binding
of nucleic acids and other molecules (186). Externally supplied
dietary spermidine evokes cardioprotective and neuroprotective
effects in mice, activates autophagy and prolongs life- and
healthspan (187–191). Together with precursors (ornithine,
arginine, methionine, among others) and the diamine putrescine,
these bioactive substances are an unavoidable part of human
diets. Additionally, they are synthesized by the gut microbiome,
providing an additional polyamine source, and are easily taken
up from the gut lumen (51). Several studies have estimated
the average intake levels of these compounds across different
countries, while variations in microbiota-derived polyamine
levels are elusive.

Generally, putrescine seems to make up the greatest share
of dietary di/polyamines, both in weight and µmol. At the
lower end of estimated intake levels stands Turkey with 8mg
putrescine, 5mg spermidine, and 3mg spermine per day (192).
Asian countries are estimated to have daily intake levels of
9, 13, and 8.5mg for putrescine, spermidine and spermine,
respectively (193). Countries in the European Union consume
18mg putrescine, 12.6mg spermidine, and 11mg spermine
daily on average (52), while the USA report roughly one third
lower polyamine consumption levels (194). Due to different
dietary habits, great regional variations exist. For instance, while
spermidine intake levels in Spain are estimated to be around
15 mg/day, those of Sweden are only 10 mg/day (52). A
population-based study in northern Italy, that rigorously assessed
the dietary habits via FFQs, came to an estimated intake of
13.4mg putrescine, 10.1mg spermidine, and 6.3mg spermine
(195). Interestingly, the same study found a significant trend
toward declining spermidine intake levels with age and generally
higher dietary consumption in women.

As mentioned, polyamines are ubiquitously present in food
items of plant and animal origins. Within food categories,
however, wide ranges of concentrations are found, with plant-
based food ranking higher on average (52). Thus, it can be
speculated that healthy diets as outlined above likely contain
elevated polyamine levels. This is corroborated by positive
correlations between food items typically consumed in higher
quantities in Mediterranean countries and polyamine content
(7). A comprehensive summary of polyamine content in various
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food items can be found in Atiya Ali et al. (53). Putrescine
is found in high quantities in fruits (500–550µmol/kg), while
vegetables and bread contain roughly a tenth of those levels.
In contrast, spermidine is more abundant in, particularly aged,
cheese (600–700µmol/kg) and vegetables (200–300µmol/kg),
than in fruits (100–200µmol/kg), while it’s especially low in
meat (<50µmol/kg). Spermine is found in comparable amounts
in meat, vegetables and cheese (100–200µmol/kg), while bread,
potatoes and fruits contain <50µmol/kg (53). Specific food
items rich in polyamines are rice bran, wheat germs, nuts,
seeds, green pepper, broccoli and its sprouts, fish sauce, oranges,
mangos, chicken liver, beef intestines, some shellfish, select
mushrooms, and soybeans (196). Natto, which is based on
fermented soy beans, is especially rich in spermidine and has led
to polyamine-enriched variants being studied in clinical studies
(197). Taking portion sizes and intake frequencies into account,
within the Bruneck study, the greatest contributors to spermidine
intake were whole-grain, apples, pears, salads and vegetable
sprouts (195).

Measured or estimated polyamine content varies greatly
between different reports. Thus, epidemiological, food-
database dependent data are obviously prone to various
confounding factors, including the often unknown influences
of regional/seasonal variability or preparation techniques,
stability, manufacturing, and storage methods in different
food items, just to name a few. This applies as well to the
other dietary compounds discussed in this review. Reviewing
existing literature revealed substantial knowledge gaps on the
influence of the named factors on polyamine content (50).
No consistent tendencies are present across different reports.
However, literature suggests that while spermidine and total
polyamines seem rather stable upon boiling/cooking in most
foods, polyamines might get lost into excess cooking liquids and
fermentation in principle might favor polyamine abundance
(50, 54).

Polyamines in Epidemiological and Clinical
Studies
Polyamines have been studied in moderate extent in clinical
or epidemiological trials. The “Bruneck study,” named after
the hospital’s location in northern Italy where the study
visits were conducted, is a prospective population-based
study that rigorously assessed dietary habits and health
status, including numerous physiological examinations (198).
Polyamine intake data were calculated via dietitian-administered
food frequency questionnaires (FFQs) and food databases to
correlate intake levels to various health parameters. In this
cohort it was observed that cardiovascular diseases (188),
cognitive impairment (190), and overall mortality (including
cancer and vascular deaths) (195) negatively correlated with
higher polyamine intake. These associations were robust to
withstand corrections for possibly confounding factors including
social status, age, BMI, calorie intake, education, alcohol or
nicotine consumption, activity and healthy eating, andweremore
prominently pronounced for spermidine than spermine (both
are enzymatically interconvertible), while putrescine intake levels

did not show significant correlations. The inverse correlation
of spermidine intake and overall mortality was consequently
corroborated by the SAPHIR study (195), while the negative
correlation with CVD incidence was confirmed by another
epidemiological study (199).

Although polyamines show promising effects in pre-clinical
studies and epidemiological data point toward benefits of
increased dietary intake, only few interventional clinical trials
have been conducted so far. One of them, designed as a pilot trial,
supplemented elderly people with low doses of polyamines via a
wheat-germ extract (1.2mg spermidine, 0.6 mg/spermine, 0.2mg
putrescine per day) for 3 months and found a positive impact
on memory performance (200). The same extract was previously
found to be safe in mice and older humans, while not provoking
changes in vital signs in the latter after 3 months (201). Another
study supplemented spermidine via wheat-germ containing
bread rolls (3.3mg spermidine/piece, ∼23 pieces/month) for
3 months to older adults living in nursing homes and found
subtle improvements in cognitive function of patients with mild
dementia (202).

Recently, spermidine- and spermine-enriched natto was tested
in a 1-year-long intervention study, reaching a daily intake
increase of roughly 14.5mg spermidine and 4.5mg spermine
(197). Interestingly, only spermine blood levels rose by 12%
at study end, suggesting either metabolic adaptations in the
polyamine pathway or ready tissue uptake and/or metabolization
of dietary polyamines. The study showed decreased levels of
lymphocyte function-associated antigen 1 (LFA-1) upon elevated
polyamine intake (197), suggesting potential anti-inflammatory
effects of polyamine supplementation in humans. Interestingly,
polyaminemodulation cannot only be achieved by direct increase
of intake levels, but also via modulation of the polyamine-
producing intestinal microbiota. One study administered a
yogurt preparation with Bifidobacterium animalis subsp. lactis
and arginine (precursor of polyamine synthesis) for 3 months
and found higher serum putrescine and spermidine levels,
decreased heart rate, as well as improved endothelial function
in the intervention group compared to the placebo (normal
yogurt) (203). Other in-group significant changes included
slightly reduced triglycerides, total cholesterol and platelet
counts, while HDL-cholesterol increased (changes not significant
in comparison to those in the placebo group).

Due to the increased need for polyamines of cancer cells,
there was some concern regarding potential cancer-increasing
risk of elevated polyamine intake. While one study found
increased risk for colorectal adenoma at above-median intake
levels (204), the same group found an inverse relationship for
colorectal cancer in a different cohort (205), highlighting the
need for multiple observational or direct interventional studies.
Additionally, multiple other epidemiological studies, as outlined
above, did not observe cancer-increasing effects of elevated
polyamine intake, rather the opposite. Other interesting avenues
of polyamine supplementation in humans include the potentially
supporting effects on hair growth (206, 207).

Ongoing or yet-to-be-published trials registered at
clinicaltrials.gov, which use dietary spermidine supplementation
(4–6 mg/day), include explorative hypothesis-generating

Frontiers in Nutrition | www.frontiersin.org 8 September 2021 | Volume 8 | Article 717343

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Hofer et al. Dietary Caloric Restriction Mimetics

studies against depression and for sleep quality improvement
(NCT04823806), one against hypertension (NCT04405388) and
one against cognitive decline in elderly subjects (NCT03094546).

POLYPHENOLS

Plant compounds belonging to the polyphenol family may
represent promising sources of potential CRMs (15). Polyphenols
are ubiquitous phytochemicals characterized by great chemical
diversity. They represent one of the largest groups of secondary
metabolites in plants with over 8,000 structural variants (208).
Polyphenols fulfill multiple ecological roles in the plant kingdom,
from defense against biotic and abiotic stressors to inter- and
intra-kingdom communication. The most common classification
used in the literature implies their subdivision in two main
groups: flavonoids (e.g., anthocyanins, flavan-3-ols, flavanones,
flavonols, flavonones, and isoflavones) and non-flavonoids (e.g.,
phenolic acids, stilbenes, and lignans) (209). Like polyamines
and NAD+ precursors, these compounds are an unavoidable
component in the human diet.

About 800 different polyphenols have been identified in a
wide range of plant foods and beverages, including berries,
whole-grain cereals, cacao, coffee, and tea (210, 211). Some
food and beverages may be particularly rich in a specific
polyphenol class; for example, stilbenes in red wine, phenolic
acids in coffee, flavanones in citrus fruits, flavanols in cocoa,
and isoflavones in soy products (56). It is important to note
that polyphenol content is markedly influenced by plant variety,
agricultural practices, and food processing methods. All these
factors account for the high variability in the polyphenol profile
of plant foods and beverages (212). Although it has often been
criticized, the translation of food composition into intakes of
specific polyphenols is usually achieved using food composition
databases, such as Phenol-Explorer or the database of the
United States Department of Agriculture (USDA) for flavonoids
(211, 213). Depending on the type diet, gender and other socio-
demographic factors, the average polyphenol intake in the human
diet is approximately 1 g/day (57, 214). Estimated intake levels
for specific polyphenols from different reports need to be treated
especially carefully, as the underlying databases and methods of
calculation may vary significantly.

A few prominent examples of polyphenols that may mimic
CR in humans include resveratrol, curcumin, epicatechin,
epigallocatechin-3-gallate (EGCG), gallic acid, and quercetin.

The main representative of stilbenes in the human diet is
resveratrol. It has been detected in 100 plant species from
35 taxonomic families (215). Estimations of daily resveratrol
intake range from 100 to 933 µg in a Spanish study (combined
resveratrol and piceid, a glucoside derivative) (216) to 6-8mg
(217), mainly coming from wines and grape products (216).
According to Phenol-Explorer, lingonberry (Vaccinium vitis-
idaea) was found to have the highest content of resveratrol [3.00
mg/100 g fresh weight [FW)] (218). However, the fresh skin of red
grapes is also particularly rich in resveratrol, which contributes
to its relatively high concentration (3.02 mg/100ml) in red wine
fromMuscadine grape (219).

Curcumin is a well-known polyphenolic compound isolated
from the rhizomes of Curcuma longa (turmeric). The plant is
often cultivated to harvest rhizomes and use turmeric powder as
a spice and food coloring agent. The average Indian diet provides
roughly 60–100mg per day (58). The contents of curcumin
in turmeric rhizomes vary often with varieties, locations, and
cultivation conditions. However, by aggregating data from 14
different samples from 3 publications, the average content of
curcumin in dried turmeric is 2,213.57 mg/100 g FW (220–222).

Epicatechin and EGCG belong to the flavan-3-ol subclass of
flavonoids. Dietary intake levels of total flavanols were estimated
to be 386 mg/day in Germany (223), 192 mg/day in the US
(224), and 23 mg/day in the Netherlands (225), highlighting
a high discrepancy in the published literature and problems
with differences in the underlying food databases and intake
estimations. Of the individual flavan-3-ols, epicatechin, and
catechin seem to make up most of the dietary intake (68 and
84 mg/day, respectively), in the US (224). Recently, it has been
proposed that the estimated intake of flavan-3-ols can only be
interpreted as a marker of specific dietary patterns, but not as the
actual intake amount (59). Epicatechin is found abundantly in
different fruits and legumes, such as apples, pears, berries, cocoa,
and broad beans. Likewise, EGCG is the most biologically active
and most abundant flavan-3-ol in green tea. Quantitative data on
flavan-3-ol contents of foods are largely debated. This is due to
the limitations of self-reporting dietary data (e.g., food-frequency
questionnaires) and the inability of currently used methods to
accurately estimate the high variability of food composition.
Rothwell et al. reported that the values of flavan-3-ols ranged
from 3 to 544 mg/100 g in apples, chocolate (dark), and green
tea (60).

The flavonol quercetin is one of the most extensively studied
polyphenols for its anticancer, antiaging, and anti-inflammatory
activities. It is mainly found in onions, apples, and berries.
Estimated intake levels of quercetin are 29.4 mg/day in the
United Kingdom (226), 20 mg/day in the Chinese population
(227) and 13.5 mg/day in the US (224). Another example of
potential CRMs is gallic acid, which is a well-known polyphenol
belonging to the class of phenolic acids. A polish study estimated
a daily intake of 25mg gallic acid (228), which can be found
in berries, citrus fruits, leaf vegetables, and soy products and it
is known mainly for its antioxidant effect (61). However, tea is
also an important source of gallic acid. Data reported in Phenol-
Explorer indicate that the mean content of gallic acid in black tea
infusion is 4.63 mg/100 ml (60).

Recently, chalcones have emerged as another specific
sub-class of polyphenols that might qualify as CRMs. 3,4-
dimethoxychalcone and 4,4’-dimethoxychalcone, among other
chalcones, were identified in screens of (plant) metabolites to
induce autophagy in vivo and prolong health- and/or lifespan

of yeast, worms and flies (229–232). 4,4
′

-dimethoxychalcone was
later also shown to ameliorate Parkinson’s Disease phenotypes in
mice when delivered to neuronal tissue via targeted nanoparticles
(233), exemplifying one interesting way of overcoming the in
vivo limitations of such small molecules. Isobacachalcone has also
been shown to induce autophagy and enhance chemotherapy in
mice (234). Chalcones are present in a wide range of plants and

Frontiers in Nutrition | www.frontiersin.org 9 September 2021 | Volume 8 | Article 717343

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Hofer et al. Dietary Caloric Restriction Mimetics

plant-derived extracts and are thus dietarily available to humans
and have been used in traditional medicines across continents.

However, their concentrations in the identified plants are
often unknown and no dietary intake levels can be estimated. For
instance, isobacachalcone was found in the edible or partly edible
plants Angelica keiskei (ashitaba), Artocarpus sp. (breadfruit),
Erythrina fusca (purple coraltree), Morus alba (white mulberry),
and Piper longum (long pepper), among others, and is attributed
multiple health-promoting properties [summarized in (234)]. Of
note, 4,4’-dimethoxychalcone was also identified in the chalcone-
rich ashitaba plant (229). Although no specific information can
be found about the presence of these chalcones in other food
items, chalcones are generally widely present in plant-based food,
such as tomatoes, apples and legumes (62).

Polyphenols in Epidemiological and
Clinical Studies
The consumption of polyphenols has been epidemiologically
associated with the beneficial modulation of a wide number
of health-related variables, including mortality risk (235, 236).
However, health benefits and CR-like effects of polyphenols are
difficult to demonstrate in humans due to the wide variability
of chemical structures, biological actions, and complexity
of estimating their content in foods and cooked dishes.
Bioavailability is another crucial aspect when the effects of
polyphenols are evaluated in humans. It has been estimated that
circulating concentrations of both native and metabolic forms
of polyphenols are in the nanomolar to low micromolar range
and, therefore, only a small percentage is detected in urine and
plasma samples (57, 63). Also, many clinical studies concentrate
on polyphenol-rich extracts, juices, or diet plans rather than pure
compounds, often with unknown exact compositions. Effects
often vary significantly between studies, which can likely be
attributed to small cohort sizes, big variations in study design,
different doses and cohorts and underlying confounding factors
(like pre-study dietary intake).

Although resveratrol mimics some aspects of CR in humans,
current clinical trials with resveratrol supplementation and
epidemiological studies report promising but mixed findings.
The amount of available data would overstrain the purpose of
this review and is more comprehensively reviewed elsewhere
(64, 217).

Tolerability of supplemented doses up to 1 g seems fairly good
(217). The effects of resveratrol supplementation on BW and/or
waist circumference (WC) were investigated by 4 studies (237–
240), of which three found a reduction of WC and two studies
detected reduced BW after resveratrol supplementation. Two
reports found a reduction of cholesterol levels, while six others
did not (237, 241–247). Likewise, 1 study showed that resveratrol
can improve triglyceride (TG) in diabetic patients (247).

While three meta-analyses observed no effect on glucose levels
after treatment with resveratrol (238, 244, 245), three studies
reported that resveratrol could decrease blood glucose (237, 242,
248). Four publications also analyzed glucose-related parameters,
such as insulin levels and glycated hemoglobin (HbA1c) (238,

242, 243, 248). The authors of 3 meta-analyses evaluating HbA1c
reported that patients may benefit from resveratrol treatment.

During aging, chronic, sterile, low-grade inflammation, called
inflammaging, contributes to the onset of age-related diseases
(249–252). Overall, meta-analyses found reduced levels of
C-reactive protein (CRP) and tumor necrosis factor (TNF)
in resveratrol-supplemented individuals but no influence on
interleukin 6 (IL-6) (242, 245, 253–256). In an intervention
trial with patients suffering from type 2 diabetes (T2D), CR-like
properties were shown by resveratrol treatment, with activation
of AMPK and SIRT1 in the muscle biopsies (257). However, a
larger trial demonstrated that resveratrol supplementation does
not influence putativemolecular targets of CR in postmenopausal
women (258).

Epidemiological and clinical data on the benefits of curcumin

are also growing. Curcumin appears well-tolerated and safe.
Its poor bioavailability can be significantly increased by several
dietary agents, such as piperine (a component from black
pepper). Recently, a number of clinical trials and meta-analyses
have aimed at summarizing the CR-like effects of curcumin on
humans. Based on data from 8 RCTs, Hariri and Haghighatdoost
systematically evaluated the evidence of the effects of curcumin
supplementation on anthropometric measures, such as BMI,
BW, WC, and fat mass. They found that curcumin, with a
long duration of intervention, may reduce total body fat and
visceral fat, but it was not enough to decrease BW and BMI
significantly (259). Conversely, Akbari et al. pooled results from
21 clinical studies that comprised a total of 1,604 individuals and
demonstrated that curcumin intake significantly decreased BMI,
BW, and WC (260).

Although the lipid-lowering effects of curcumin remain
inconclusive at this time, a meta-analysis of 7 randomized trials
found a beneficial effect on total cholesterol and low-density
lipoprotein cholesterol (LDL-C) in patients at risk of CVD.
However, no significant effect was found with respect to serum
high-density lipoprotein cholesterol (HDL-C) (261).

Of interest, curcumin could lower blood glucose
concentrations of individuals with dysglycemia. A curcumin
supplementation intervention in a pre-diabetic population
improved overall function of β-cells and reduced the number
of individuals who developed T2D (262). Likewise, it was
observed that curcuminoid supplementation (i.e., curcumin,
desmethoxycurcumin, and bisdemethoxycurcumin) decreased
HbA1c and the homeostasis model assessment index for
insulin resistance (HOMA-IR) in diabetic patients (263).
These results were only confirmed for HbA1c in a meta-
analysis of 11 studies (264). Curcumin has been also subject of
intensive research because of its well-known anti-inflammatory
properties. Intriguingly, it was observed that supplementation
with curcumin reduces circulating concentrations of pro-
inflammatory biomarkers and increases anti-inflammatory
mediators irrespective of health status. Indeed, pooled from 32
trials showed a reduction in CRP, TNF-α, IL-6, and an increase
in IL-10 (265).

Flavan-3-ols, such as epicatechin and EGCG (also called
catechins), have been extensively investigated for their role in
human health and nutrition. The beneficial effect of flavan-3-ols
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is evident on cardiometabolic outcomes. Results from a meta-
analysis of 156 RCTs suggest that flavan-3-ol intake has a positive
effect on acute/chronic flow-mediated dilation (FMD), systolic
(SBP) and diastolic blood pressure (DBP), total cholesterol, LDL-
C, HDL-C, TG, HbA1c, and HOMA-IR (266). Moreover, from
the available meta-analyses, it was also reported that catechins
have the propensity of reducing BMI, BW and WC, increasing
metabolic rate even at low dose (ca. 300mg per day) (267–
269). However, current clinical data, recently meta-analyzed by
Haghighatdoost and Hariri, do not suggest benefits of catechins
on inflammatory mediators, such as CRP, TNF-α, and IL-6 (270).

Quercetin is one of the most abundantly researched
polyphenols. Several clinical trials evaluating the impact of
quercetin supplementation on the prevention and treatment of
chronic diseases have been completed. We retrieved 4 meta-
analyses that covered data on lipid profile after quercetin
supplementation (271–274). Although these analyses reported
conflicting results on indices of lipid profile after quercetin
treatment, it appears that changes in plasma lipids, in particular
HDL-C and TG, are associated with quercetin dose (above 50
mg/day) and duration of supplementation (about 8 weeks). The
current clinical evidence also suggests that quercetin intake
does not affect BMI, BW, and WC (275). Conversely, the
results of 4 meta-analysis showed a clear effect of quercetin
supplementation in the reduction of BP and management of
glucose-related parameters (272, 276, 277). No relevant overall
effects on inflammatory mediators were reported, except CRP in
individuals with diagnosed diseases (274, 278).

As far as we know, there are no currently running
or completed clinical trials evaluating the effects of the

herein mentioned chalcones (4,4
′

-dimethoxychalcone, 3,4-
dimethoxychalcone, isobacachalcone). However, given the high
interest in polyphenol-rich extracts and diets, it is likely that these
compounds are present in some of the formulations tested in
clinical studies.

SALICYLIC ACID

Salicylic and acetylsalicylic acid (also known as trademark
AspirinTM) have been in medical use for more than a century
and qualify as CRMs, as they can induce autophagy and prolong
lifespan of model organisms (279, 280). Of note, acetylsalicylic
acid is rapidly converted to the more active form salicylate by
blood and tissue hydrolases (281, 282). As a non-steroid, anti-
inflammatory, antimicrobial, antipyretic and analgesic drug, it
possesses a high therapeutic potential. Many centuries before
the synthetic production of aspirin was available, people made
use of these properties by using willow bark as a natural source
for salicylic acid. Since salicylic acids are central in plants as
protective agents against various pathogens, it is constituent
in various foods such as fruits, vegetables, spices, and herbs.
Additionally, it is also used as a food preservative.

Daily intake varies greatly depending on different dietary
habits (71). Major food sources include fruits, fruit juices, wines
and vegetables. For instance, black- and blueberries contain
roughly 0.8 and 0.6 mg/kg, respectively, while nectarines contain
more than 3 mg/kg. Among vegetables, asparagus is rich in

salicylates with up to 1.3 mg/kg, as well as white onions
with 0.8 mg/kg (72). Notably, foods containing a lot of spices
show relevantly higher salicylate acid levels that can reach the
amount of low dose Aspirin medication (283) if consumed in
high amounts (for comparison: one standard tablet of Aspirin
contains 75mg acetylsalicylic acid, a more tolerable derivative).
For instance, cumin, paprika, thyme and mint contain 20–50
mg/kg salicylate (72). Thus, it is suggested that diets rich in spices,
such as south Indian menus, can contain daily levels of 12–
13mg (71). Large variations in the reported levels are present,
as exemplified by salicylate levels in orange juice ranging from
0.47 to 3.02mg per liter (72). A systematic review of salicylates
in foods of the Scottish population revealed an estimated intake
of salicylates of 4.42 and 3.16 mg/day for men and women,
respectively (72). Another study calculated daily intake levels
of 1.41mg (men) and 1.34mg (women) per day in a southern
German cohort, with the major food sources being citrus fruits
(30%) and berries (24%) (284).

Salicylic Acid and Derivatives in
Epidemiological and Clinical Studies
Salicylic acid and derivatives (e.g., acetylsalicylic acid in Aspirin)
in various commercial formulations have been in broadscale
medical use for several decades, primarily for their anti-
inflammatory and analgesic properties. Aspirin inactivates
cyclooxygenase-1 and−2, leading to inhibition of prostaglandin
synthesis. Accompanied by reduced platelet aggregation, this can
also prevent and treat cardiovascular diseases. Released salicylic
acid has a wide range of additional biological activities, including
anti-inflammatory, -oxidant, and -proliferative properties.

More recently, long-term low- to middle-doses of Aspirin
have gained attention as preventive strategies to promote health.
Several clinical trials and meta-analyses thereof have been
conducted. Regular Aspirin consumption has been associated
with cardiovascular benefits and lower risk for cancers,
especially of colorectal type (285–289). Evidence for the anti-
cancer effects of aspirin and salicylates comes from both
interventional, epidemiological and pre-clinical studies (290).
Regarding prophylactic chemopreventive and cardioprotective
actions, the cost-benefit profile of low-dose (75–325 mg/day)
Aspirin consumption for at least 3 years seems to be largely
in favor of Aspirin, although the potential gastrointestinal side-
effects must not be neglected (291, 292). At odds with several
studies in younger cohorts, a recent large scale Australian and
US study gave 100mg Aspirin to people over 70 and found
no difference in overall cancer incidence after 4.7 years, while
the risk of incident for late-stage and metastasized cancers was
significantly elevated in the Aspirin group (293). This warrants
caution for older age groups.

It has been suggested that the chemopreventive effects of
aspirin consumption come from the salicylic acid formed in the
body and that dietary salicylates could act similarly (290). In
line with the higher amount of salicylates in plant-based foods,
small-scale studies found that vegetarians have higher serum
and urinary excretion levels than non-vegetarians, while average
serum levels in vegetarians were only 11% of patients taking daily
aspirin (294, 295). The authors found wide ranges and overlaps
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in the serum concentrations between vegetarians and aspirin-
treated patients, suggesting that it is possible to raise circulating
salicylic acid levels by dietary means in some cases. Salicylate
tissue levels could respond differently to dietary intake and it is
yet unclear what role they play in the ascribed effects. Of note,
similar to regular Aspirin consumption, vegetarianism and low-
meat diets have been associated with lowered cancer risk several
times (296–298). However, studies by Janssen et al. suggest that
the amount of acetylsalicylic acids in diets is probably too low
to affect disease risk (73, 299). Thus, whether dietary salicylate
consumption is sufficient to elicit disease-protecting activities
remains debated.

Most trials indicating protective effects of aspirin against
various diseases, use doses that likely exceed dietary intake
levels by a magnitude of at least 10 and the required trials
with doses achievable via the diet (<15 mg/day) are currently
absent. Hence, the accumulated effects of long-term and low-level
dietary salicylate consumption remain elusive. However, it must
be noted, that daily consumption of doses as low as 10mg have
been reported to cause gastrointestinal complications, especially
bleeding and ulcers, when consumed for more than a month
(300, 301), highlighting the need for rigorous long-term, low-
dose interventional studies that take into account dietary intake
levels of salicylates.

CONCLUSION AND PERSPECTIVE

CR and different types of fasting are slowly approaching
clinical applications, not only as weight management options
(12, 302). These developments are accompanied by growing
clinical interesting in the potential of naturally occurring and
synthetic CRMs to ameliorate and treat diseases or support
existing treatments, such as chemotherapy (303). Especially
age-associated diseases and those with underlying autophagic
disturbances will likely be priority targets. Natural CRM
candidates are widely present in foods and, in most cases,
inevitably consumed by humans. Given their prominent
occurrence in plant-based foods (especially polyphenols and
polyamines), it is conceivable that these compounds contribute
to the beneficial effects of healthy diets. Nevertheless, to date,
specific dietary recommendations must be read with caution
as too many uncertainties remain regarding bioavailability,
concentration in food, stability and optimal intake levels.
Furthermore, estimations of CRM levels in healthy diet plans,
such as the DASH, HEI-2010, AHEI-2010, or aMED, are largely
elusive and should be evaluated in future studies, as they could
add to or be responsible for some of the beneficial effects of these
diets. Side by side with the herein discussed naturally occurring
CRMs, other non-dietary substances also possess CR-mimicking
properties. These prominently include rapamycin, metformin
and synthetic sirtuin activators, among others, and are discussed
elsewhere (20).

Overall, the promising and emerging field of dietary CRM
candidates needs to be considered with scientific rigor, as
large parts of evidence on their effects in humans come from
epidemiological and/or small-scale studies, often conducted

with plant-based extracts that contain numerous bioactive
substances. Problems may also arise when translating pre-
clinical and epidemiological evidence of dietary and body-
endogenous substances to clinical studies. For many of the
herein discussed substances important data yet need to be
collected: oral bioavailability, stability throughout the intestinal
tract, metabolization, cellular uptake, distribution throughout the
body, organ-specific effects, interaction with body-endogenous
biosynthesis pathways and bioactive levels, just to name a few.
More importantly, epidemiological data on dietary components
can only be as good as the underlying food databases.
Unfortunately, regionally varying food compositions, quality, the
influence of meal preparation techniques and storage conditions
are sometimes insufficiently studied or documented. Hence,
deepened research into these questions is needed for the evolving
field of dietary CRMs (and other dietary components). For
dietary CRMs, different baseline intake levels likely influence
outcomes of different dosing schemes. As an example, daily
average spermidine intake levels are estimated to vary greatly
between different countries (50), correlating with gross domestic
product (193, 304), which might interfere with the effectiveness
of doses near baseline dietary intake.

Finally, due to accumulating pre-clinical and clinical evidence,
CRMs emerge as a prosperous future field of research that
should be tackled in detail by clinical and nutrition researchers
alike. Larger interventional studies are needed to validate first
promising data from epidemiological and small-scale clinical
trials. In terms of dietary CRMs, a detailed evaluation of existing
food databases is warranted, and clinical trials should carefully
take into account the dietary habits and food compositions
of study cohorts. It will be interesting to see how the herein
discussed compounds contribute to the beneficial effects of
well-characterized healthy diets. Eventually, existing and newly
developed healthy diet plans could be optimized with regards to
levels of dietary CRM candidates.
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