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Calcium Imaging and the Curse of
Negativity
Gilles Vanwalleghem*, Lena Constantin and Ethan K. Scott

Neural Circuits and Behavior Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia

The imaging of neuronal activity using calcium indicators has become a staple of

modern neuroscience. However, without ground truths, there is a real risk of missing

a significant portion of the real responses. Here, we show that a common assumption,

the non-negativity of the neuronal responses as detected by calcium indicators, biases

all levels of the frequently used analytical methods for these data. From the extraction of

meaningful fluorescence changes to spike inference and the analysis of inferred spikes,

each step risks missing real responses because of the assumption of non-negativity. We

first show that negative deviations from baseline can exist in calcium imaging of neuronal

activity. Then, we use simulated data to test three popular algorithms for image analysis,

CaImAn, suite2p, and CellSort, finding that suite2p may be the best suited to large

datasets. We also tested the spike inference algorithms included in CaImAn, suite2p,

and Cellsort, as well as the dedicated inference algorithms MLspike and CASCADE,

and found each to have limitations in dealing with inhibited neurons. Among these spike

inference algorithms, FOOPSI, from CaImAn, performed the best on inhibited neurons,

but even this algorithm inferred spurious spikes upon the return of the fluorescence signal

to baseline. As such, new approaches will be needed before spikes can be sensitively and

accurately inferred from calcium data in inhibited neurons. We further suggest avoiding

data analysis approaches that, by assuming non-negativity, ignore inhibited responses.

Instead, we suggest a first exploratory step, using k-means or PCA for example, to detect

whether meaningful negative deviations are present. Taking these steps will ensure that

inhibition, as well as excitation, is detected in calcium imaging datasets.

Keywords: calcium imaging, zebrafish, GCaMP, baseline fluorescence, data analysis, cerebellar circuitry,

segmentation, spike inference

INTRODUCTION

The advent of Genetically Encoded Calcium Indicators (GECI) has transformed the field of
neuroscience by allowing the imaging of activity across large populations of neurons (Nakai et al.,
2001; Pologruto et al., 2004; Tian et al., 2009), and these methods are now being integrated in other
fields of biology (Balaji et al., 2017; Shannon et al., 2017; Stevenson et al., 2020). A concurrent
boom in microscopy techniques has allowed the rapid volumetric imaging of these populations,
in vivo, in models including larval zebrafish (Wyart et al., 2009; Ahrens et al., 2012; Constantin
et al., 2020; Vanwalleghem et al., 2020); flies (Wang et al., 2003; Suh et al., 2004), and rodents
(Chen et al., 2012; Cai et al., 2016; Klioutchnikov et al., 2020). The vast datasets produced by
this approach have driven the development of computational tools designed to extract and process
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activity information from populations of neurons (Mukamel
et al., 2009; Freeman et al., 2014; Pachitariu et al., 2017;
Giovannucci et al., 2019; Stringer and Pachitariu, 2019). A
common assumption in most of these modern computational
tools is the non-negativity of the GECI’s signal.

However, negative deviations from the fluorescence baselines
have been observed, and assumptions of non-negativity may
cause the omission or misinterpretation of GECI data from
populations with such negative deviations (Galizia et al., 2010;
Munch and Galizia, 2017; Favre-Bulle et al., 2018; Marquez-
Legorreta et al., 2019; Zimmerman et al., 2019). With the slow
rise and decay of GECI probes, on the order of hundreds of
milliseconds, a long-term average firing rate above 1Hz would
be convolved as a high fluorescence baseline. Such tonic activity
can be found in vestibular neurons, even at rest (Shimazu and
Precht, 1965; Cullen and McCrea, 1993), and in the primary
visual cortex neurons (Baddeley et al., 1997) among a great
many others. Notably, inhibition of tonically active neurons
has been observed with electrophysiology in vestibular neurons
(Shimazu and Precht, 1966), Purkinje cells (Tian et al., 2013),
and distributed across the brain in response to stimulus-driven
decisions (Steinmetz et al., 2019). Such inhibition of tonic
neurons, convolved by the slow GECI kernels, translate to
negative deviations from baseline as we and others have observed
(Favre-Bulle et al., 2018; Zimmerman et al., 2019).

Many tools for GECI analysis include methods for inferring
the spike train that generated the observed fluorescence signal,
and again most of these spike deconvolution algorithms assume
non-negativity (Vogelstein et al., 2010; Pachitariu et al., 2018).
For example, the spikefinder online challenge had this implicit
assumption in the datasets offered to the community (Theis
et al., 2016), and their best performing algorithms were based
on convolutional neural networks. This supervised approach,
however, would miss inhibited response profiles as they have
been trained on datasets with no negative deviation in the
fluorescent traces.

Finally, this non-negative assumption is built into popular
approaches for interpreting the patterns of activity across
populations of neurons. For example, Non-negative Matrix
Factorization (NMF), not to be confused with CNMF that is
used to extract fluorescent traces from the videos (Pnevmatikakis
et al., 2016), has been used as a dimensionality reduction or
clustering tool on the fluorescent traces of individual neurons
(Freeman et al., 2014; Mu et al., 2019; Torigoe et al., 2019). The
NMF approach, when applied on extracted neuronal activity data
normalized with z-scoring or1F/F0, discards negative deviations
from the baseline fluorescent signal. Another approach that we
and others have used, the binarization of the data based on a
threshold of activity to generate “bar codes” of the brain activity,
also has an intrinsic non-negative assumption (Kubo et al., 2014;
Naumann et al., 2016; Heap et al., 2018; Daviu et al., 2020; Etter
et al., 2020). Other threshold-based approaches, or even data
cleaning steps, run the risk of discarding all negative deviations
from baseline, biasing conclusions drawn from the dataset to
exclude inhibition from the modeled system.

In summary, we find this non-negative assumption at all levels
of calcium imaging analysis, from the extraction of fluorescence

TABLE 1 | Parameters used for the simulation of calcium datasets.

Frame rate Simulated volume Radius nuclei τ of GECI Time points

5Hz 90 × 90 × 50 5.9m 1.5 1,000

traces to spike inference and analyses of populations’ dynamics.
Our goal here was to assess how the most popular calcium
imaging analyses responded to negative deviations from the
baseline, including whether or not each approach was sensitive to
traces that were typical of inhibitory signals in neural networks.
We also hope to spark a discussion on how these assumptions
may have biased past studies, and may continue to bias future
work using GECIs.

MATERIALS AND METHODS

The imaging data came from Favre-Bulle et al. (2018). Briefly,
experiments were carried on 6 day post-fertilization (dpf) nacre
mutant zebrafish (Danio rerio) larvae of the Tüpfel long fin
strain carrying the transgene elavl3:H2B-GCaMP6s (Chen et al.,
2013). The larvae were immobilized in 2% low melting point
agarose (Progen Biosciences, Australia) and imaged using a
diffuse digitally scanned light-sheet microscope (Taylor et al.,
2018) while an optical trap was applied to the otolith to
simulate acceleration (Favre-Bulle et al., 2017, 2018, 2019,
2020). All procedures were performed with approval from the
University of Queensland Animal Welfare Unit in accordance
with approval SBMS/378/16/ARC.

Artificial datasets were generated using the Neural Anatomy
and Optical Microscopy simulation toolbox (Charles et al.,
2019). We used the parameters for nuclear simulation with
GCaMP6f default (see Table 1). To simulate inhibited neuronal
responses, we randomly attributed a spike number from a
Poisson distribution (λ of 1, based on; Baddeley et al., 1997) to
each 200ms time window of 10 to 20 percent of all simulated
neurons (since ∼20% of neurons were inhibited when observed
by Steinmetz et al., 2019). We then set a time frame of 0.2 to 5 s
of inhibition (0 spikes), which was used to simulate the neuronal
activity and generate movies that were processed with the tools
below. For the mixed activity, we used a similar approach on the
second half from the time series of 20% of the neurons in the
simulated dataset.

For fluorescence extraction and spike inference, we
benchmarked the most cited calcium imaging toolboxes:
suite2p (suite2p, version 0.8.0, RRID:SCR_016434) (Pachitariu
et al., 2017), CaImAn version 1.8 (Giovannucci et al., 2019),
and the PCA/ICA approach CellSort (Mukamel et al., 2009).
We did not simulate motion, and as such did not use the
registration algorithms included in either suite2p or CaImAn.
The parameters used for each of these approaches can be found
in the github repository. Briefly, for suite2p we used the sourcery
roi extraction, with a τ of 2, frame rate of 5, diameter of neurons
(4,6), threshold scaling of 0.5 and a high pass of 50. For CaImAn,
we used the CNMFe implementation which shows a better
accuracy for background estimation than CNMF and should
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avoid the risks of spurious negative deviations due to background
subtraction (Zhou et al., 2018). The parameters for CaImAn
were a τ of 2, frame rate of 5, a gSig of 4 and autoregressive order
of 2. For the deep-learning spike inference method CASCADE,
we used the Universal_5Hz_smoothing200ms pretrained model
to infer the spikes on our dataset (Rupprecht et al., 2020). For
MLspike, we used τ = 2, dt = 0.2, pnonlin = [0.55 0.03] as
suggested for GCaMP6f in Deneux et al. (2016).

For the analysis of the responses, we used MATLAB (R2018b,
RRID: SCR_001622). 1F/F0 was computed as in Akerboom et al.
(2012). We used the non-negative matrix factorization function
nnmf with 15 factors to reanalyze the data from Favre-Bulle et al.
(2018). We used the correlation coefficients tools fromMATLAB
to compute the 2-dimensional correlation between the regions of
interest (ROIs) and the ideal components, as well as between the
traces or spikes and the ideal traces or spikes.

Statistical tests and plotting were done in Graphpad Prism
(8.4.3, RRID:SCR_002798), using ordinary ANOVA with Tukey’s
multiple comparison test.

All the code used to generate and analyze the data
can be found on github.com/Scott-Lab-QBI/Negative
CalciumResponses.

RESULTS

Real Data
First, we reanalyzed a zebrafish dataset from our previous
study of vestibular processing in which we identified inhibited
responses in hundreds of neurons across the thalamus and
cerebellum (Favre-Bulle et al., 2018). For the analysis presented
here, we focus on two representative neurons from the
cerebellum and hindbrain of a larval zebrafish (Figure 1A) as
larvae were subjected to vestibular stimuli (Figure 1B, shaded
areas). As seen in the raw data (Figure 1B, arrows), we observe
negative deviations from baseline during stimulation (Figure 1B,
magenta traces), as well as positive responses (Figure 1B, green).

Our first observation was that the classical 1F/F0 approach
with a moving baseline window (Akerboom et al., 2012) creates
positive artifacts following negative deviation from baseline as
seen in Figure 1B (arrows). These positive artifacts could be
construed as actual responses by some approaches, since they
peak at the same level as the actual responses (magenta traces
with arrows vs. adjacent green traces in Figure 1B). In the 1F/F0
trace, the results do not correlate as well for the (magenta)
inhibited neuron (ρ = 0.599) when compared to the (green)
activated neuron (ρ = 0.979). However, the z-scored trace was
perfectly correlated to the raw trace (ρ = 1) for both neurons.
As such, we recommend the use of z-score as a normalization
of calcium traces, and we will use this normalization in the
following analysis.

Beyond these artifacts, there was the concern that popular
data analysis methods could miss inhibited response profiles.
NMF has been used to analyze larval zebrafish calcium imaging
data (Mu et al., 2019; Torigoe et al., 2019), so we tested this
method on the same vestibular dataset from our group (Favre-
Bulle et al., 2018). As can be seen (Supplementary Figure 1),

the NMF approach failed to identify responses resembling the
inhibited cluster identified by k-means while the other (non-
negative) clusters were found with a high correlation (ρ = 0.92, ρ
= 0.94, respectively, Figure 1C).

The major limitation of this analysis was that it lacked
a ground truth, making it impossible to judge whether
outputs from apparently successful approaches actually reflected
physiology. To solve this problem, we turned to simulated data
for which we control the ground truth.

Simulated Data
We used the Neural Anatomy and Optical Microscopy (NAOMi)
Simulation toolbox (Charles et al., 2019) to generate 10 datasets
of simulated nuclear-targeted GCaMP6f data, as described in the
Materials and Methods. Briefly, each dataset contained about 90
neurons, and for each, we randomly selected either 10 or 20%
of the neurons to be inhibited. For each inhibited neuron, we
simulated tonic firing, based on an observed Poisson distribution
(Baddeley et al., 1997), which was randomly interrupted for 0.2
to 5 s to simulate inhibition (Figure 2A). We chose a random
inhibition pattern as both suite2p and CaImAn depend on
the correlation between pixels to generate the ROIs, and we
wanted to make the inhibited neurons as easy to identify as
possible, since most methods depend on local correlations to
identify the neurons. The simulated spiking (Figure 2A) was
then convolved with a GCaMP6f kernel to simulate neural
activity (Figure 2B), which was then used to generate movies
using NAOMi (Figure 2C). As most simulated neurons would
be below the detection threshold, we used NAOMi to output the
ideal responses corresponding to what would be detected with
a microscope. While other algorithms occasionally identified
additional neurons, the effect was marginal (<1%), so we decided
to use the ideal responses as ground truth for the sake of
simplicity (Charles et al., 2019).

Each fluorescence dataset was processed through suite2p
(Pachitariu et al., 2017), CaImAn (Giovannucci et al., 2019),
or CellSort (Mukamel et al., 2009), and the outputs for each
approach were then analyzed in the same manner. We did not
investigate whether the suite2p default classifier or the CaImAn
components evaluation would exclude inhibited neurons, and as
such, we kept all the ROIs either algorithm identified. The raster
plots of the ten datasets (Figure 3A) show that CaImAn identifies
the highest number of ROIs, with CellSort and suite2p identifying
a similar number of ROIs (Ideal= 94.3± 4.7, CaImAn= 84.7±
14.4, CellSort= 55.5± 3.8, suite2p= 56.1± 4.7).

The segmentation of the simulated fluorescent movies gave
good results for all three algorithms, with well-defined regions of
interest that correlated well with the ideal ROIs (Figures 3B,C,
ρCaImAn = 0.74 ± 0.06, ρCellSort = 0.80 ± 0.02, ρsuite2p =

0.79 ± 0.03). We then correlated the ideal traces of activated
or inhibited simulated neurons to the traces extracted by each
algorithm, and for each dataset, we averaged the maximum
correlations to each ideal trace (Figure 3D). All three algorithms
succeeded in extracting the relevant traces for the activated
neurons (Figure 3D, left, indicated by green bar), but CellSort
and suite2p outperformed CaImAn for the inhibited traces
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FIGURE 1 | Negative deviations from baseline in real data from the cerebellum of zebrafish, and performance of various analysis tools. (A) Mean fluorescence image

of a 6 dpf zebrafish expressing nuclear-targeted GCaMP6s (Chen et al., 2013). The cerebellum is outlined in red, and an inhibited neuron is indicated with a magenta

circle. The green circle indicates an activated neuron in the hindbrain. (B) Time traces of the raw (top), 1F/F0 (middle), or z-scored (bottom) fluorescence for these two

neurons, in their respective colors. Arrows indicate positive deviation artifacts resulting from the cessation of inhibition on the inhibited neuron. (C) Comparisons

between the clusters identified using k-means (green for activated, magenta for inhibited) and those identified with NMF (black). No inhibited cluster was identified by

NMF. Gray shaded areas indicate the time of vestibular stimulation (Favre-Bulle et al., 2018), with a progression from strong to weak stimuli across the stimulus train.

(ρCaImAn = 0.43 ± 0.09, ρCellSort = 0.82 ± 0.07, ρsuite2p = 0.83
± 0.08, Figure 3D, right, magenta).

To assess the proportion of true positives, we identified
the ideal fluorescent trace to which each ROI’s fluorescent
trace best correlated. We only counted the unique ROIs
that passed a 0.5 correlation cut-off, as all algorithms over-
segment some of the sources in duplicated fluorescent traces
(Charles et al., 2019). When comparing the proportions of
identified ideal activated neurons, CellSort outperformed suite2p

slightly, followed by CaImAn (proportions of 0.38± 0.05CaImAn,
0.58 ± 0.06CellSort, and 0.54 ± 0.04suite2p, Figure 3E left).
For inhibited neurons, CellSort outperformed suite2p slightly
again, but the divide with CaImAn grew (proportions of
0.34 ± 0.19 CaImAn, 0.86 ± 0.10 CellSort and 0.82 ± 0.10

suite2p, Figure 3E, right). All algorithms seemed insensitive
to the ratio of inhibited neurons presented, as we saw no
difference in those metrics between datasets with 10 vs. 20%
inhibited neurons.

Frontiers in Neural Circuits | www.frontiersin.org 4 January 2021 | Volume 14 | Article 607391

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Vanwalleghem et al. Calcium Imaging and Negativity

FIGURE 2 | Creating simulated calcium imaging datasets. (A) An example dataset of simulated activity, showing spike numbers for one neuron (green) activated and

one (magenta) inhibited by a hypothetical stimulus (gray rectangles). (B) The spike trains are convolved with a GCaMP6f kernel and noise to generate fluorescence

traces. (C) The simulated neuronal activity was used to create an artificial movie as captured by a microscope.

These results are lower than the results from Charles et al.
(2019), who found that both CaImAn and suite2p outperformed
CellSort (proportions of 0.71, 0.69 and 0.33, respectively).
One possible explanation for the difference is that our use of
nuclear-targeted GCaMP simulations, like our real datasets, may
favor CellSort.

Spike Inference From Simulated Calcium
Traces
In theory, inferring the spike trains responsible for calcium traces
is one way to improve the temporal resolution, as you get rid of
the convolved GCaMP kernel, but the frame rate of acquisition
often makes such deconvolution impractical and unreliable. Each
of the above algorithms offers some form of spike inference
(Figure 4A), and multiple other approaches have been proposed
during an online challenge (Berens et al., 2018). CaImAn
offers multiple options for spike inference, among which we
selected their fast non-negative deconvolution (FOOPSI) method
(Vogelstein et al., 2010). For suite2p, we used the Online Active
Set method to Infer Spikes (OASIS) (Friedrich et al., 2017).
We also tested a recent spike inference method based on deep
learning, CASCADE, which offers universal pre-trained models
(Rupprecht et al., 2020) and a maximum likelihood approach to
the probable spiked train, MLspike (Deneux et al., 2016).

Using this approach, we tested how accurate each spike
detection algorithm was on our datasets. To avoid any
confounding issues from the detection algorithm, we used the
ideal calcium responses as the basis for the spike detection. Based
on our results with the moving baseline of 1F/F0 (Figure 1B),
we also did not pre-process the data for the spike inference with
suite2p, and used a global minimum to normalize for CASCADE

and MLspike. The CellSort deconvolution approach had limited
success with both activated and inhibited neurons (ρCellSort =
0.08± 0.08, and ρCellSort = 0.003± 0.013 respectively, Figure 4B,
Supplementary Figure 2). The more recent CaImAn and suite2p
did well for the activated neurons, (ρCaImAn = 0.53± 0.04, ρsuite2p
= 0.55 ± 0.03), but CaImAn outperformed suite2p for inhibited
neurons (ρCaImAn = 0.60 ± 0.05, ρsuite2p = 0.37 ± 0.03). The
universal model of CASCADE performed better than the rest on
the activated neurons (ρCASCADE = 0.66± 0.03), but worse on the
inhibited neurons (ρCASCADE = 0.03± 0.03).MLspike performed
slightly worse than the above algorithms on the activated neurons
(ρMLspike = 0.53 ± 0.03), but was intermediate on the inhibited
neurons (ρMLspike = 0.28± 0.02).

Those performances were also tested in a scenario
containing neurons with a mixture of activation and inhibition
(Supplementary Figure 3). In that scenario there was little
difference between the activated neurons and the mixed activity
neurons with the different algorithms for ROI detections. The
spike inference results were slightly worse across the board, but
not as strongly as in Figure 4.

DISCUSSION

In this study, we show that the often implicit assumption of
non-negativity for calcium imaging data can lead to missing real
responses from inhibited neurons. Current approaches run the
risk of missing a significant fraction of responses at every step
of the analysis pipeline, including cleaning the data, processing,
feature extraction, dimensionality reduction, and clustering.

We have shown these negative deviations exist in real data
from zebrafish, as we previously observed (Figure 1; Favre-Bulle
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FIGURE 3 | Various analyses’ performances on simulated data. (A) Raster plots of ideal responses from NAOMi, and extracted fluorescence traces from CaImAn,

CellSort, and suite2p. All the fluorescent traces were z-scored from−3 to 6 s.d. White horizontal lines separate the individual datasets. (B) Segmentation of the regions

of interest (ROIs) by each algorithm, as for the raster plots in (A), for one representative dataset. (C) Quantification of the correlation between the ROIs identified by

each of the three algorithms and the ideal ROIs. Symbol color indicate the percentage of inhibited neurons (n = 5 datasets with 10% inhibited neurons in blue, and n

= 5 datasets with 20% inhibited neurons in yellow). (D) Average maximum correlations between the traces identified by each algorithm and the ideal responses for the

activated neurons (left, green rectangle) and the inhibited neurons (right, magenta rectangle). (E) Fraction of the ideal responses identified with a correlation above 0.5

by the three algorithms for the activated neurons (left) and the inhibited neurons (right).

et al., 2018), and as observed in mice (Steinmetz et al., 2019) and
flies (Galizia et al., 2010; Munch and Galizia, 2017).

Hyperpolarization is well-known to decrease GCaMP signals
in cells that are partially active at resting potential and that can
be further inactivated by hyperpolarization (Zhao et al., 2018).
We speculate that the negative deflections that we observed in

GCaMP6 signals of our real dataset (Figure 1) are, based on
the spatial location and activity of the ROIs, Purkinje cells. In
zebrafish, Purkinje cells receive excitatory inputs from granule
cells and climbing fibers, and inhibitory inputs from stellate
interneurons. Their cell bodies are located within one of the
most superficial layers of the cerebellum, and hence would
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FIGURE 4 | Spike inference from simulated calcium traces. (A) We applied each of the five spike inference algorithm on simulated GECI fluorescence data generated

from a synthetic ground truth. The inferred spikes were then compared to the synthetic ground truth using a correlation. We show example inferred spikes from each

algorithm, as well as the synthetic ground truth and simulated fluorescence. (B) Correlation between the inferred spikes from the simulated calcium traces and the

actual spikes for the activated neurons (left, green rectangle) and the inhibited neurons (right, magenta rectangle). Each datapoint represents the performance on one

simulated dataset (n = 5 datasets with 10% inhibited neurons in blue, and n = 5 datasets with 20% inhibited neurons in yellow).

be the first cells to be optically sectioned from the dorsal
orientation. Purkinje cells display bistable spontaneous activity,
where they switch between the steady production of tonic or
depolarising “up” spikes and short bursts of intermittent activity
or hyperpolarizing “down” states (Sengupta and Thirumalai,
2015). Therefore, the negative defections in GCaMP6 signals that
we observed in our real dataset in Figure 1 could be tonically-
active Purkinje cells in the superficial layers of cerebellum
that have toggled to their climbing-fiber induced bursting or
“down” state (Engbers et al., 2013), which would produce
negative voltages.

We have demonstrated that a moving baseline, such as for
1F/F0, may create artifacts in inhibited neurons, which may lead
to the generation of spurious positive signals. Finally, inhibited
responses, when normalized, can also be lost when using NMF
or thresholding approaches to analyze and visualize the data
(Figure 1C). Even pixel-wise NMF approaches such as Thunder
could miss inhibited responses, if they include a preprocessing
step such as 1F/F0 (Freeman et al., 2014). It would be interesting
to revisit the data from studies that used these approaches (Mu
et al., 2019; Torigoe et al., 2019) to see whether inhibited neurons
are present in the datasets. We suggest that an initial unbiased
step of data exploration of the dataset should be performed to
ensure that no inhibited responses are present before pursuing
steps including the above methods that assume non-negativity.
Principal component analysis, or other dimensionality reduction
tools, could be used to explore the data in the case of spontaneous
activity or complex stimuli. Alternatively, for stimulus-driven
activity, a correlation or linear regression should reveal any
neuronal activity that deviates negatively from baseline.

By using simulated data (Figure 2), we tested how reliably
CellSort, suite2p, and CaImAn could detect inhibited neurons in

a calcium imaging dataset. CellSort was the best algorithm in our
specific analysis of nuclear-targeted GCaMP (Figure 3), which is
at odds with other comparisons (Charles et al., 2019). However,
both CaImAn and suite2p are better suited to larger datasets of
thousands of neurons. Between these two approaches, suite2p
outperformed CaImAn for the detection of activated responses
both in terms of the fidelity of the extracted response (Figure 3D,
mean difference of 0.056 and p = 0.0006) and the fraction of
responses identified (Figure 3E, mean difference of 0.16 and p
< 0.0001). For inhibited responses, suite2p largely outperformed
CaImAn with more than twice the fraction of ideal inhibited
responses recovered (mean difference = 0.47 and p < 0.0001).
CellSort is a good option for smaller datasets as it requires an a
priori estimate of the number of components (neurons) and does
not perform as well at low SNR typical of endoscopic recordings
(Resendez et al., 2016; Zhou et al., 2018). Among the currently
available approaches, we therefore favor suite2p, or CellSort for
smaller datasets, in order to recover the most inhibited responses
from calcium imaging of neuronal activity.

As for the spike inference, the algorithm included with
CellSort did poorly on both activated and inhibited neurons.
MLspike was outperformed by suite2p and CaImAn performed
similarly to one another with activated neurons, in line with
published results (Pachitariu et al., 2018). However, for inhibited
responses, suite2p’s performance collapsed when using OASIS.
CASCADE performed well on the activated neurons, but the lack
of inhibited neurons in the training datasets mean it performed
poorly when detecting our inhibited responses, as such the use
of a more varied training dataset could improve its performance.
Overall CaImAn, using FOOPSI, presents the best approach to
infer spikes from inhibited neurons (Vogelstein et al., 2010).
Several other methods of spike inference have been benchmarked
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(Berens et al., 2018), and it would be interesting to benchmark
these with simulated inhibited neurons. Finally, we want to
point out that all the spike inference algorithms mistakenly
inferred a strong spiking probably/rate when the inhibition
ended (Figure 4A, bottom), this would need to be accounted for
in any downstream analysis of these inferences.

We saw no significant differences between simulated datasets
with 10 or 20% inhibited neurons in any of the above metrics,
showing that the proportion of inhibited neurons should not
affect the detection of the activated neurons.

Overall, we suggest that the PCA/ICA approach, such as
implemented in CellSort should be favored when dealing with
smaller datasets, where the number of ROIs can be estimated
before processing, and nuclear-targeted GECIs. For larger
datasets however, we suggest using suite2p, which has worked
well both with nuclear-targeted simulations in this study, and
with a cytoplasmic GECI simulation (Charles et al., 2019). With
regard to spike inference, the FOOPSI approach gave the best
results, so we would favor this method when inferring spikes. In
terms of data analysis, NMF or thresholding based on activity
should be avoided before an unbiased analysis such as PCA,
or k-means can be used to ensure the absence of relevant
inhibited neurons.

Another way to address the issue of negative deviations is
to change the calcium indicator used. For example, an inverse-
response GECI (Zhao et al., 2018) has been specifically designed
to easily visualize neuronal inhibition in flies, but then the
activated neurons would be the ones deviating negatively from
the baseline. A powerful alternative is the use of Genetically
Encoded fluorescent Voltage Indicators (GEVIs), which directly
report membrane potential (Akemann et al., 2010; Gong et al.,
2015; Bando et al., 2019). Those GEVIs can be used to visualize
action potentials with millisecond time resolution, their signal
to noise ratio are constantly improving and they would offer an
accurate measure of the actual spikes of the imaged neurons.
However, the requirement of ∼kHz imaging speed precludes
their use for volumetric or whole-brain imaging with the
current technologies.

Finally, GECIs allow the genetic targeting of the calcium
indicator to subtypes of neuronal cells, providing information on
the expected firing rate and behavior of the neurons (Scott et al.,
2007; Forster et al., 2017). Alternatively, imaged neurons can
be identified post-hoc using fixation and labeling (Lovett-Barron
et al., 2017), which can be used to choose an analysis method that
would be more appropriate if one expects negative deviations.

In summary, we have shown that assumptions of non-
negativity can lead to the omission of real and simulated inhibited
responses, and can produce spurious positive signals during the
analysis of neural calcium imaging datasets. We have tested
three popular and readily available approaches for analyzing

such data, and provide recommendations for the best approaches
to use when analyzing calcium imaging data that may contain
inhibited signals.
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