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3Department of Chemistry, University of Oradea, Universităţii Street No. 1, 410087 Oradea, Romania
4Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy, Louis Pasteur
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Simple and multiple linear regression analyses are statistical methods used to investigate the link between activity/property of
active compounds and the structural chemical features. One assumption of the linear regression is that the errors follow a normal
distribution. This paper introduced a new approach to solving the simple linear regression in which no assumptions about the
distribution of the errors are made. The proposed approach maximizes the probability of observing the event according to the
random error. The use of the proposed approach is illustrated in ten classes of compounds with different activities or properties.
The proposed method proved reliable and was showed to fit properly the observed data compared to the convenient approach of
normal distribution of the errors.

1. Introduction

The quantitative structure activity/property relationships
(QSARs/QSPRs) are computational techniques that quan-
titatively relate chemical feature (such as descriptors) to a
biological activity or property [1]. Linear regression is one
of the earliest methods [2] used to link the activity/property
with structural information and is frequently used due to the
relative easy interpretation [3]. Sometimes, linear regression
is misuse due to the application without investigation of its
assumptions (such as linearity, independence of the errors,
normality, homoscedasticity, and absence ofmulticollinearity
[4]).

The error, “a measure of the estimated difference between
the observed or calculated value of a quantity and its true
value” [5], was first used in mathematics/statistics in 1726
in Astronomiae Physicae & Geometricae Elementa [6]. In the
late 1800’s, Adcock [7, 8] suggested that the errors must pass
through the centroid of the data. The method proposed by
Adcock, named orthogonal regression, explores the distance
between a point and the line in a perpendicular direction

to the line [7, 8]. Kummell [9] investigated other than
perpendicular directions between the points and line. The
regression slope (“𝑟”) was described by Galton in 1894 based
on an experiment of sweet pea seeds [10]. Two years later,
Pearson generalized the errors in the variable and published
a rigorous description of correlation and regression analysis
[11] (Pearson recognized the contribution of Bravais [12] to
mathematical formula of correlation). Due to the ability to
produce best linear unbiased parameters [13], the coefficients
in simple linear regression (SLR) models are estimated by
minimizing the sum of squared deviations (least squares
estimation, method introduced by Legendre in 1805 [14] and
used/applied by Gauss in 1809 [15]). Furthermore, Fisher
introduced the concept of maximum likelihood within linear
models [16, 17].

The generic equation of simple linear regression (1)
between observed dependent variable 𝑌 and observed inde-
pendent variable𝑋 is:

𝑌 ∼ 𝑌̂ = 𝑎 ⋅ 𝑋 + 𝑏, (1)
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where 𝑎 and 𝑏 are unknown constant values (estimators of
statistics parameters of simple linear regression), 𝑌̂ is the
value of the dependent variable estimated by the model, 𝑌
is the observed value of dependent variable, and 𝑋 is the
observed value of the predictor variable.

The array use to estimate the residuals is given by
(𝑌
𝑖
− 𝑎 ⋅ 𝑋

𝑖
− 𝑏)
𝑞 formula, where 𝑖 is the 𝑖th observation in the

sample (1 ≤ 𝑖 ≤ 𝑛, when 𝑛= sample size) and 𝑞 is an unknown
coefficient. The unknown 𝑞 coefficient is an estimator of the
power of the errors on simple linear regression.

In the SLR-LS (simple linear regression least squares),
residuals (𝑆

𝑖
= 𝑌
𝑖
− 𝑎𝑋
𝑖
− 𝑏, where 𝑆 = residual) follow the

Gauss-Laplace distribution with 𝜇, 𝜎, and 𝑞 being unknown
statistical parameters:

GL (𝑠; 𝜇, 𝜎, 𝑞)

=

𝑞

2𝜎

Γ
1/2
(3/𝑞)

Γ
3/2
(1/𝑞)

exp(−
󵄨
󵄨
󵄨
󵄨
(𝑠 − 𝜇) /𝜎

󵄨
󵄨
󵄨
󵄨

𝑞

(Γ (1/𝑞) /Γ (3/𝑞))
𝑞/2
) ,

(2)

where 𝜇 is population mean, 𝜎 is population standard
deviation, 𝑞 is power of the errors, Γ is gamma function, and
𝑠 is sample standard deviation.

Gauss-Laplace distribution is symmetrical and has three
statistical parameters (populationmean, population standard
deviation, and power of the errors) [15, 18] and two main
particular cases. First particular case is Gauss distribution
[15] often observed on arrays of biochemical data [19–21]
while the second particular case is Laplace distribution (with
mean of zero and variance 𝜎2) [22, 23] commonly seen on
astrophysical data [24, 25].

The problem of estimating the parameters of the SLR (1)
for the first particular case (Gauss distribution) considers
𝑞 = 2 residuals (where 𝑞 is the power of the errors related
with experimental errors). The coefficients of regression for
this particular case are obtained by solving the system of
linear equations under the assumption that ∑𝑆

𝑖

2
= min [26]

(∑𝑆
𝑖

2
= ∑(𝑌

𝑖
− 𝑎 ⋅ 𝑋

𝑖
− 𝑏)
2, where 𝑎 and 𝑏 are unknown

parameters).
The second particular case is 𝑞 = 1 when residuals follow

the Laplace distribution. In view of the fact that ∑ |𝑆
𝑖
| =

∑ |𝑌
𝑖
− 𝑎 ⋅ 𝑋

𝑖
− 𝑏| “is not differentiable everywhere” [27], the

solution in more difficult to be obtained for this particular
case.

One question can be asked: “what is the proper value
of 𝑞 that should be used in the simple linear regression
analysis (1)?” A previous study showed that, for different
sets of biological active compounds, the distribution of
the dependent variable (𝑌) can be approximated by Gauss
distribution (𝑞 = 2) just in a relatively small number of
cases when the whole Gauss-Laplace family is investigated
[28]. Based on this result, the aim of the present study was to
formulate the problem of solving the simple linear regression
equation (1) without making any assumptions about the
power of the errors (𝑞).

2. Materials and Methods

2.1. Mathematical Approach. The problem of regression (1) is
transformed into a problemof estimation if the residuals (𝑆

𝑖
=

𝑌
𝑖
−𝑎⋅𝑋

𝑖
−𝑏) are introduced in (2) with a slight modification:

in the quantity (𝑌
𝑖
− 𝑎 ⋅ 𝑋

𝑖
− 𝑏) − 𝜇 the constants 𝑏 and 𝜇

are equivalent and just one (𝑏) will be further used. Gauss-
Laplace distribution is symmetrical and the observedmean is
an unbiased estimator of the population mean (𝜇 = 𝑏). This
could be expressed in terms of (1) as presented in

𝑀(𝑌) ∼ 𝑀(𝑌̂) = 𝑎 ⋅ 𝑀 (𝑋) + 𝑏, (3)

where 𝑏 is the populationmean of theGauss-Laplace quantity
𝑌 − 𝑎 ⋅ 𝑋 (2), 𝑌 is observed/measured dependent variable, 𝑌̂
is dependent variable estimated by the regression model, 𝑋
is independent/predictor variable, and 𝑀 is mean operator.
For certain arrays of paired observations (𝑋, 𝑌), the problem
of regression expressed in (1) is transformed to a problem
of estimating the parameters of the bidimensional Gauss-
Laplace distribution as presented in
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(4)

An efficient instrument to solve (4) is maximum likeli-
hood estimation (MLE), method proposed by Fisher [16,
17]. The main assumption of the MLE is that the (𝑋, 𝑌)
array has been observed due to its higher chance to be
observed (simultaneously and independent). This could
be translated as GL(𝑋

𝑖
, 𝑌
𝑖
; 𝜎, 𝑞, 𝑎, 𝑏) = max, and thus

log(ΠGL(𝑋
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; 𝜎, 𝑞, 𝑎, 𝑏)) = max, which lead to the expres-

sion in
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𝑖
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By including (4) in (5) and using the natural logarithm, the
problem presented in (1) became a problem of optimization:
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where𝑁 is number of (𝑋, 𝑌) pairs.
The optimization problem presented in (5) could be

iteratively solved if the start point is a good initial solution
(situated near the optimal solution). In this research, the start
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Simple linear regression least squares estimation
q = 2 a 𝜇 𝜎

Simple linear regression maximum likelihood estimation
q a 𝜇 𝜎

Classical regression
(Equation 7, starting values in optimization)

Proposed approach
(Equation 6, solution obtained iteratively)

Program implementation given in Appendix
Mathcad or MATLAB nonlinear optimization

modules can be used as alternative

Results: Table 3, columns for “q = 2”

Results: Table 3, columns for “q = ?”

Algorithm maximizing likelihood as given in Equation 6
𝜕(Equation6)/𝜕q → 0, 𝜕(Equation 6)/𝜕a → 0, 𝜕(Equation 6)/𝜕𝜇 → 0, 𝜕(Equation 6)𝜕𝜎 → 0

equivalent with Equation 𝜕(q, a, 𝜇, 𝜎) → max.

Figure 1: Flowchart of the implemented method. The starting values of the “𝑎” (coefficient of the independent variable), “𝜇” (population
mean), and “𝜎” (population standard deviation) coefficients are those obtained by least squares estimation method while the imposed value
of power of the errors is equal to 2. The algorithm that maximizes likelihood finds optimal solution for “𝑞,” “𝑎,” “𝜇,” and “𝜎” that satisfy (6).

point in the optimization was the solution of a particular case
of (6) as presented in

𝑞 = 2;
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where 𝑞 is power of the errors, 𝜇 is population mean,
𝜎 is population standard deviation, 𝑀 is average (central
tendency operator), and𝐷2 is variance (dispersion operator).

2.2. Algorithm Implementation. The classical simple linear
regression uses least squares method to estimate 𝑎, 𝜇, and 𝜎
coefficients in (7) using the fixed values of 2 for the power
of the errors (𝑞 = 2). In our approach, starting with the
optimal solutions for 𝑎, 𝜇, and 𝜎 coefficients obtained by
(7), the optimal solution of (6) was iteratively obtained by
making small changes to the values of the coefficients and
selecting the coefficients thatmake theMLE value higher.The
implemented weights of changes were more or less arbitrary,
and the selected ones are a compromise of convergence speed
in the convergence space.

The flowchart of the proposed approach is presented in
Figure 1.

A PHP program was developed to find the optimal
solution for (6). As the input data, the implemented program
needs a ∗.txt file with three columns (file named as mol-𝑋-𝑌,
where mol is the identification of the molecule and could
be text or number, 𝑋 is the independent variable, and 𝑌 is
dependent variable).The program generates the output file as
specified by the user (a ∗.txt file could be used) that contains
for each iteration the data for the following coefficients: 𝑞, 𝑎,
𝜇, 𝜎, andMLE.

The source code of the implemented algorithm is free
to be used and is presented in the Supplementary Material

available online at http://dx.doi.org/10.1155/2015/360752. The
full program can be obtained upon request from the authors.

2.3. Data Sets. Ten classes of previously investigated com-
pounds were used to assess the proposed method. The class
of compounds, the activity/property of interest alongwith the
number of compounds in the dataset and the reference to the
paper from where the independent and dependent variables
were collected are given in Table 1.

Simple linear regression (SLR)models under the assump-
tion of linear relationship between structural descriptors
and activity/property of chemical compounds were identified
using the values of descriptors previously published in the
literature (see reference in Table 1). The characteristics of
the models with the highest goodness-of-fit for each class of
compounds are presented in Table 2.

3. Results and Discussion

The proposed solution for solving the simple linear regres-
sion without making any assumptions about the power of
the errors has been successfully implemented and reliable
solutions were obtained.

The developed algorithm was successfully tested on ten
different data sets. The number of iteration needed to find
the optimal solution varied from 9 (set10) to 185 (set4b) and
seems not related with the number of compounds in the
sample when the same class of compounds is investigated
(63 iterations (set1a), 51 iterations (set1b), and 86 iterations
(set1c)). The number of iterations needed to obtain the
optimal solution was equal to 173 for the smallest dataset
(set2) and 86 for the dataset with the highest number of
compounds (set1c). Accordingly, the maximum number of
iterations was almost 21 times more than the minimum
number of iterations.

The results of simulation study obtained for the con-
venient solution (𝑞 = 2, residual follows the Gaussian
distribution) and for solution that satisfies (6) are presented
in Table 3. The values of calculated coefficients (𝑎, 𝑏, and 𝜎)
are provided with three decimals; equal values for 𝑞 = 2 and
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Table 1: Characteristics of the investigated classes of compounds.

Set 𝑛 Class Activity/property, expressed as Reference
1a 35

Phenols Toxicity on Tetrahymena pyriformis, log(1/IGC
50
) [29–31]1b 126

1c 250
2 24 Organic compounds Solubility, log𝑃 [32, 33]
3 73 Alkanes Boiling point, BP [34]
4a 40 Flavonoids Solubility, log𝑃

[35]4b 30 Lethal Dose 50%, ln(LD
50
)

5 132 Estrogen receptor (ER) Binding affinities, log(RBA) [36]
6 80 Pyrrolo-pyrimidine derivatives c-Src tyrosine kinase inhibitory activity, pIC50 = −log10(IC50) [37]
7 47 Substituted aromatic sulfonamides Inhibition activity on carbonic anhydrase II, log𝐾

𝐼
[38]

8 37 Carboquinone derivatives Molar concentration, log(1/MC) [39]
9 47 Dipeptides ACE (angiotensin converting enzyme) inhibitory activity, ACE [40]
10 60 Mycotoxins compounds Retention time, ln(RT) [41]

Table 2: Characteristics of the SLR-LS models used in the optimization study.

Set SLR model 𝑅
2

𝑠 𝐹 𝑛

1a log(1/IGC
50
) = +0.677 ⋅ log𝑃 − 1.38 0.90 0.22 287 35

1b log(1/IGC
50
) = +0.647 ⋅ log𝑃 − 1.05 0.84 0.30 666 126

1c log(1/IGC
50
) = −0.443 ⋅ log𝑃 + 0.509 0.53 0.57 276 250

2 log𝑃 = −0.004 ⋅ ISDRTHg∗ + 2.09 0.53 0.43 25 24
3 BP = +188.40 ⋅ lbMdsHg∗ − 507.95 0.99 3.81 8050 73
4a log𝑃 = +0.99998 ⋅ SD + 5.232 0.71 0.32 92 40
4b ln(LD

50
) = +0.0018 ⋅ SD − 61.168 0.41 0.98 19 30

5 log RBA = +0.026 ⋅ TIC1 − 4.145 0.36 1.44 72 132
6 pIC

50
= +0.255 ⋅ DCW − 1.216 0.71 0.57 191 80

7 log𝐾
𝐼
= −0.578 ⋅ 𝑁-rings + 2.646 0.49 0.37 43 47

8 log(1/MC) = −4.129 ⋅ TEuIFFDL∗ + 5.789 0.65 0.38 64 37
9 ACE = 47.5480 ⋅ IHMdpMg∗ − 0.1687 0.74 0.33 128 47
10 ln(RT) = 0.348 ⋅ log𝑃 + 1.711 0.56 0.50 75 60
SLR = simple linear regression.
log(1/IGC50) = concentrations (expressed as mM) producing a 50% growth inhibition on T. pyriformis.
∗MDF descriptors [33, 39, 40, 42].
SD = global correlation descriptor [35]; TIC1 = total information content index (neighborhood symmetry of 1-order).
DCW = flexible (activity dependent) descriptor.
std dim3 = the square root of the third largest eigenvalue of the covariance matrix of the atomic coordinates [43].
𝑅
2 = determination coefficient; 𝑠 = standard error of the estimate.
𝐹 = Fisher’s statistic of the regression model; 𝑛 = sample size.

optimal 𝑞were obtained as follows: 𝑎, coefficient in set1b, set3,
and set6; 𝑏, coefficient in set3, set6, set8, and set10; and 𝜎,
coefficient in the following sets: 1b, 1c, 3, 4a, 5, 6, 8, 9, and
10.

The analysis of the obtained coefficient presented in
Table 3 revealed the following.

(i) In 9 out of 13 cases, at least one coefficient (𝑎, 𝑏, or
𝜎) proved equal for convenience; 𝑞 = 2 and 𝑞 is
determined to satisfy (6).

(ii) In 6 out of 13 cases, the power of the errors obtained
by MLE proved significantly higher than 2. The
difference varied from 0.8099 (set4a) to 7.5176 (set1a).

(iii) Just in one case, the difference between powers of
the errors proved not statistically different (set3, 𝑃 =
0.0693).

(iv) In 6 out of 13 cases, the difference between power of
the errors (SLR-LS and SLR-MLE) proved lower than
1.

(v) The smallest distance between the powers of the
errors (from SLR-LS and SLR-MLE) was of 0.2613
(set10) and was identified as being statistically signif-
icant (𝑃 < 0.0001).

(vi) Two classes of compounds (set3 and set6) proved
identical values of 𝑎, 𝑏, and 𝜎 unconcerned with the
method used in the regression analysis (SLR-LS and
SLR-MLE).
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Table 3: Optimization results: 𝑞 = 2 versus q determined to satisfy (6).

set 𝑛

𝑞 = 2 𝑞 = ?
𝑃 value (𝐻

𝑜
: 𝑞 = 2)

𝑎 𝑏 = 𝜇 𝜎 𝑞 𝑎 𝑏 = 𝜇 𝜎

1a 35 0.678 −1.386 0.218 9.52 0.638 −1.181 0.222 4.20 ⋅ 10−54

1b 126 0.647 −1.050 0.298 4.36 0.647 −1.029 0.298 3.07 ⋅ 10−115

1c 250 0.509 −0.443 0.596 1.29 0.563 −0.623 0.569 2.42 ⋅ 10−53

2 24 −0.004 2.095 0.414 0.61 −0.005 2.270 0.516 1.76 ⋅ 10−12

3 73 188.408 −507.959 3.762 1.34 188.408 −507.959 3.762 6.93 ⋅ 10−2

4a 40 1.000 5.232 0.308 2.81 1.041 5.338 0.308 1.30 ⋅ 10−19

4b 30 0.002 −61.168 0.945 0.67 0.002 −64.950 0.964 1.16 ⋅ 10−8

5 132 0.024 −3.812 1.374 1.70 0.026 −3.967 1.374 7.33 ⋅ 10−3

6 80 0.255 −1.216 0.558 2.87 0.255 −1.216 0.558 3.39 ⋅ 10−23

7 47 −0.578 2.646 0.360 3.43 −0.555 2.594 0.353 1.06 ⋅ 10−30

8 37 −4.129 5.789 0.372 1.29 −4.297 5.789 0.372 4.75 ⋅ 10−14

9 47 47.561 −0.169 0.319 3.17 49.502 −0.279 0.319 9.01 ⋅ 10−29

10 60 0.348 1.711 0.492 1.74 0.355 1.711 0.492 6.09 ⋅ 10−5

𝑞 = power of the errors; 𝑎, 𝑏 = coefficients in the simple linear model.
𝜇 = population mean; 𝜎 = population standard deviation.

(vii) The 𝑞 obtained by SLR-MLE proved significantly
different by convenient value (𝑞 = 2) with one
exception represented by set3.

The most probable distribution of the power of the error
obtained by MLE is Fatigue Life or Birnbaum-Saunders
distribution [44] (Kolmogorov-Smirnov statistics = 0.1245,
𝑃 = 0.9728; Anderson-Darling statistics = 0.2753 𝑃 =

0.9509; 𝑃 value associated with Anderson-Darling statistics
was calculated taking into account the values of the statistics
and the sample size [45]). The Fatigue Life distribution of
the power of the errors is characterized by two parameters
represented by continuous shape parameter (𝛼 = 0.7777) and
continuous scale parameter (𝛽 = 2.0599). The median of the
power of the errors is closed to the convenient values of 2,
with a mean of 2.68. Nevertheless, the normal distribution
of the obtained power of the errors could not be rejected at
a significance level of 5% (Kolmogorov-Smirnov statistics =
0.278, 𝑃 = 0.2229; Anderson-Darling statistics = 1.178, 𝑃 =
0.2731).

The evolution of value of power of the errors according
to iteration was in both directions and, as expected, never
achieved negative values (see Figure 2). The analysis of the
evolution of the power of the errors as function of iteration
revealed that even if identical values of 𝑞 are obtained in the
first 29 iterations for the first two related samples (set1a and
set1b, Figure 2), the pattern is not representative for the class
of the compounds. Thus, the pattern from 1c is significantly
different by those observed on subsets of the whole class of
compounds (1a and 1b). Opposite behavior is also observed
for the other two related samples (set4a and set4b), and the
value of 𝑞 increased until a maximum (iteration 10 for set4a)
and decreased after this value while the value of 𝑞 decreases
in steps for set4b.

Overall, two distinct patterns are observed in Figure 1.
In the first pattern, the values of power of the error increase
with iteration until a peak and after that the value decreases

(sometimes with a decrease in steps (set6, set7, and set9));
see set1a, set1b, set4a, set6, and set9 (Figure 2). In the second
pattern, the power of the error decreases in steps with the
increase of iteration as for set1c, set2, set3, set4b, set5, set8,
and set10 (see Figure 2).

The plot of both regression lines (simple linear regression
and associated 95% confidence interval and MLE regression)
for each investigated data sets is presented in Figure 3.

The analysis of the regression lines presented in Figure 2
revealed that, in one case represented by set7, the assumption
of the linearity of log𝐾

𝐼
with n-rings is breached and, for

this dataset, the simple linear regression is not the proper
analysis. In 4 out of 13 cases, the SLR-MLE line is partly
outside the 95% confidence boundaries of the SLR-LS line
(set1a, set1c, set2, and set4b; Figure 3). Accordingly, it could
be considered in all these cases that the SLR-MLE model is
significantly different by the SLR-LS model. The overlapping
of SLR-MLE and SLR-LS line is observed for the set3, without
being possible to make a visual distinction between them
(Figure 3). For this set, the 𝑞 obtained by SLR-MLE was equal
to 1.34 and proved not significantly different by convenient
value of 2 (see Table 3). For all other sets, the SLR-MLE line
is within the boundaries of 95% confidence intervals of SLR-
LS line and thus even if the powers of the errors proved
significantly different by the convenient value of 2, these SLR-
MLE models could not be considered significantly different
by the SLR models.

To conclude, it is certain that the proposed approach of
maximizing the probability of observing the event according
to the random error fits well the observed data and frequently
the power of the errors (𝑞) is significantly different by the
convenient value (𝑞 = 2). However, no pattern could be
identified between iteration and sample size on the investi-
gated sets of (𝑋, 𝑌) pairs. It is expected that the recognized
behavior of the power of the errors is to be identified on
other (𝑋, 𝑌) pairs, analysis which is currently conducted by
our team.The relation presented in (6) thereby defines a new
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Figure 2: Continued.
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Figure 2: Distribution of power of the errors according to iteration: investigation of phenols set (35 compounds (1a) and 126 compounds
(1b), resp.). Distribution of power of the errors according to iteration: phenols (1c), organic compounds (2), alkanes (3), flavonoids (4a and
4b), estrogen receptor (5), pyrrolo-pyrimidine derivatives (6), and substituted aromatic sulfonamides (7). Distribution of power of the errors
according to iteration: behavior on carboquinone derivatives (8), dipeptides (9), and mycotoxins compounds (10).
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Figure 3: The line of SLR-LS (𝑞 = 2) and SLR-MLE (𝑞 determined to satisfy (6)): investigation of phenols set (35 compounds (1a) and 126
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derivatives (6), and substituted aromatic sulfonamides (7). Carboquinone derivatives (8), dipeptides (9), and mycotoxins compounds (10).

The relation presented in (6) may be also extended to the
multiple linear regression (𝑌 ∼ 𝑎

0
+ ∑
𝑗>0
𝑎
𝑗
𝑋
𝑗
) when the

expression 𝑆
𝑖
= 𝑌
𝑖
− 𝑎𝑋
𝑖
becomes 𝑆

𝑖
= 𝑌
𝑖
− ∑
𝑗>0
𝑎
𝑗
𝑋
𝑗,𝑖
. If

in the case of multiple linear regressions the classical method
(minimizing the squared error) maximizes the correlation

coefficient, the proposed approach (6) maximizes the prob-
ability of observing the event according to the random error.
In view of that, (6) has a significant advantage compared to
the classical approach.The classical approach that maximizes
the correlation coefficient is exposed to type I errors; a model
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of regression could be accepted even if the model does not
exist. On the contrary, the proposed approach thatmaximizes
just the chance of observation (the approach has just one
hypothesis: the error between the observation (𝑌) and the
model (𝑌̂) must be random and its value does not depend
on the size of the observed value) is not affected by a type
I error. In the case of simple linear regression, application
of (6) did not change the correlation coefficient between 𝑌
and 𝑌̂ but offers a solution in regard to estimated valued of 𝑌
and of the unknown coefficients (estimators of the population
coefficients) that enter the relation between 𝑋 and 𝑌. The
relation proposed in this paper (6) introduced an additional
parameter in the estimation, namely, the power of the errors
of Gauss-Laplace distribution (𝑞) (this led to decrease by one
unit of the degrees of freedom in the analysis of variance in
the regression model).

The MLE approach is frequently used in estimation of
unknown parameters and it is known to be sensitive to
outliers (±influential compounds) in the data [46–48]. No
outliers have been identified in the dependent variable on
set2 and set3 [42, 46, 47]. Therefore, on these two sets of
compounds, it is a certainty that the proposed approach
was not affected by the presence of outliers in the data.
Evaluation of how the values in the investigated sets could
lead to identification of outliers (±influential compounds
[4, 31, 49]) was beyond the aim of the present study. The
proposed approach proved its usefulness in estimation of
SLR parameters and is now under evaluation by our team on
different types of classes of compounds and relations to assess
its behavior and robustness.

4. Conclusions

The proposed approach proved feasible for estimating the
parameters of the simple linear regression, in the absence
of the assumption that the errors are normally distributed,
assumption replaced by a more general one that the errors
are Gauss-Laplace distributed. The obtained results demon-
strated that in 12 out of 13 investigated cases the power of the
error is significantly different by the convenient values of two.
However, the plot of SLR-MLE and SLR-LS lines showed that,
just in 3 out of 12 cases, the models are significantly different.
The proposed approach can be further extended from simple
linear regressions to multiple linear regressions.
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[49] S. D. Bolboacă and L. Jäntschi, “The effect of leverage and/or
influential on structure-activity relationships,” Combinatorial
Chemistry & HighThroughput Screening, vol. 16, no. 4, pp. 288–
297, 2013.


