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phenotypes of human cells
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Abstract

Background: The phenotype of a living cell is determined by its pattern of active signaling networks, giving rise to
a “molecular phenotype” associated with differential gene expression. Digital amplicon based RNA quantification by
sequencing is a useful technology for molecular phenotyping as a novel tool to characterize the state of biological
systems.

Results: We show here that the activity of signaling networks can be assessed based on a set of established key
regulators and expression targets rather than the entire transcriptome. We compiled a panel of 917 human
pathway reporter genes, representing 154 human signaling and metabolic networks for integrated knowledge- and
data-driven understanding of biological processes. The reporter genes are significantly enriched for regulators and
effectors covering a wide range of biological processes, and faithfully capture gene-level and pathway-level
changes. We apply the approach to iPSC derived cardiomyocytes and primary human hepatocytes to describe
changes in molecular phenotype during development or drug response. The reporter genes deliver an accurate
pathway-centric view of the biological system under study, and identify known and novel modulation of signaling
networks consistent with literature or experimental data.

Conclusions: A panel of 917 pathway reporter genes is sufficient to describe changes in the molecular phenotype
defined by 154 signaling cascades in various human cell types. AmpliSeq-RNA based digital transcript imaging
enables simultaneous monitoring of the entire pathway reporter gene panel in up to 150 samples. We propose
molecular phenotyping as a useful approach to understand diseases and drug action at the network level.
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Background
An important goal of gene expression analysis is to cap-
ture pathway-level changes of the biological system in re-
sponse to external stimuli or environmental changes [1].
For mammalian cells, the major signaling and metabolic
pathways have been charted [2-4]. While many of the pri-
mary events in signaling networks consist of protein-level
interactions and modifications, the essential response to a
stimulus is at the transcriptional level. While the precise
transcriptional consequences of activating a given pathway
strongly depend on the biological context (such as cell
type, and cross-talk with other pathways), knowledge of
existing pathways and surveys of large-scale expression ex-
periments suggest the possibility that knowledge of the
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expression levels of selected genes may be sufficient to
infer activation states of most described pathways in a
broad range of different biological contexts [5].
In the early days of functional genomics, pathway ac-

tivity was studied by applying quantitative reverse transcrip-
tion polymerase chain reaction (qRT-PCR) to manually
curated transcriptional targets of pathways, and/or per-
forming reporter assays designed for selected transcrip-
tion factors. With the advent of high-throughput gene
expression profiling platforms such as microarrays and
RNA-sequencing, transcriptional research focuses on
whole-transcriptome analysis.
Technical constraints of the high-throughput platforms

including microarray and quantitative RNA sequencing
impact the accurate estimation of transcript abundances
and consequently differential gene expression. Background
noise [6] and other factors such as hybridization artifacts
introduce significant systematic error in any of the current
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microarray platforms [7]. Precise quantification by con-
ventional RNA-sequencing is complicated by the difficulty
of multiple read mapping among homologs. In addition,
low expressed genes are only poorly covered when the
whole transcriptome is subject of a sequencing experiment
[8]. In drug research and development, it is desirable to
monitor multiple pathways in cells of different origins to
study both efficacy and adverse effects at the same time. A
multiplex assay allowing systematic understanding of
pathway-level responses that matches industrial screening
capacities is needed. A better understanding of diseases at
pathway levels and subsequent pathway-guided drug de-
velopment may reduce the high attrition rates during the
drug discovery process [9].
In the current study, we introduce the novel concept

of a “molecular phenotype” defined by the activation
states of signaling and metabolic pathways. The genes
needed to monitor a given pathway we term “pathway
reporter genes”. Here, we use a panel of 917 reporter
genes compiled based on information from public and
proprietary databases covering about 150 human meta-
bolic and signaling networks. We show that molecular
phenotyping allows fast and accurate pathway delinea-
tion in complex biological systems.

Results
Selection of pathway reporter genes
Pathway reporter genes were selected by a software
pipeline integrating various data sources in four steps:
knowledge harmonization, information integration, gene
prioritization, and panel design (Figure 1A).
The first step associates pathways and genes based on

causal relationships, i.e. when mRNA or protein expression
is associated with the pathway’s activity, either as a key
regulator or as an expression target of the pathway. Before
the harmonization step, we prioritized 154 signaling
pathways, metabolic pathways, and biological processes
(abbreviated as ‘pathways’ hereafter) that are of interest
to our current drug discovery programs (Additional file 1).
Pathway-gene associations were then imported from vari-
ous sources: (1) public databases including REACTOME
[2], PID/NCI-Nature [3], and String DB [10]; (2) text min-
ing results of MEDLINE-indexed abstracts; (3) commer-
cial PCR panels provided by QIAGEN [11] and Bio-Rad
[12]; (4) manual curation of articles and reviews published
in peer-reviewed journals. Relationships were deliberately
not confined in any way to special cell types, tissues, or
biological contexts.
Next we constructed a bipartite network between

genes and pathways where edges exclusively link gene
nodes to pathway nodes, and a transcriptional regulatory
network consisting of genes only. Network analysis was
used to prioritize reporter genes that are representative
for selected pathways. First we ranked the genes using
the PageRank centrality [13] in the underlying unidirec-
tional backbone of the transcriptional regulatory network,
which assigns higher importance to genes that are at-
tached to other important genes. This centrality meas-
ure derives from the eigenvector centrality and has
been successfully applied among others in disease diag-
nostic marker prioritization [14]. Next, we applied two
consecutive filters to the gene list: one based on our
previously developed SICORE algorithm which identi-
fies gene pairs that share similar pathways as judged by
the bipartite graph [15], and the other based on co-
expression patterns in large-scale expression profiling
experiments stored in COXPRESSdb [16]. Both filters
de-prioritize genes of lower centrality that share redundant
information with genes of higher centrality.
Finally, we chose the top twenty percent of non-

redundant genes ranked by the PageRank centrality, be-
cause they cover almost all upstream transcriptional
regulators we collected in the knowledge harmonization
step and they fit the capacity of AmpliSeq panels (<1,200
genes reported by the vendor). Subsequently these genes
were submitted to the IonTorrent web interface for
amplicon-specific primer design. Eight genes were re-
moved from the panel following vendor’s recommenda-
tions because they are highly expressed in many tissues,
thereby reducing the dynamic range of the assay. The
panel in its current form consists of 917 genes (identifiers
and sequences of designed primers can be found in
Additional file 2). Most genes are associated with more
than one pathway, and vice versa (Figure 1B). By probing
expression of pathway reporter genes, we gain a multiplex
view on the activation patterns of pathways that are
involved in multiple biological processes of interest.

In silico validation of pathway reporter genes
The pathway reporter genes were selected from key reg-
ulators and expression targets of various biological path-
ways to ensure that they are engaged in a wide range of
biological processes. To test this, we used Biological
Process (BP) terms from Gene Ontology (GO) [17], and
tested whether the reporter genes are enriched for effec-
tors of biological processes (Figure 1C). 1934 terms were
significantly over-represented in the selection of pathway
reporter genes (Fisher’s exact test, Benjamini-Hochberg
adjusted p < 0.05), ten-fold more than for a list of ran-
domly selected genes and two-fold more than for a list
of randomly selected genes with GO annotations of high
confidence. An internal benchmark further showed that
the enrichment is 1.8-fold higher than the enrichment of
a gene list derived from a data-driven feature selection
strategy using principal component analysis.
For applications such as disease understanding and

drug characterization, it is expected that the selected
genes and associated pathways are disease-relevant, i.e.



Figure 1 Selection, characterization, and in silico validation of pathway reporter genes. (A) The selection workflow. Eclipses indicate data sources,
green dots candidate genes, boxes the selected biological pathways, and triangles the selected biological processes. The pathway-gene association
graph is bipartite and non-directional, while the transcriptional regulatory network consists exclusively of genes and is directional. All steps but panel
customization is performed using the internal data infrastructure and software pipeline. (B) Histograms of reporter gene counts per pathway,
and pathways per reporter gene, respectively. (C) Functional enrichment analysis results of reporter genes, randomly selected genes with
high-confidence GO/BP annotations, randomly selected genes irrespective of annotations, and genes represent on a typical microarray (Illumina HT-6),
respectively. Counts of GO BP terms falling in each Benjamini-Hochberg adjusted p-value bin are represented by bars (in case of reporter genes) or dots.
The leftmost bin corresponding to adjusted p < 0.05: 1934 GO terms are significantly overrepresented by the pathway reporter genes using
this threshold. (D) Density plot of number of diseases associated with differential expression of pathway reporter genes (red line), compared
with associations with randomly selected genes (gray lines, repeated N = 100). (E) PageRank centrality of pathway reporter genes in the MetaBase
transcriptional regulatory network compared with that of other human genes (background).
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the reporter genes are associated with more diseases than
a randomly selected gene set. To test this, we identified
diseases that are associated with pathway reporter genes,
and compared them to diseases that are associated with
1,000 sets of the same number of randomly selected genes
using the gene-disease association database DisGeNet [18]
(Figure 1D). Indeed, on average the pathway reporter
genes are associated with three times as many diseases as
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an equal number of randomly selected genes (p < 2E-16,
Kolmogorov-Smirnov test).
Finally, we crosschecked the quality of gene selection

using MetaBase, a proprietary database that annotates
gene regulatory networks by manual curation of full-text
literature and was not used for network construction
[19]. We compared PageRank centrality of pathway re-
porter genes in the MetaBase network to that of other
genes, and found that the median of the former is al-
most two times higher than that of the latter (8.0E-4 and
2.3E-4, respectively), and many top-ranking genes of the
MetaBase network are already included (Figure 1E). This
implies that the pathway reporter genes are likely to be
more relevant in transcriptional regulatory networks
than other genes, and that the PageRank algorithm de-
livers robust gene prioritization using transcriptional
networks curated by different processes.
Examining all gene-gene interactions defined by either

direct or indirect transcriptional regulation recorded
in MetaBase, we found that 567 of our 917 selected
pathway reporter genes act as upstream regulators in
46%, and as downstream regulatory targets in 15% of
all the interactions. Taken together, the selected reporters,
though comprising only about 4% of the human transcrip-
tome, are involved in more than half (53%) of the anno-
tated gene-gene interactions. In contrast, a list of 917
randomly selected genes are involved on average in 8%
interactions (95% confidence interval 5%-13%, boot-
strapping N = 500). Therefore, by profiling pathway re-
porter genes’ expression and leveraging the network
structure, it is possible to infer both upstream and
downstream gene expression and pathway activity pat-
terns using established methods, e.g. reverse causal
reasoning [20].

Molecular phenotyping of cardiomyocyte development
Both epidemiological and clinical studies suggest the
existence of a diabetic cardiomyopathy in humans. The
underlying pathogenesis is however only partially
understood [21] and there are currently no in vitro
models that capture both genetic and environmental
factors of the disease. As a first step to address this
question, we applied molecular phenotyping to human
induced pluripotent stem-cell (iPSC) derived cardio-
myocytes at day 0, 10, 20, and 60 of the differentiation
protocol to query pathway-level changes. In addition,
we applied commercially available microarrays to measure
the whole transcriptome at the same time points. Previ-
ously we have reported a good correlation of gene expres-
sion levels determined by the two platforms [22]. In this
study we focus on global expression patterns and
pathway-level analysis based on molecular phenotyping.
First, we reveal global gene expression patterns during

differentiation with principal component analysis (PCA),
using expression of either all genes, or pathway reporter
genes alone (Figure 2A). PCA transforms gene expres-
sion values into orthogonal features (i.e. principal com-
ponents) so that each component aligns with the
direction of the maximal variance that remains unex-
plained by previous components. Microarray data and
molecular phenotyping data showed almost identical
patterns of sample clustering, suggesting that pathway
reporter genes (N = 917) capture between-sample vari-
ability almost as well as the whole transcriptome (N >
20,000). Although a set of ~1,000 randomly selected
genes could also capture the between-sample variability
([23] and simulation), simulation showed that the path-
way reporter genes showed significantly larger total vari-
ance than randomly selected genes even if they are both
profiled with microarrays: 5.5% of total variance of all
genes are explained by the reporter genes, versus an
average of 1.9% (95% confidence interval: 1.6%-2.5%) by
randomly selected genes.
To build a pathway-centric overview of cardiomyocyte

differentiation, we transformed pathway reporter genes’
expression into pathway activity scores with the gene set
variation analysis (GSVA) method [24]. Molecular phe-
notyping revealed three types of pathways with distinct
temporal patterns (Figure 2B and Additional file 3)
stem-cell specific pathways, ‘switch’ pathways whose ac-
tivities are transiently induced, and cardiomyocyte-
specific pathways. Stem-cell specific pathways include
key biological processes that are important for stemness
maintenance, such as DNA repair and chromatin re-
modeling. Switch pathways are enriched for signaling
pathways that are important for differentiation and cell
survival, such as Wnt signaling pathway, Hedgehog sig-
naling pathway, fatty acid metabolism, and PI3K/AKT
pathway. Most cardiomyocyte-specific pathways are as-
sociated with cell proliferation and cell-type specific
functions, such as EGF/PDGF pathway, calcineurin/
NF-AT signaling pathway, glutamate signaling pathway,
insulin signaling pathway, glucocorticoids signaling
pathway, and a set of immune-response pathways such
as interferon response pathway and Toll-like receptor
(TLR) pathway.
Pathway activation patterns identified by molecular

phenotyping provide unprecedented insights into the
differentiation of human iPSC-induced cardiomyocytes.
For example, it has been long observed that terminally
differentiated human neurons display attenuated global
DNA repair genes [25], which is observed also in several
other cell types (reviewed in [26]). Our data suggest this
also applies to cardiomyocytes (Figure 2C (a)). Similarly,
we observed gradual repression of the chromatin remodel-
ing pathway (Figure 2C (b)), which is essential for stem-
cell self-renewal and inactivation of which is associated
with differentiation [27].



Figure 2 Molecular phenotyping of iPSC-derived cardiomyocyte differentiation. (A) Principal component analysis using microarray data of ~22,000
genes (top) and AmpliSeq-RNA data of 917 pathway reporter genes (bottom). (B) Pathway activity scores based on expression of pathway reporter
genes reported by the GSVA algorithm: pathways are sorted by the time when its activity score reaches the maximum. GSVA scores were calculated
for each sample and the average values of each pathway at each time point are reported. To allow between-pathway comparisons, the scores
are normalized by row using the z-score transformation (zero mean and unit variance). Pathway names can be found in Additional file 3. (C) Activity
patterns of selected pathways. Two representatives are chosen from stem-cell specific, ‘switch’, and cardiomyocyte-specific pathways,
respectively. (D) Expression of key reporter genes of the Hedgehog pathway. (E) Expression of selected functional markers of pathways associated with
differentiated cardiomyocytes. For comparison, subfigure c, d, and e also include the activity scores and expression profiles reported by microarray.
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Lian et al. [28] reported that temporal modulation of
Wnt signaling is both essential and sufficient for efficient
cardiac function under defined, growth factor-free con-
ditions. We observed a strong activation of Wnt pathway
at day 10 which then decreased (Figure 2C (c), also see
Figure 3 of [22]), suggesting the pathway’s role in cardio-
myocyte development is transient and time-dependent.
In addition, molecular phenotyping revealed transient

activation of the Hedgehog (Smoothened) pathway
(Figure 2C(d)), which can be attributed to the signifi-
cant temporal regulation of key players GLI1, SHH, and
PTCH1 (the linear coefficient of time-dependent ex-
pression larger than zero, Benjamini-Hochberg adjusted
p < 0.05, Figure 2D). Previous data established an essen-
tial role of the Hedgehog pathway in multiple processes
involved in cardiomyocyte differentiation and heart
morphogenesis in model species including mouse [29]
and zebrafish [30]. Gene transfer with Sonic hedgehog
(Shh) even repaired chronic myocardial ischemia in
mice [31]. Our data suggest that the pathway is also in-
volved in the in vitro differentiation of cardiomyocytes
derived from induced human pluripotent stem cells. It
raises the possibility of modeling and studying complex
disease traits such as diabetic cardiomyopathy “in a
dish” using the above mentioned iPSC system.
Cao et al. ([32]) and Wang et al. ([33]) provided data

supporting expression and function of Toll-like receptors
in embryonic and mesenchymal stem-cell differentiated
cardiomyocyte models. Our data are in line with these
observations, and further reveal that the TLR pathway
is gradually activated up to day 60 of differentiation in
iPSC-induced cardiomyocytes (Figure 2C(e)).
We observed the activation of interferon signaling

pathway towards the end of the differentiation protocol
(Figure 2C(f)). Previous studies showed that, at least in
mouse, Stat1, a key transcription factor regulating inter-
feron response genes, is an essential player in the innate
response to viral diseases using an embryonic stem-cell
model at day 12 or 13 [34]. Similarly, Stat3, another key
transcription factor regulating the process, is essential for
cardiomyocyte differentiation of mouse P19CL6 cells [35].
Molecular phenotyping data suggest that the interferon



Figure 3 Molecular phenotyping of drug response in primary human hepatocytes. (A) Principal comment analysis of differential gene expression
induced by Diclofenac and the test compound in three primary human hepatocyte cell lines. (B) Differential expression of FGF21, GDF15, ATF3,
and EGR1 induced by Diclofenac and test compound. The genes belong to an early induced stress-response network that is associated with
cytotoxicity in vitro and in vivo. Average expression levels are expressed as log2-transformed copies per million reads (cpm). Error bars indicate
standard deviation of two or three independent biological replicates. (C) Hypoxia signaling pathway reporter genes with dose-dependent
gene expression profiles identified by AmpliSeq-RNA. Dots indicate mean expression of replicates. (D) Intracellular ATP abundance and LDH
leakage in test compound treated cells measured by in vitro assays. Vertical bars indicate percentage (%) of average values of the control condition.
Error bars indicate standard deviation of two or three independent biological replicates.
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response pathway is induced at the late stage of differenti-
ation together with other immune-response pathways. Its
biological function in this context is not yet fully under-
stood and remains to be studied.
Last but not least, we checked the matureness of the dif-

ferentiated cardiomyocytes at day 60 at the pathway level.
Several established cardiomyocyte-specific pathways, in-
cluding the BMP-receptor mediated cardiomyocyte differ-
entiation pathway (represented by atrial natriuretic peptides
A and B NPPA/NPPB) [36], the extracellular matrix remod-
eling pathway (represented by TIMP1 and MMP1) [37], the
Neuregulin1/Erbb4 pathway (represented by ERBB4) [38],
and muscle-specific Caveolin-mediated signaling pathways
(represented by Caveolin 3 CAV3) [39], seemed to become
most functional at day 20 and day 60.
For comparison, we performed differential gene ex-

pression analysis and GSVA analysis with the microarray
data. We found that, while induction of some pathways
and genes are equally well captured by microarray and
molecular phenotyping (top panels of Figure 2C and E,
Benjamini-Hochberg adjusted p < 0.05), several pathways
and genes failed to be detected by the transcriptome-
wide approach (bottom panels of Figure 2C and E, and
Figure 2D, adjusted p > 0.05). There are two potential
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explanations: first, the background noise of microarray
interferes with differential expression analysis of genes
even they are lowly expressed, and many key regulators
of pathways fall into this category of genes; second, the
pathway reporter genes are enriched for key regulators
and targets of signaling pathways, and therefore are po-
tentially more informative about changes on the pathway
level.
In summary, molecular phenotyping uncovered a

highly coordinated program of pathway activation and
inactivation during the differentiation of iPSC-induced
cardiomyocytes. The novel approach establishes iPSC-
induced cardiomyocytes as a suitable platform for disease
characterization and drug discovery.

Molecular phenotyping of adverse drug reactions
Following successful molecular phenotyping during dif-
ferentiation of human iPS cells into cardiomyocytes, we
applied the approach to understand the mechanistic
basis of adverse effects. Our gene panel includes reporter
genes for common toxicity mechanisms [40] and related
pathways [41] and can potentially provide mechanistic
clues to generic toxicity read-outs such as in vitro cyto-
toxicity (as measured e.g. by lactate dehydrogenase
(LDH) release).
In contrast to common toxicogenomics approaches

that monitor gene expression 24 or 48 hours after treat-
ment, we wished to detect acute primary responses to
drug exposure. Based on our previous findings such
early responses can provide a consensus toxicity signa-
ture in vitro and in vivo [42]. Human primary hepatocyte
assays are established in the field of predictive in vitro
toxicity, and therefore we have chosen to analyze pri-
mary human hepatocytes (PHHs) from three donors in
response to a proprietary test compound. As a positive
control we have exposed the same cells to diclofenac, a
non-steroidal anti-inflammatory drug known to induce
idiosyncratic liver toxicity in the clinic [43]. The concen-
tration of the test compound and diclofenac was on pur-
pose chosen below the toxic concentration inducing
LDH release to test if molecular phenotyping three
hours after drug exposure already detects subtle effects
hinting at toxicity at higher concentration and longer
exposure.
First we performed principal component analysis for

high level assessment of the experimental setup (Figure 3A).
Surprisingly the inter-individual variation was found to
dominate the clustering. However, a compound effect
was still visible. Consistent with published literature
[42], Diclofenac significantly up-regulated FGF21 and
GDF15 as reporter genes of the early stress-response
network (Benjamini-Hochberg adjusted p < 0.05). The
response of this network to the test compound was sig-
nificantly lower at all concentrations tested suggesting
a different mode of action (Figure 3B). Transcriptional
regulation of AT3 and EGR1, the other two genes in
the early induced stress-response network, showed
considerable variability between donors (Figure 3B,
lower panels).
Strikingly, out of 154 pathways surveyed by the panel,

only the hypoxia signaling network was significantly
regulated (p < 0.001, one-sided Fisher’s exact test). Six
pathway reporter genes CX3CL1 [44], CYP1B1, CYP1A1,
AHR [45], TLR4 [46,47] and IL1R1 [48] defining this
cascade were all positively or negatively regulated in a
dose-dependent manner (Benjamini-Hochberg adjusted
p < 0.10, Figure 3C). The test compound induces specif-
ically hypoxia signaling predominantly at 10 μM, sug-
gesting the possibility that higher doses might cause
safety concerns.
Hypoxia, the clinical depletion of oxygen supply, is asso-

ciated with reduced metabolism resulting in ATP defi-
ciency. This opened the possibility of functional validation
of the hypothesis generated by molecular phenotyping. We
exposed PHHs of the same donors to 1, 3 and 10 μM test
compound for 24 hours and measured the intra-cellular
ATP content and LDH release in parallel (Figure 3D).
Consistent with our hypothesis, we observed a significant
reduction of intracellular ATP in all donors with the
expected inter-individual variation (coefficient of dose-
dependent change less than zero, p < 0.01). The LDH
levels were in contrast almost stable under all condi-
tions, confirming the expected absence of cytotoxicity
(Figure 3D).
This example shows that molecular phenotyping can

distinguish pathways leading to adverse side effects of
drugs thereby supporting preclinical drug safety assess-
ment. The fact that test compound modulated a single
pathway only out of 154 demonstrates specificity of the
approach. Thus molecular phenotyping might develop
into a valuable tool for early, mechanistic assessment of
drug action and toxicity.

Discussion and conclusions
In this study, we compiled a list of 917 human pathway
reporter genes covering 154 signaling and metabolism
networks. Accurate and rapid profiling of reporter genes
by sequencing based RNA quantification allows derivation
of a molecular phenotype in human cells. We identified
temporal pathway activation patterns during differentiation
of iPSC-derived cardiomyocytes, and inferred in vitro
toxicity profiles of drugs in primary human hepatocytes.
In both cases results of molecular phenotyping were
validated by either literature information or parallel
experiments.
Conventionally, reporter genes are selected for applica-

tions with a concrete, limited scope, for instance in our
previous work on the ERBB-cell cycle signaling network
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[49] and on the white-to-brown conversion of white adi-
pose [50]. In the current study, we attempt to capture a
wide range of biological pathways by collecting reporter
genes using an integrative approach. We demonstrate
that a molecular phenotypic screening approach can be
used to monitor pathway activation patterns in different
cellular systems using the latest AmpliSeq-RNA technol-
ogy. The workflow is fast (~4 h processing time) and can
be adapted for screening purposes once the costs per
array decrease. Given the high sensitivity, wide coverage
of pathways, and the high throughput, we anticipate the
new approach will empower more phenotypic screening
in a wide range of biological applications.
The pathway reporter gene panel can be expanded with

application-specific plug-ins following the LEGO principle.
In a vaccination study, for instance, we have added an im-
mune panel consisting of ~600 genes specific to innate
and adaptive immune pathways, to enhance the resolution
of the standard panel. The two panels reported consistent
data on pathway activities, and a fine-grained snapshot of
immune-relevant biological processes within one experi-
ment (Lenz et al., manuscript submitted). Panels focusing
on other specific biological processes, such as toxicity,
apoptosis, proliferation, drug metabolism, etc., can be
designed and used jointly with the core panel to extract
detailed information from the biological system of interest.
Using amplicon-based sequencing technology circum-

vents some computational challenges associated with
microarray or conventional RNAseq, and much of the
workflow has been automated so that users can work with
a matrix of read counts a few hours after the sequencing is
finished. In the present study, several exploratory data
analysis approaches were used to compare effects of treat-
ments and to extract pathway-level information, including
PCA, GSVA, differential gene expression and functional
enrichment analysis based on Fisher’s exact test. We
believe that data interpretation of molecular pheno-
typic screenings can both benefit from the abundance
of tools that have been developed predominantly for
transcriptome-wide expression data [51-54] and stan-
dardized by using specialized tools that are being de-
veloped (Zhang et al., manuscript in preparation).
Besides surveying pathway reporter genes, there are also

other alternatives to the holistic approach of transcrip-
tome expression profiling. For example, following a data-
driven approach, Peck et al. [55] selected 1,000 genes
(‘Landmark 1000’) that maximally conserve between-
sample variability, and reconstructed transcriptome ex-
pression profiles from the 1000 genes using statistical
models trained by public microarray data. More recently,
Li et al. [56] reported a next-generation sequencing based
high-throughput screening platform (HTS2) to monitor
compound-induced gene expression changes that are as-
sociated with a given pathway (e.g. the androgen signaling
pathway). These studies demonstrated good performance
of signature-based disease classification and identified
novel compounds with desired effects, underlining the
power of reductionist approaches. Instead of focusing on
expression profile reconstruction or on the activation
pattern of single pathways, the molecular phenotyping
approach aims to provide a comprehensive overview of
major human signaling and metabolic pathways that
are currently known. We believe that molecular pheno-
typing is a valuable tool for translational research and
drug discovery.

Methods
Pathway reporter genes selection
Text mining of MEDLINE-index abstracts was performed
using Linguamatics I2E software. The gene list of QIA-
GEN qRT-PCR panels and of Bio-Rad Tier 1, 2, and 3
panels was downloaded from the respective website and
processed using python scripts. Data was retrieved from
respective sources in November 2012.
PageRank algorithm was implemented in the igraph

package [57] and default parameters were used. The
SICORE algorithm was run with a large number of re-
peats (N = 1,000,000). When p < 0.05 was used as signifi-
cance level, 675 pairs of genes were detected to share
significantly more common pathways than the null
model. In each pair the gene with the lower PageRank
centrality was removed from the list. For each co-
expression cluster, which is a collection of genes that are
strongly co-expressed in published datasets (correlation
coefficient >0.90 reported by COXPRESSdb), only the
one with the highest PageRank centrality was retained
and the others were removed.

Functional enrichment analysis
Functional enrichment analysis was performed using one-
sided Fisher’s exact test with GO/BP terms if not other-
wise stated. Only annotations with experimental evidence
codes were used.
Reporter genes’ relevance for human diseases was de-

termined by comparing distribution of their associated
diseases with randomly selected gene sets of the same
size (repeated N = 1,000 times).

Biological validation of the gene selection
Differentiation of pluripotent stem cells into cardiomyocytes
Experimental design and protocols have been described
in previous publications [22,28]. The GSVA algorithm
was run with the ‘NGS’ mode and otherwise default pa-
rameters. Gene-level differential expression of reporter
genes was identified with the edgeR package [58]. Micro-
array data were analyzed with the limma package [59].
In both cases, a linear model was set up and a polyno-
mial contrast including the linear and the quadratic term
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was used to test differential expression. Significant dif-
ferential expressed genes were called using the following
threshold if not otherwise stated: absolute log fold-
change > =1 and Benjamini-Hochberg adjusted p < 0.05.

In vitro toxicity evaluation in primary hepatocytes
Cryopreserved primary human hepatocytes were purchased
form BioreclamationIVT (Brussels, Belgium), who obtains
and distributes consented human material from a network
of institutional review board (IRB) approved collection sites
under adherence to effective ethical and regulatory guide-
lines. The cells were thawed according to manufacturer’s
instructions, and cultured at a density of 35’000 cells/well
in 96-well BD BioCoat Collagen 1 plates (Becton Dickinson,
Bedford, MA). Cells were exposed to test compounds
or vehicle (0.1% DMSO) after over-night pre-culture in
William’s Medium E (Sigma-Aldrich, Buchs, Switzerland)
supplemented with Penicillin/Streptomycin (Life Tech-
nologies, Zug, Switzerland).
Cell were harvested 3 h after test compound addition by

removing the culture medium. Cell lysates in 50 μl RLT
buffer (QIAGEN, Hombrechtikon, Switzerland) were
immediately frozen and stored at −80°C.
Intracelluar ATP content was assessed 24 h after test

compound addition using the CellTitre-Glo assay (Pro-
mega, Dübendorf, Switzerland).
Cell integrity was assessed by the release of the intracel-

lular enzyme lactate dehydrogenase (LDH) into the cell
culture supernatant 24 h after test compound addition
using the Cytotoxicity Detection Kit (Roche Diagnostics,
Rotkreuz, Switzerland).
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