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Abstract: The design of scaffolds with optimal biomechanical properties for load-bearing appli-
cations is an important topic of research. Most studies have addressed this problem by focusing
on the material composition and not on the coupled effect between the material composition and
the scaffold architecture. Polymer–bioglass scaffolds have been investigated due to the excellent
bioactivity properties of bioglass, which release ions that activate osteogenesis. However, material
preparation methods usually require the use of organic solvents that induce surface modifications on
the bioglass particles, compromising the adhesion with the polymeric material thus compromising
mechanical properties. In this paper, we used a simple melt blending approach to produce poly-
caprolactone/bioglass pellets to construct scaffolds with pore size gradient. The results show that
the addition of bioglass particles improved the mechanical properties of the scaffolds and, due to
the selected architecture, all scaffolds presented mechanical properties in the cortical bone region.
Moreover, the addition of bioglass indicated a positive long-term effect on the biological performance
of the scaffolds. The pore size gradient also induced a cell spreading gradient.

Keywords: 3D printing; bioglass; bone scaffolds; PCL; tissue engineering

1. Introduction

The use of additive manufacturing techniques, also known as 3D printing, for the fabri-
cation of customised bone tissue engineering architectures has developed very rapidly [1–3].
These fabrication techniques allow high reproducibility and repeatability, and they can
process a wide range of natural and synthetic polymeric and composite materials, allowing
for the fabrication of interconnected porous structures [4–7]. Different techniques have been
used for the fabrication of bone scaffolds [8–12], such as: vat photopolymerisation, which
uses light to selectively solidify a liquid photo-sensitive polymeric material; powder-bed
fusion, which uses a laser beam to selectively fuse powder material; and extrusion-based
processes, which heat materials in a pellet or filament form to solidify the molten material
in a printing platform. Among these techniques, extrusion-based additive manufacturing
is the most commonly used due to its low cost, high simplicity and ability to print multiple
materials [13–15]. This technique comprises pneumatic systems using air pressure as the
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dispensing force, solenoid-based systems using electromagnetic forces and mechanical sys-
tems based on the use of a piston or screw [16]. The use of screw-assisted extrusion-based
systems is the ideal technique to process high viscosity composite materials [17].

Polycaprolactone has been extensively investigated for use in bone scaffolds [18,19]. It
is a semi-crystalline, biocompatible, biodegradable and hydrophobic synthetic polymer that
presents good physicochemical characteristics and slow degradation kinetics [20,21]. Due to
its low melting temperature, PCL is a suitable material to be printed using extrusion-based
additive manufacturing [22]. To improve bioactivity, different concentrations of hydrox-
yapatite (HA) and tricalcium phosphate (TCP) have been added to PCL scaffolds [23–28].
This improves both the mechanical and hydrophilicity properties and accelerates mineral-
isation [29–35]. However, these scaffolds still present limitations in terms of mechanical
properties and slow degradation. To decrease hydrophobicity and thus increase cell attach-
ment, strategies such as plasma and NaOH surface treatment or the addition of graphene
have also been proposed [36–40]. The incorporation of bioglasses, such Bioglass 45S5 that
contains 45 wt% SiO2, 24.5 wt% Na2O, 24.5 wt% CaO and 6 wt% P2O5, has attracted signifi-
cant attention due to its bone-bonding, osteogenic and osteoconductive capabilities [41–43].
However, several studies have reported that its incorporation in polymer-based scaffolds
decreases the mechanical strength and causes frequent fractures or cracks, which com-
promises the use of such composite scaffolds for load-bearing applications [44–46]. This
has been explained by the poor interfacial adhesion, with the bioglass particles acting as
defects in the polymer matrix [47]. Moreover, most PCL–bioglass blends are prepared
using toxic solvents, such as chloroform and dichloromethane, to dissolve the polymeric
material [47,48].

Bone tissue engineering scaffolds have been designed with the aim of achieving
optimal biomechanical performance. Usually, scaffolds present pore sizes in the range of 100
to 1000 µm in order to facilitate vascularisation and new tissue formation [49–52]. However,
large pores reduce the overall mechanical properties, making it difficult for cells to bridge.
The pore size design that can achieve both optimal mechanical and biological performance
is a complex task and has not been fully addressed. Most studies have addressed this issue
by assuming that the scaffold’s properties mainly depend on the material composition
rather than considering the coupling effect between the composition and the architecture.
Previous studies investigating the mechanical performance of PCL scaffolds and PCL
scaffolds reinforced with ceramic particles, carbon nanotubes and graphene, presenting
uniformly distributed porousness with constant pore size, have found that they do not
exhibit the mechanical properties suitable for load-bearing applications [53,54]. This study
investigated the behaviour of PCL–Bioglass 45S5 3D printed scaffolds. Blends (10 wt%,
15 wt% and 20 wt% bioglass) were prepared using a simple melt blending approach, which
did not require the use of hazardous solvents. Moreover, contrary to previously reported
studies that investigated simple rectangular and circular scaffold architectures, this research
investigated anatomically designed scaffolds with pore size gradients that mimicked the
architecture of bone and thus, aimed to improve the overall mechanical behaviour of the
scaffolds and thereby making them suitable for load-bearing applications [55–57].

2. Materials and Methods
2.1. Materials

Poly-ε-caprolactone (PCL) (CAPA 6500, Mw = 50,000 Da) was provided by Perstorp
Caprolactones (Cheshire, UK) in a pellet shape. Bioglass 45S5 was supplied by CeraDynam-
ics Ltd. James Kent Group (Stoke, UK) in powder form (<10µm particle size). PCL-based
composite blends containing different bioglass concentrations (10 wt%, 15 wt%, 20 wt%
bioglass) were fabricated using a melt blending procedure. Briefly, PCL pellets were melted
at a temperature of 150 ◦C prior to the addition of bioglass particles at the desired con-
centrations. The blends were mixed for at least an hour to guarantee a good bioglass
dispersion.
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2.2. Scaffold Fabrication

A screw-assisted extrusion-based additive manufacturing system (3D Discovery sys-
tem from RegenHU, Switzerland) was used for the fabrication of the PCL–bioglass bone
bricks. The 3D Discovery system comprised a material chamber, where the material in a
pellet form was melted and pushed into the screw chamber using air pressure (Figure 1).
The screw system facilitates the printing process of high viscous materials and guarantees
a good mixture in the case of composite materials. Contrary to the commonly used simple
0◦/90◦ or 0◦/45◦ lay-down patterns, a continuous path algorithm was created based on
anthropometric measurements using zigzag double filaments (38) and spiral filaments (14),
which allowed us to create scaffolds with an overall porosity of 52% (Figure 2 and Figure
S1). Scaffolds were fabricated considering the following processing parameters: a melting
temperature of 90 ◦C; the deposition velocity of 20 mm/s; and the screw rotational velocity
of 12 rpm. The filaments were extruded using a 0.33 mm diameter needle.
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2.3. Morphological Characterisation

The scanning electron microscopy (SEM) system FEI ESEM Quanta 200 (FEI Company,
Oregon, USA) was used to investigate the morphological characteristics of the 3D printed
scaffolds. The samples were sliced with a razor and coated (gold coating) with the use
of EMITECH K550X sputter coater (Quorum Technologies, Sussex, UK) before imaging.
SEM images were analysed by ImageJ (National Institutes of Health, Bethesda, WA, USA)
(10 measurements) to determine the pore size (PS), filament width (FW) and the layers gap
(LG).

2.4. Water Contact Angle

Surface wettability was determined through water contact angle (WCA) tests, carried
out using the OCA 15 system (Data Physics, San Jose, CA, USA). During the tests, deionised
water (4 µL of volume drop, 1 µL/s of velocity), in the form of a droplet, was dropped onto
the surface of the scaffolds by a fixed pipet, with the scaffolds aligned with the camera,
and recorded with a high-speed framing camera. Two time points (0 s and 20 s) were
considered and all tests were performed in triplicate, considering three different regions on
the scaffolds (Figure 3).
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2.5. Thermal Gravimetric Analysis

A Netzsch TGA–DTA system (Erich Netzsch GmbH & Co. Holding KG, Selb, Ger-
many) machine was used to determine the material degradation and bioglass concentration
in the scaffolds. Tests were conducted in air atmosphere (50 mL/min) with temperatures
ranging from 25 ◦C to 1000 ◦C at a rate of 10 ◦C/min. Each test was conducted twice with
the use of platinum pans.

2.6. X-ray Diffraction

X-ray diffraction (XRD) was used for the crystalline pattern analyses of the PCL
and composite bone bricks. Tests were performed using the D2 PHASER Bruker (Bruker
Corporation, Billerica, Massachusetts, USA) with a copper anode source. The samples were
flattened on a metal holder and data were recorded with a 0.02 2θ◦ step for a total recording
time of 75 min. The detector recording time was 1 s per point. A total of 4500 points were
recorded.

2.7. Fourier-Transform Infrared Spectroscopy

Fourier-transform infrared spectroscopy (FTIR) tests were conducted using the Nicolet
iS 10 system (Thermo Scientific, Altrincham, Manchester, UK) to determine any potential
structural changes in both the PCL and composite bone bricks caused by the material
preparation and 3D printing process. The transmittance was evaluated considering wave
numbers ranging from 3500 to 500 cm−1 at room temperature.

2.8. Energy Dispersive X-ray Spectroscopy

The chemical composition of the bone bricks, before and after cell seeding, was
analysed with the use of Energy dispersive x-ray (EDX) spectroscopy, thereby determining
the concentration of calcium (Ca), carbon ©, oxygen (O) and phosphorous (P). The analysis
was performed using the SEM FEG FEI Quanta 200 (FEI company, United States). The bone
bricks were gold coated prior imaging. The obtained SEM images were analysed using the
Oxford AZtec software (Oxford Instruments, Abingdon, Oxford, UK).

2.9. Mechanical Characterisation

Compression tests were performed to investigate the influence of the material compo-
sition and scaffold architecture. Tests were conducted using the INSTRON 3344 system
(Instron, High Wycombe, UK). The scaffolds were compressed with the use of a 2 kN load
cell and a 0.5 mm/min displacement rate, according to the ASTM D695-15 standards [58,59].
The dimensions of the bone bricks were 31 mm × 26.7 mm × 10 mm (length × width ×
height) and tests were repeated four times. Force versus displacement curves that were
obtained using the Bluehill Universal Software (Instron, UK) were then converted into
stress–strain curves and the compressive modulus was determined using the GraphPad
Prism software (GraphPad Software Inc., San Diego, CA, USA) considering the linear
portion of the curve.

2.10. In Vitro Biological Characterisation

The ability of the printed scaffolds to sustain cell attachment and proliferation was
investigated using human adipose derived stem cells (hADSCs) (STEMPRO, Invitrogen,
Waltham, Massachusetts, USA) (passage 5). For cell culture, MesenPRO RSTM basal media,
2% (v/v) growth supplement, 1% (v/v) glutamine and 1% (v/v) penicillin/streptomycin (Invit-
rogen, Waltham, Massachusetts, USA) was used as a nutritional supplement. Cells were har-
vested at approximately 90% confluency with 0.005% trypsin-ethylenediaminetetraacetic
acid (Sigma-Aldrich, Dorset, UK) before cell seeding on the scaffolds.

The scaffolds were sterilised prior to the cell seeding. Briefly, the scaffolds were placed
into 50 mL tubes containing 80 wt% of pure ethanol (Thermo Fisher Scientific, Altrincham,
Manchester, UK) and 20 wt% of distilled water for 4 h. Then, the liquid was poured
out and the scaffolds were washed two times with Dulbecco’s phosphate buffered saline
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(PBS) (Thermo Fisher Scientific, Altrincham, Manchester, UK) and left to dry for 24 h.
Approximately 50,000 cells (counted by Cellometer Auto 100 Bright Field Cell Counter
(Nexcelom Bioscience, Lawrence, Massachusetts, USA)) in 89 µL cell suspension were
poured onto the top surface of each scaffold with the use of pipettes [60].

Cell viability was investigated at days 1, 7 and 14 after cell seeding using the Alamar
Blue assay, which provided a qualitative indication of the metabolic activity of the cells and
allowed for indirect information on cell attachment and proliferation on the scaffolds [61,62].
Briefly, at each time point, 90 µL of medium containing 0.001 wt% of Alamar Blue (Sigma-
Aldrich, Dorset, UK) was poured in each well and placed in the incubator for 4 h. Then, a
certain amount of the sample solution (200 µL) was conveyed into a 96 well plate and the
fluorescence intensity was determined using the microplate reader Synergy HTX Multi-
Mode Reader (BioTek, Winooski, Vermont, USA) (530 nm excitation wavelength and
590 nm emission wavelength). Then, the scaffolds were washed with PBS and fresh media
was added.

On day 14, the morphology of the attached cells and the cell spreading was investigated
using SEM imaging. The cells were fixed using 10 wt% neutral buffered formalin (Sigma-
Aldrich, Dorset, UK) for 30 min at room temperature and then the scaffolds were rinsed
twice with PBS. After the fixation procedure, the scaffolds were dehydrated using graded
ethanol mixed with deionised water (50%, 60%, 70%, 80%, 90% and two times with 100%),
followed by the addition of 50/50 ethanol/hexamethyldisilazane (HDMS) (Sigma-Aldrich,
Dorset, UK) (v/v) solution and 100%HDMS, leaving the liquid to evaporate overnight under
a hood. Each concentration of ethanol/deionised water and HDMS was used for 15 min.

2.11. Data Analysis

Mechanical and biological data are represented as mean ± standard deviation. The
statistical analysis was conducted with the use of one-way ANOVA analysis of variance
with Tukey’s post hoc test with the use of GraphPad Prism software. Statistically significant
differences were considered as * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. TGA,
XRD and FTIR data were analysed using Origin 2021 (OriginLab Corporation, Northamp-
ton, MA, USA).

3. Results and Discussion
3.1. Morphological Analysis

3D printing was successfully used to create well-defined scaffolds that presented a
gradient of pore sizes, as shown in Figure 4. This figure shows a printed scaffold containing
10 wt% bioglass and the corresponding SEM image of the top, exhibiting a decrease in
pore size from the outer region to the internal region of the scaffold. Figure 5 presents the
SEM images of the printed scaffolds with different material compositions. The geometrical
characteristics are presented in Table 1. As observed, there were some differences between
the obtained and designed filament diameter results, which can be attributed to the fact
that the same processing conditions were applied to all material compositions. This can be
solved by optimising the processing parameters for each material composition. However,
such optimisation will result in different melting and cooling processes and, therefore,
in different crystallisation conditions with impacts on the biomechanical properties [63].
The results also show that the filament diameter decreased by increasing the ceramic
content and, consequently, the pore size increased. This can be explained by the increase
in the molten viscosity due to the addition of bioglass. As the processing conditions were
constant, the amount of extruded material decreased with the increasing viscosity due to the
addition of the reinforcement particles, thus decreasing the filament diameter. Moreover,
the SEM images show that the PCL scaffolds presented microporosity at the filament
surface (Figure 6A), while the PCL–bioglass scaffolds exhibited a smoother filament surface
(Figure 6C,E,G) due to the bioglass concentration, bioglass particle size, recrystallisation
process and the crystal size of the bioglass particles [64–71].
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Table 1. The geometric characteristics of the scaffolds.

Material Composition
Pore Size (µm)

Filament Width (µm)
Internal Region External Region

PCL 172 ± 0.01 398 ± 0.08 341 ± 3
PCL/Bioglass (90/10 wt%) 264 ± 0.04 445 ± 0.10 335 ± 11
PCL/Bioglass (85/15 wt%) 289 ± 0.07 541.5 ± 0.09 327 ± 8
PCL/Bioglass (80/20 wt%) 330 ± 0.06 573.4 ± 0.10 325 ± 3Polymers 2022, 14, x FOR PEER REVIEW 8 of 22 
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3.2. Water Contact Angle Analysis

The water contact angle results at two different time points for the different scaffolds
that were considered in this study are presented in Figure 6 and Table 2. As observed, the
contact angle on a small timescale decreased with time, showing that the scaffolds were
absorbing the water or that the water was penetrating through the scaffolds. Moreover,
the results at 20 s seem to suggest that the water contact angle slightly decreased from
the internal regions of the scaffolds to the external regions. This behaviour, topologically
dependent to the scaffold architecture, is due to the gradient increase in the pore size
from the internal region to the external region. Furthermore, the addition of bioglass
particles into the polymer showed no difference on the overall hydrophilic properties of
the scaffolds.

Table 2. The WCA results of the different regions of the scaffolds and the different time points.

Material
Composition

WCA at 0 s WCA at 20 s

Region a Region b Region c Region a Region b Region c

PCL 54◦ ± 0.5 53◦ ± 0.7 53◦ ± 0.9 53◦ ± 0.3 53◦ ± 05 53◦ ± 1.2
PCL/Bioglass
(90/10 wt%) 60◦ ± 0.7 54◦ ± 0.9 47◦ ± 1.1 56◦ ± 0.8 50◦ ± 0.8 43◦ ± 1.5

PCL/Bioglass
(85/15 wt%) 59◦ ± 0.3 58◦ ± 0.6 58◦ ± 1 56◦ ± 1.3 56◦ ± 1.1 55◦ ± 1.2

PCL/Bioglass
(80/20 wt%) 69◦ ± 0.4 67◦ ± 0.7 67◦ ± 0.9 67◦ ± 0.5 66◦ ± 0.7 63◦ ± 1.1

3.3. Thermal Gravimetric Analysis

Thermal gravimetric analysis (TGA) showed that the different material compositions
exhibited degradation temperatures ranging between 412.67 ◦C and 437.1 ◦C (Table 3).
After these temperatures, the only remaining content corresponded to bioglass (Figure 7).
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Moreover, the results show that the addition of bioglass decreased the degradation temper-
ature. This was previously reported by other authors as a consequence of the degradation
mechanism between the Si–O− present on the surface of the bioglass particles and the C=O
groups on the polymer backbone [72]. The surface modification of the bioglass particles has
been proposed to improve the thermal stability of the composite materials [73]. However,
considering the processing temperatures used in this study (90 ◦C), the results suggest that
the extrusion process did not induce any material degradation. Moreover, the levels of
bioglass present in the scaffolds suggested that the melt blending process was a simple
and effective method for the preparation of composite blends without requiring the use of
organic solvents to dissolve the polymer.

Table 3. The designed and manufactured concentrations of the bioglass bone bricks.

Material
Concentration

Designed
Concentration

(wt%)

Measured
Concentration

(wt%)

Degradation
Temperature

(◦C)

PCL 0 0 437.11
PCL/Bioglass (90/10 wt%) 10 10.61 ± 0.12 415.47 ± 0.26
PCL/Bioglass (85/15 wt%) 15 15.42 ± 0.08 413.93 ± 0.31
PCL/Bioglass (80/20 wt%) 20 20.68 ± 0.05 412.67 ± 0.18
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Figure 7. The Thermal Gravimetric Analysis (TGA) curves of the bioglass bone bricks.

3.4. X-ray Diffraction Analysis

Figure 8 shows the XRD pattern of the PCL and PCL–bioglass 20 wt% scaffolds. In
both cases, it is possible to observe strong peaks at 2θ, ranging from 20–24◦, which can
be associated with the PCL crystal planes (110), (111) and (200). Moreover, the bioglass
peaks were similar to the PCL peaks, indicating that the bioglass did not have a crystal
structure. According to these results, no chemical transformations were induced during the
material preparation and printing process and the bioglass was well-laden in the scaffolds.
Moreover, as indicated in Table 4, the full width at half maximum (FWHM) of the PCL–
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bioglass was lower in comparison to PCL. According to the Scherrer equation [74], the
crystallinity and crystallite size decreases with increasing FWHM value, so the addition
of bioglass had an impact on the morphological structure of the polymeric matrix and
reduced the PCL crystallinity and crystallite size.
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Figure 8. The XRD patterns of the PCL and PCL–bioglass scaffolds (80/20 wt%) in the range of
2θ = 20–24.

Table 4. The calculated PCL crystallinity in the scaffolds and their crystallite size. * The highest peak
(crystal plane 110) was used to calculate the crystallinity and crystallite size.

Samples PCL Crystallinity (%) FWHM (◦) * Crystallite size (nm) *

PCL 68.9 0.3726 21.7
PCL–Bioglass 59.1 0.2981 20.8

3.5. Fourier-Transform Infrared Spectroscopy Analysis

FTIR analysis was used to investigate the chemical structure of the filament sur-
face. The results shown in Figure 9 confirm the presence of bioglass particles within the
PCL–bioglass scaffolds. For all considered scaffolds, PCL-related stretching modes were
observed: asymmetric CH2 stretching peaks at 2949 cm−1; symmetric CH2 stretching at
2865 cm−1; carbonyl stretching at 1727 cm−1; C–O and C–C stretching in the crystalline
phase 1293 cm−1. The asymmetric and symmetric C–O–C stretching can be observed at
1240 cm−1 and 1164 cm−1, respectively. However, the Si–O–Si bands associated with the
bioglass particles cannot be observed due to an overlap with the previously mentioned PCL
bands (Figure 9) and the relatively low concentration of bioglass. Nevertheless, the different
shape of the PCL peaks at 1164 cm−1 in the PCL–bioglass scaffolds can be attributed to the
overlap with the Si–O–Si group [75].
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Figure 9. The FTIR spectra of the PCL and PCL–bioglass scaffolds.

3.6. Energy Dispersive X-ray Spectroscopy Analysis

Chemical composition analysis was carried out on the PCL and PCL–bioglass scaffolds
using EDX spectroscopy to calculate the percentage (wt%) of carbon (C), calcium (Ca), oxy-
gen (O), Silicon (Si) and phosphate (P) (Figure 10). Table 5 shows the element composition
on the scaffold’s surface. As observed, the scaffolds containing ceramic bioglass showed
less C content, but higher Ca, O, Si and P contents compared to the PCL bone bricks. The
results also show that by increasing the bioglass content, the Ca, O, Si and P contents were
also increased, confirming the presence of bioglass particles on the filament surface.

Table 5. The element composition of the printed scaffolds.

Material
Composi-

tion/Element
Composition (wt%)

PCL PCL/Bioglass
(90/10 wt%)

PCL/Bioglass
(85/15 wt%)

PCL/Bioglass
(80/20 wt%)

C (Carbon) 77.65 67.7 66.6 63.6
Ca (Calcium) 0 1.6 1.8 2.1
O (Oxygen) 22.35 19.7 19.8 21
Si (Silicon) 0 10.3 10.8 11.9

P (Phosphate) 0 0.7 1 1.4
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Figure 10. The SEM and EDX spectra of the PCL bone brick (A,B); the PCL–bioglass 10 wt% scaffolds
(C,D); the PCL/HA 15 wt% scaffolds (E,F); and the PCL–bioglass 20 wt% scaffolds (G,H).

3.7. Mechanical Characterization Analysis

The design of scaffolds for load-bearing applications is a complex task due to the
complex mechanical nature of human bone, which depends on the age, health condition,
activity and location (e.g., cortical or compact bone, less porous and presenting high
mechanical properties; and trabecular or cancellous bone, presenting high porosity and
low mechanical properties) [76–78]. Figure 11 shows both the compressive strength and
yield strength. The results show that the mechanical properties increased by increasing the
bioglass content, highlighting the positive impact of the reinforcement and suggesting a
good interface adhesion between the polymeric material and the bioglass particles. This can
be attributed to the blend preparation method that, contrary to solvent-based approaches,
does not induce any surface changes in the reinforcement particles. Moreover, the pore
size gradient allowed us to increase the overall mechanical properties, with all scaffolds
(including PCL scaffolds) presenting mechanical properties in the cortical (118–209 MPa
compressive strength) bone region [76–78].
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Figure 11. (A) The compressive modulus and (B) 0.2% offset yield strength results as a function of
bioglass content. * Statistical evidence (p < 0.05) analysed by one-way ANOVA, and Tukey post hoc
test. The * statistical evidence (p < 0.05), **, *** and **** is the one-way analysis of variance (one-way
ANOVA) and Tukey’s post hoc test with the use of GraphPad Prism software and is used to show the
difference between the results. The * is a small difference, while more * are added as the differences
between the results increases.

3.8. In Vitro Biological Performance

Figure 12 shows the fluorescence intensity for the different scaffolds at different time
points (days 1, 7 and 14) after cell seeding. As high fluorescence intensity values correspond
to high cell metabolic activity, the results suggest that the 3D printed scaffolds did not
present any cytotoxicity that was able to support cell attachment and proliferation. The
results show high cell metabolic activity on the PCL scaffolds at days 1 and 7 in comparison
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to the PCL–bioglass, which can be attributed to the smooth filament surface of the composite
scaffolds that limited cell attachment. This also explains the decrease in metabolic activity
when increasing the bioglass content, suggesting low cell attachment and proliferation.
However, from day 7 to day 14, a significant increase in cell metabolic activity was observed
in the bioglass scaffolds. This can be explained by the improved bioactivity nature of the
composite scaffolds, suggesting that bioglass may have a long-term positive biological
impact (Figure 13 and Table 6). The results also show that the Ca, O and P contents increased
by increasing the bioglass content. This may be attributed to the presence of bioglass acting
as a nucleating agent for the precipitation of apatite crystals on the scaffold’s surface [79].
Moreover, Figure 14 shows that the pore size gradient also induced a cell density gradient,
with more cells found in the outer regions (large pores, better permeability) and a lower
number of cells in the inner regions.
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Figure 12. The average fluorescence intensity for the different scaffolds at different days after cell
seeding. * Statistical evidence (p < 0.05) analysed by one-way ANOVA, and Tukey post hoc test. The
* Statistical evidence (p < 0.05), ** and *** is the one-way analysis of variance (one-way ANOVA) and
Tukey’s post hoc test with the use of GraphPad Prism software and is used to show the difference
between the results. The * is a small difference, while more * are added as the differences between the
results increase.

Table 6. The element composition of the 3D printed scaffolds at day 14 after cell seeding.

Element
Composition (wt%) PCL PCL/Bioglass

(90/10 wt%)
PCL/Bioglass
(85/15 wt%)

PCL/Bioglass
(80/20 wt%)

C (Carbon) 62.46 49.4 53.3 56.2
Ca (Calcium) 4.2 3.4 2.8 2.5
O (Oxygen) 32.84 31.3 28.5 25.6
Si (Silicon) 0 13.8 14.1 14.8

P (Phosphate) 0.5 2.1 1.3 0.9
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wt% scaffold (G, H). 

Figure 13. The SEM and EDX spectra of the scaffolds at day 14 after cell seeding: PCL scaffold (A,B);
PCL–bioglass 10 wt% scaffold (C,D); PCL–bioglass 15 wt% scaffold (E,F); and PCL–bioglass 20 wt%
scaffold (G,H).
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Figure 14. The cell count at day 14 after cell seeding in different regions of the scaffolds. * Statistical
evidence (p < 0.05) analysed by one-way ANOVA, and Tukey post hoc test. The * statistical evidence
(p < 0.05), **, *** and **** is the one-way analysis of variance (one-way ANOVA) and Tukey’s post hoc
test with the use of GraphPad Prism software and is used to show the difference between the results.
The * is a small difference, while more * are added as the differences between the results increases.

The SEM images of the scaffolds (Figure 15) after 14 days of cell seeding show that the
cells were well-spread over the scaffolds (Figure 15A,C,E,G). It is also possible to observe
that the number of cells seems to decrease by decreasing the pore size, indicating that the
gradient structure could induce cell growth in a gradient manner (cross-section images and
clearly indicating the effect of cell density as a function of pore size (Figure 15B,D,F,H). The
results also show that cell bridging mainly occurred in the cross-sections of adjacent layers
and filaments with higher pore size (Figure 16).
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Figure 15. The top and cross-section SEM images showing cell spreading on the scaffolds with
different material compositions on day 14: (A,B) PCL; (C,D) 10 wt% bioglass; (E,F) 15 wt% bioglass;
and (G,H) 20 wt% bioglass.
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Figure 16. The cell bridging between the 3D printed filaments at day 14 after cell seeding: (A) PCL
scaffold; (B) PCL–bioglass 10 wt%; (C) PCL–bioglass 15 wt%; and (D) PCL–bioglass 20 wt%.

4. Conclusions

This paper investigated the coupled effect of scaffold architecture and material compo-
sition on the biomechanical performance of PCL–bioglass scaffolds. Scaffolds with pore size
gradients ranging from 172 µm to 573 µm were produced using an extrusion-based additive
manufacturing system and PCL–bioglass pellets prepared by melt blending. This method
avoided the use of organic solvents, which induce chemical changes on the bioglass surface
and reduce the adhesion between the polymeric matrix and the reinforcement particles,
contributing to a decrease in the mechanical properties. In this study, scaffolds presented
mechanical properties in the cortical bone region, with the mechanical performance increas-
ing with increasing the bioglass content. The addition of bioactive glass particles had no
significant impact on the hydrophilic characteristics of the bone bricks and, consequently,
had no major impact on the initial cell attachment process and the results suggest a positive
long-term impact of bioglass. At day 14 after cell seeding, high metabolic cell activity was
observed on the PCL–bioglass 10 wt%. This can be explained by the formation of a calcium
phosphate layer on the scaffolds that significantly improved bioactivity. Moreover, the
results also show that the gradient structure induced cell growth in a gradient manner.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14030445/s1, Figure S1: The continuous path algorithm
used to fabricate the scaffolds.
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