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Abstract

A new word, phylodynamics, was coined to emphasize the interconnection between phylogenetic properties, as observed
for instance in a phylogenetic tree, and the epidemic dynamics of viruses, where selection, mediated by the host immune
response, and transmission play a crucial role. The challenges faced when investigating the evolution of RNA viruses call for
a virtuous loop of data collection, data analysis and modeling. This already resulted both in the collection of massive
sequences databases and in the formulation of hypotheses on the main mechanisms driving qualitative differences
observed in the (reconstructed) evolutionary patterns of different RNA viruses. Qualitatively, it has been observed that
selection driven by the host immune response induces an uneven survival ability among co-existing strains. As a
consequence, the imbalance level of the phylogenetic tree is manifestly more pronounced if compared to the case when
the interaction with the host immune system does not play a central role in the evolutive dynamics. While many imbalance
metrics have been introduced, reliable methods to discriminate in a quantitative way different level of imbalance are still
lacking. In our work, we reconstruct and analyze the phylogenetic trees of six RNA viruses, with a special emphasis on the
human Influenza A virus, due to its relevance for vaccine preparation as well as for the theoretical challenges it poses due to
its peculiar evolutionary dynamics. We focus in particular on topological properties. We point out the limitation featured by
standard imbalance metrics, and we introduce a new methodology with which we assign the correct imbalance level of the
phylogenetic trees, in agreement with the phylodynamics of the viruses. Our thorough quantitative analysis allows for a
deeper understanding of the evolutionary dynamics of the considered RNA viruses, which is crucial in order to provide a
valuable framework for a quantitative assessment of theoretical predictions.
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Introduction

Investigating the relations between the evolutionary history of

an organism, the forces that shape it and the resulting topological

properties of its phylogenetic tree, is a major topic in evolutionary

biology [1,2,3,4,5,6,7,8]. Since the very first reconstructions of the

tree of life, it was noticed the presence of an uneven distribution of

sizes among different taxonomic groups [1]. The first attempt of

explanation came from Yule [2], who proposed a very simple

model of diversification in which, starting from a single species in

the tree, every species can split into two new species with a

uniform probability. The resulting genealogy of the Yule model

(which is statistically equivalent to the so called ERM, Equal-Rate

Markov Model [5]), displays asymptotic statistical properties which

are the same of a totally balanced tree (i.e., a binary tree in which

every node has exactly two branches). Since then, new models of

diversification have been introduced [5,7,8], able to generate non-

ERM phylogenies (i.e., with a higher level of imbalance) and

different possible measures for assessing the degree of imbalance of

a tree have been proposed [9,4,10,11,12,13,14,15].

The properties of different indices of tree imbalance have been

intensively studied in order to assess their ability in discriminating

among the different speciation models [16,17,18,6]. The effec-

tiveness of the different indices in discriminating among different

branching models has been often questioned. For instance Stich

and Manrubia [14] observed that the evolutionary parameters

only weakly affect the topological properties of phylogenies while

the tree size seems to importantly affect the scaling exponents,

leading to asymptotically balanced trees.

Qualitative differences on the shape of phylogenies of RNA

viruses have been related to different selective pressure of the host

immune system on the viral evolutionary dynamics [19]. The

availability of massive sequences databases has triggered studies

aimed at a deeper understanding of the so-called phylodynamics of

RNA viruses [20,21], namely the complex interplay between

molecular evolution and the interactions among pathogens, the

host immune system and the epidemic dynamics. RNA viruses,

indeed, feature an exceptionally high nucleotide mutation rate,

about one million times higher than that of vertebrates, which

confers an outstanding adaptive ability on them. Their genes can

accumulate observable genetic mutations on a time scale

comparable to the responsiveness of the host immune system.

Because of this high level of mutation rate, a viral population is not

composed by identical clones, rather different viruses present

closely related but not identical genotypes, differing in at least one

nucleotide one from another. This high genetic heterogeneity,

moreover, also results in the variability of phenotypes in the

population, where the fitness is not evenly distributed among all

the coexisting strains. This particular type of organization is called

a quasi-species. Originally used by Manfred Eigen [22,23] to model

the evolution of the first macromolecules on earth, the quasi-
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species concept has been applied to populations of replicating

molecules and RNA viruses [24,25,26,27].

The relative fitness of the coexisting strains in the virus

populations largely depends on the selection driven by the host

immune system [19], through a mechanism referred to as cross-

immunity. After being infected, the host can acquire immunity

against different related strains of the same virus and this cause a

differential survival ability among coexisting strains. Phylogenetic

trees of RNA viruses store information about the relative fitness of

each evolutionary lineage and the analysis of the tree shape

provides an indirect investigation of the interaction between the

host immune system and the virus.

A particular interest has been raised for the evolutionary

dynamics of the human Influenza A virus, due to the relevance of

predicting new emerging strains for effective prevention strategies

and timely vaccine preparation [28]. In this case, hosts acquire

immunity against the strain of the primary infection, but can still

be re-infected by different strains which have mutated at key

antigenic sites. In this way, strains that have already circulated

within the population can be prone to extinction, while the

emerging new variants feature a higher survival ability, being able

to re-infect hosts immune to earlier types. Because of the

combination of the high level of transmission among hosts and

hosts mobility, moreover, every year each viral epidemic is caused

by one dominant strain circulating at a global scale. The shape of

the inferred phylogenetic tree of the Human Influenza A virus

[29,30,31,28] reflects these properties. All the strains circulating in

the same annual epidemic belongs to the same quasi-species, with

similar antigenic properties, and cluster in the same group in the

inferred phylogenetic tree. Different quasi-species follow one

another in subsequent years, revealing the presence of a single

path in the tree, usually called trunk (see Fig. 1). The trunk,

moreover, has the highest rate of amino acid replacement at key

antigenic sites, revealing a strong selective pressure [29]. Among

the co-circulating strains, the one with the highest amino-acidic

similarity with the trunk has the highest probability to become the

dominant strain of the subsequent year, providing a basis to design

annual vaccines [28]. From all said above, we expect that suitable

imbalance measures performed on the Influenza A virus should

reveal a high level of imbalance of the corresponding phylogenetic

tree.

We provide here, for the first time to our knowledge, a

quantitative assessment of the imbalance properties of the

Influenza A phylogenetic tree, as inferred from sequences coding

haemagglutinin (HA), a surface protein that constitutes the main

target for the host humoral response. We compare these results

with those obtained on the reconstructed phylogenetic trees of five

other viruses, for whom a different selection pressure due to the

host immune system has been hypothesized [19]. The aim of this

study is twofold: on the one hand, we wish to provide the

community with a set of observables, tested on real phylogenies,

able to discriminate between different evolutionary processes; on

the other hand, we aim at introducing, through these observables,

a reference point through which different modeling schemes can

be compared. In the last few years many models have indeed been

introduced that mimic the viral evolution of the human Influenza

A at the sequence level [32,33,34,35]. Comparison with the

natural viral evolution was performed so far in a qualitative way,

while the availability of specific mathematical tools would increase

the ability in discriminating between two or more competing

hypotheses and, possibly, the predictive power of these models.

In this work we introduce a framework for the analysis of both

topological and metrical properties of inferred trees of RNA

viruses. We focus in particular on the topological properties,

introducing a new methodology for the correct quantification of

the degree of imbalance of the inferred phylogenetic trees. To this

end, we consider the phylogenies of six RNA viruses, characterized

by different selective pressure from the host immune system,

namely the Human Flu H3N2 virus, the Avian Flu H5N1 virus,

the Swine Flu H1N1, the Measles virus, the HIV-1 virus, both at

the Intra-host and Inter-host level. The main features of their

evolutionary dynamics will be described in the Methods section.

We applied a distance-based method for the phylogenetic recon-

struction, considering data-sets with thousands of sequences. For

all the analysis, we used a recently introduced Stochastic Local

Search algorithm, Fast-SBiX [36,37].

The outline of the paper is as follows. We first give a detailed

description of the features of the data-set we used for the inference

of the phylogenetic trees, as well as of the inference strategy we

adopted. We then recall the most relevant properties of the

phylodynamics of the six viruses we took into consideration. Next

we focus on the topological properties of the phylogenetic trees.

We point out the limits of the quantification of the imbalance level

attained by means of standard imbalance metrics

[4,16,17,10,11,12,15], and then we introduce our new methodol-

ogy. We show that our approach correctly quantifies the

imbalance level of the six inferred phylogenetic trees we

considered. With a slight variant of our methodology, moreover,

we show a possible way to detect the antigenic drift [38] of the

Human Flu H3N2 virus, through the analysis of the evolution of

the imbalance metrics over time.

In File S1 we give a detailed description of all the standard

imbalance metrics presented in [4,16,17,10,11,12,15]. Further, we

present the probabilistic approach for the imbalance quantifica-

tion, introduced in [14], and a variant we introduce in this context,

pointing out the limits of this approach when applied to inferred

phylogenetic trees of RNA viruses. Finally, we present an analysis

of the metrical properties of the six trees, which we used to

estimate the fixation rate of the genomic region of corresponding

viruses.

Materials and Methods

Data-set and inference of the phylogenetic trees
Our data-sets include the genome sequences of the populations

of three viruses of Influenza A (Human Flu H3N2, Avian Flu

H5N1, Swine Flu H1N1), the HIV virus, both at intra-host and at

inter-host level, and the Measles virus. Table 1 summarizes the

main features of the data-sets used. For each virus we performed a

multiple alignment of all the genome sequences considered,

making use of the online version of MAFFT [39], which allows for

fast and accurate alignment when dealing with large data-sets.

Table 1 also reports the total lengths of the sequences after the

alignment. In File S2 we report the accession numbers of the

sequences in our data-sets. Pairwise distances have been computed

according to the Jukes-Cantor Model [40]. All the phylogenies have

been inferred making use of a recently introduced Stochastic Local

Search algorithm Fast-SBiX [37,36], whose accuracy in the

phylogenetic reconstruction has been tested both on artificial data

[37,36,41] and on language trees inference [42].

The imbalance properties of a topology can only be defined for

rooted phylogenies, while typically inferred trees are unrooted. We

identified, for each data-set, a reference sequence as the common

oldest ancestor, and we rooted the inferred phylogeny in the

closest internal node of this leaf. When considering Flu viruses,

because of the rapid turnover of the circulating strains over time,

the oldest sequence of each data-set can be used as the reference

sequence. In the analysis of the HIV virus, since we focused on the
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subtype B, we considered the same genomic region of a sequence

of subtype C as a reference strain (as suggested in [43]). The N

gene of a Rinderpest Virus, finally, was used as the oldest common

ancestor for the Measles Virus data set [44].

Phylodynamics properties of the six RNA viruses
The phylogenetic properties of the Human Influenza A

virus H3N2 are deeply affected by its interaction with the host

immune system. After recovering, hosts acquire immunity for the

Figure 1. HIV Inter-Host and Human Flu H3N2 Phylogeny Trees. Inferred phylogeny of the HIV-1, subtype B virus at a geographical global
scale (Env gene, region C2V5) (Left), and the Human Influenza A Virus (haemagglutinin gene HA), subtype H3N2, at the same scale (Right). Details on
the inference method used are reported in the main text. In each phylogenetic tree, we use a color code to visually identify viruses isolated in the
same temporal interval. For example, we colored in red all the branches of leaves isolated between 2000 and 2005 for the HIV-1 virus (left), while, for
instance, blue is used in the phylogenetic tree of Human Flu (right) to mark all the leaves isolated in the year 2001. In the phylogenetic tree of the
Human Flu, leaves isolated in the same temporal interval cluster in the same clade and there is just one evolutionary lineage, the so called ‘‘Trunk’’
(marked in grey), connecting all of them. These patterns are not observed in the phylogenetic tree of the HIV-1 virus. The tree of the Human-Flu
H3N2, moreover, is visibly much more imbalanced with the respect to the HIV-1 one. Details on the definition of the imbalance level and its
quantification are in the main text.
doi:10.1371/journal.pone.0044849.g001

Table 1. Properties of the data-set used for the inference of the phylogenetic trees.

Virus Genomic region (CDS) N Length Source reference sequence

Human Flu H3N2 Haemagglutinin (HA) 4227 1700 Influenza Virus Resource
database [50]

Oldest sequence

Avian Flu H5N1 Haemagglutinin (HA) 1157 2167 Influenza Virus Resource
database [50]

Oldest Sequence

Swine Flu H1N1 Haemagglutinin (HA) 315 1716 Influenza Virus Resource
database [50]

Oldest Sequence

HIV-B Intra-Host Env gene (C2V5) 282 846 HIV Sequence Database [43] HIV-C sequence

HIV-B Inter-Host Env gene (C2V5) 1023 1263 HIV Sequence Database [43] HIV-C sequence

Measles Virus N gene 985 581 GenBank [51] Rinderpest Virus Sequence

In File S2 we report the accession numbers of the sequences in our data-sets.
doi:10.1371/journal.pone.0044849.t001
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strain they have been infected, but they can still be re-infected by

different strains which have mutated at key antigenic sites. In this

way the circulating strains get continuously replaced by new

variants that can re-infect hosts already immunized to earlier

circulating strains. This turnover takes place on annual time scale

and is responsible for the call for new vaccines to be formulated

before each annual epidemic. The high level of transmission

among hosts, combined with their elevated mobility, entails the

emergence of a dominant strain circulating at a geographical

global scale. All the dominant infective strains arisen in subsequent

years, therefore, share the same evolutionary lineage.

The inferred phylogenetic tree of the haemagglutinin (HA) gene

of human Influenza A virus, H3N2 subtype [29,30,31,28], shown

in Fig. 1, displays a strong temporal pattern. All the leaves isolated

in the same year cluster in the same group. These temporal

clusters are the fingerprint of the turnover of the coexisting strains.

A single path in the tree, usually denoted as trunk, connects all the

clusters. As already stressed, we expect the phylogenetic tree of the

human Flu H3N2 to feature a high degree of imbalance, because

of the uneven distribution of the survival ability among all the

evolutionary lineages.

The populations of both the Swine H1N1 and Avian H5N1

Influenza A viruses are also under deep selection from the host

immune system, displaying the same multi-strains dynamics of the

human Influenza A virus. In this case, however, the reduced

mobility of the hosts leads to the emergence of few independent

evolutionary lineages, surviving in different geographic regions.

Again, we expect the inferred phylogenetic trees of the haemag-

glutinin (HA) gene of these two viruses to be highly imbalanced,

though featuring different co-existing lineages, corresponding to

different geographic regions.

The Measles Virus features different immunological proper-

ties with respect to the Influenza A Virus. Along with a lower

mutation rate with respect to Influenza (see File S1), in this virus

all the mutated strains are not antigenically significantly different.

This means that, after being infected, hosts acquire a lifelong

immunity from all the other strains. The host immune system-

driven selection is thus very weak. The introduction of the vaccine,

in 1963, has significantly reduced the number of infections caused

by this virus, even though seasonal outbreaks still occur in regions

with low vaccination coverage. Due to the lack of a differential

selection on the different lineages, phylogenetic trees of the

measles virus, usually inferred from the sequences coding the N

gene [19], is expected to display a very low degree of imbalance.

The dynamics of the HIV virus is characterized by persistent

host infection. The intra-host evolution of the HIV Virus is very

fast and takes place on a time scale of days. The continual and

strong immune selection pressure, from either neutralizing

antibodies or cytotoxic T lymphocytes, results in the extinction

of many evolutionary lineages, with few ones prolonging the

infection, which can last decades. The inferred phylogenetic tree

for the HIV virus within a single host resembles the one of the

Influenza A virus at a population level. We thus expect imbalance

measures to detect a high degree of imbalance. The inter-host
dynamics of the HIV virus, on the contrary, takes place on a scale

of months or years, i.e., the typical time on which the transmission

occurs. Multi strains coexist, being able to infect different

individual hosts. The inferred phylogenetic tree of the Env gene

(region C2V5), at the inter-host level, is thus expected to be very

balanced. This phylogenetic tree (as shown in Fig. 1), moreover,

do not feature any temporal pattern [19], since leaves do not

cluster according to the year of isolation, while it can be used to

trace the demographical and spatial history of transmission [45].

Imbalance measures
Different indices have been introduced in the literature

[4,16,17,10,11,12,15] in order to quantify the asymmetry of a

topology i.e., the uneven distribution of the number of leaves

between left and right branches, and their ability in differentiating

simple models of diversification has been analyzed [17,16,18,7,8].

In Table 2 we report the definition of the most commonly used

imbalance metrics, together with their values on a totally balanced

and on a totally imbalanced tree, referring to the File S1 for a

thorough discussion. In fig. 2 we show the values each imbalance

metrics takes on the phylogenetic trees of the six considered RNA

viruses. We see that different metrics often give conflicting

information, such that a ranking for the imbalance level of the

six phylogenetic trees does not clearly emerge from this analysis. In

fact, extracting information on the imbalance level of a tree from

the bare number as given by the above defined metrics can be

misleading due to the fact that, with the exception of Ii (i~1,2,C),

all the metrics explicitly depend on the size N of the considered

tree.

A new comparison strategy
In order to compare trees of different sizes, and to deal with

finite-size effects, a careful analysis is in order, where the

dependence on the system size (number of leaves) N is taken into

account. We here introduce a new methodology and we use it to

quantify the imbalance level of the inferred phylogenetic trees of

the six RNA viruses. We shall specifically consider the following

three metrics:

M. The mean topological distance [12] M of the leaves from the

root, defined as:

M~
1

N

X

i[L
Mi ð1Þ

where the sum runs over the N leaves of the tree and Mi

is the topological distance of the ith leaf from the root i.e.,

the number of nodes in the path connecting them. When

considering a totally balanced tree, M~log2N since all the

N~2M leaves share the same topological distance from the root.

On the other hand, for a totally imbalanced tree, M*N, i.e., M
exhibits an asymptotic linear behavior, since in this case

NM~1z2z . . . z(N{2)z2(N{1)~(N2zN{2)=2.

D. The mean depth d [13], i.e., the mean topological distance of

each node (internal nodes and leaves) from the root, defined as:

d~
1

A

X

j[(I|L)

Mj , ð2Þ

where the sum runs over all the nodes of the tree (leaves and

internal nodes) and A is the tree size defined as the total number of

internal nodes and leaves of the tree: A~2N{1 in a rooted

binary tree. Here Mj is the topological distance of the jth element

of the tree (leaf or internal node) from the root. In a totally

balanced tree, the leading contribution for the mean depth d at

large sizes is logarithmic: d*log(A), while in a totally imbalanced

one d*A i.e., it displays a linear asymptotic behavior [13]. We

remark that the metrics d is considered as a function of

A~2N{1. During the following discussion, for the sake of

simplicity, we will address a generic metrics S as a function of N,

implying that, whenever S:d , then S~S(A).

I’. The Asymmetry metrics is inspired by the definition of IC but

we consider it unnormalized, as:

Phylogenetic Properties of RNA Viruses
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I
0
~

1

N{1

X

j[I
(max(rj ,lj){mj), ð3Þ

where the sum runs over each internal node j of a rooted tree, rj is

the number of leaves descending from the right branch of j and lj
the number of leaves descending from its left branch, and mj is the

smallest integer not smaller than (rjzlj)=2. The definition in (3) is

such that I ’ is constantly null on a totally balanced tree and

I ’~N(N{2)=4(N{1) on a totally imbalanced one.

Figure 2. Quantification of tree shape imbalance with the metrics of Table 2. In this graph we show the values of the imbalance metrics
defined in Table 2 for all the six inferred trees of RNA viruses: HIV Inter-Host, Measles Virus, Swine Flu H1N1, Avian Flu H5N1, HIV Intra-Host and
Human Flu H3N2. Phylogenies in the x-axis have been ordered according to increasing values of the expected degree of imbalance (see main text for
details).
doi:10.1371/journal.pone.0044849.g002

Table 2. Imbalance Metrics.

Metrics Formula Totally Balanced Totally Imbalanced

I1 2

(N{1)(N{2)

X

j[I
Drj{lj D

0 1

I2 1

N{2

X

j[I ,rj zlj w2

Drj{lj D=Drjzlj{2D
0 1

IC 1

(N{1)

X

j[I
wj

max(rj ,lj ){mj

rjzlj{mj{1

0 1

B1

X

j[I{root

Z{1
j

*N2 *logN

B2

X

i[L
Mi=2Mi log2N 2{( 1

2
)N{2

Ch 2NCherries=N 1 2=N

M 1

N

X

i[L
Mi

log2N *N

s2
M

1

N

X

i[L
(Mi{M)2 0 *N2

In this table we report the definition of eight imbalance metrics defined in the literature [4,16,17,10,11,12,15]. The last two columns show the values of such metrics for
totally balanced or totally imbalanced trees with N leaves. L is the set of all the leaves in the tree while I is the set of all the internal nodes. For each internal node j, rj

and lj are respectively the number of leaves belonging to the right and left subtrees descending from j, and we define mj~(rjzlj )=2 and wj~1 if rjzlj is even,

mj~(rjzljz1)=2 and wj~(rjzlj{1)=(rjzlj) if rjzlj is odd, wroot~2(rrootzlroot{1)=(rrootzlroot). Mi is the topological distance between leaf i and the root i.e., the

number of internal nodes in the path connecting i to the root. Given an internal node j, Zj is the maximum topological distance between j and one of its descending

leaves. NCherries is the number of cherry leaves within the tree, where a cherry is a couple of leaves which descend from the same internal node. We refer to the File S1
for further details about the definition of the imbalance metrics.
doi:10.1371/journal.pone.0044849.t002
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The methodology we use here consists in exploring sub-trees of

all the possible sizes within a topology. In particular, let S be any

of the three metrics defined above (S~M,d,I ’), and let N be the

total number of leaves in the phylogeny under investigation. Our

methodology consists in the following steps:

1. We randomly select k independent sets of N ’ (N ’ƒN ) leaves in

the phylogenetic tree, and extract, from the complete tree, the

relative binary sub-trees induced by each set. (We remark that

this is in principle different than reconstructing a new tree from

the subset of N ’ leaves. We checked however that the two

procedures give the same quantitative results. We thus safely

used the procedure described here, for the sake of computa-

tional economy).

2. For each of the k sub-trees extracted, we compute the

imbalance level Si~Si(N ’), (i~1, . . . ,k), by means of the

metrics S, and consider the average S(N ’)~
1

k

Xk

i~1
Si(N ’).

The value of S(N ’) is thus an average value of the imbalance

level of the phylogenetic tree at the size N ’.

3. We repeat the steps 1 and 2 for each possible size 2vN ’ƒN.

The resulting curve S is thus a quantification of the average

values for the index S, for all the possible sizes N ’ƒN. With our

sampling procedure of subtrees within a tree, we can thus

investigate the dependence of the imbalance metrics on the size of

considered subtrees, and, at the same time, the sampling of many

subtrees with the same size allows for a better statistical analysis of

their imbalance level, in order to reduce the effect of noise and

fluctuations.

A quantitive comparison of the imbalance properties of different

phylogenies can thus be attained in two different and comple-

mentary ways. On the one hand, the relative position of the curves

S of different phylogenetic trees quantifies their relative imbalance

level at the same size. On the other hand, we can explicitly

consider the asymptotic behavior of the curves S, in order to be

able to make a comparison with hypothesized evolutionary

models.

The asymptotic behavior of M, d and I ’ is analytically known in

the cases of totally balanced or imbalanced trees. Further, the so-

called beta-splitting model [5,6] (a non-constructive model for

phylogenies generation) characterizes the asymptotic behavior of

the above balance metrics also in intermediate cases. An

asymptotic behavior as log2N is found to correspond to a well

defined value of the b parameter in the beta-splitting model and it

is associated to a great variety of real phylogenetic tree [5].

Moreover, in some recent analysis [13,8], authors found the same

asymptotic behavior (respectively M*log2N and d*log2A) for

the mean topological distance M and the mean depth d when

looking at the scaling laws of all the trees in the PANDIT [46] and

TreeBASE [47] databases. It should be noted that logarithmic

exponent can greatly vary in these cases and the authors of [8]

mention that a power law d*na with a^0:4 fits TreeBASE data

equally well [48] while for larger tree sizes as those contained in

PANDIT, the log2N seems more accurate.

Taking these results as important hints we here adopt our

resampling strategy described above to fit the asymptotic behavior

of the imbalance metrics M, d and I ’ with the function:

f (x)*(log(x))c, ð4Þ

where x~N when considering M and I ’, and x~A when

considering d. The exponent c would be c~1 for a fully balanced

tree and c~2 in the beta-splitting model with the parameter

b~{1 (the AB model [5]).

Results

In Fig. 3, top line, we report the results of the analysis of the

imbalance level of the six phylogenies considered (Human Flu

H3N2, Avian Flu H5N1, Swine Flu H1N1, HIV virus, both at

Intra-host and at Inter-host level, and the Measles virus), obtained

through our comparison strategy. For any metric S~M,d,I ’, we

computed the curve S(N), i.e. the average level of imbalance for

all the possible subset sizes within the phylogeny. Notice that now

we refer to N as the subset size of leaves considered. Data are

shown as a function of log(N) (log(A) for d) and in a double

logarithmic scale graph; with this choice any function in the form

f (x)~alog(x)c will be displayed as a straight line, with slope c.

The first quantification of the relative degree of imbalance of

the phylogenies is given by the relative position of the

corresponding curves d(A), I ’(N) and M(N), i.e. through a

comparison of the relative imbalance level at the same size. From

this perspective, a clear rank emerges, reflecting the expected

hierarchy according to previous qualitative analysis [19]. In

particular, from the most imbalanced tree to the most balanced

one, all the three metrics reported in Fig. 3 recover the following

order: Human Flu H3N2, HIV Intra-Host, Avian Flu H5N1,

Swine Flu H1N1, Measles virus, HIV Inter-Host.

A further quantification of the absolute and relative degree of

imbalance can be attained considering an extrapolation for the

asymptotic behavior of these curves. All of them display a quite

evident linear trend, when considering sizes log(N)wlog(N�)~4
and log(A)wlog(A�)~4, revealing an asymptotic trend with the

functional form f (x)~alog(x)c. Results are shown in bottom line

of Fig. 3, where we also report the numeric values of the c
exponent for each phylogeny, which allow for a quantitative

comparison of their asymptotic balance properties. Again, the

arising hierarchy is shared by all the three metrics considered and,

moreover, is exactly the same as the one deduced by the relative

position of the curves. In addition, when considering M(N) and

d(A), the value c is an absolute assessment of the deviation from a

totally balanced tree, for which c~1. From this point of view, the

HIV Inter-Host phylogeny turns out to be an almost totally

balanced tree (c~1:01 for M(N) and c~1:26 for d(A)). On the

other hand, the limit of the totally imbalanced tree (for which

M(N)*N and d(A)*A) is never approached by all the

phylogenies we considered. This can be intuitively explained

considering that the selective pressure, when is present, although

fast enough to avoid proliferation of antigenically different strains,

acts on a longer time scale with respect to the time scale of

mutations. As already stressed in the introduction, the viral

population in a single instant is represented by a quasi-species

rather than a single strain. This reflects on the phylogenetic tree,

hiding its the global imbalance. In other words, at a small (yearly)

time scale, the phylogenetic tree looks balanced, being formed by

closely related strains belonging to the same quasi-species, while

on a higher time scale (many years) selection takes place and the

presence of a well defined trunk and of an uneven survival

distribution is clearly visible. In order to fully appreciate these two

different time scales, in the next section we shall present a further

analysis of the evolution of the imbalance metrics over time.

It is worth to remark that all the three imbalance metrics we

have considered consistently point out to the same hierarchy of the

degree of imbalance of the six phylogenies analyzed. According to

this classification, the phylogenies of the FLU viruses and the

phylogeny of the HIV Intra-host virus turn out to be the most
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imbalanced, while the HIV inter-Host virus and the Measles virus

phylogenies appear to be the most balanced ones. These findings

suggest that, in order to discriminate between different level of

imbalance due to different selective pressure, it is crucial to

carefully quantify the imbalance level of sub-trees within the

reconstructed phylogenies, considering then the balance properties

as a function of the tree size.

Imbalance properties as a function of time
The main feature of our approach is that of extracting a subset

of leaves in a random way and study the properties of the relative

sub-tree. The computation of the average properties of such sub-

trees, as we have just shown, turned out to be useful to compare

different phylogenies. It is important to remark that so far we did

not fully exploit the information carried out by the phylogenetic

tree. For instance we did not exploit the information about the

years of isolation of the different strains.

One of the marking property of the phylogeny of the Influenza

A virus, besides that of being imbalanced, is indeed that of

displaying a strong temporal pattern, where the leaves cluster

according to their year of isolation, and also to display a ‘trunk’ (see

Fig. 1). This peculiarity is the signature of the antigenic drift [38],

which is responsible for the call for new vaccine to be formulated

before each annual epidemic. In order to perform a deeper

investigation of the properties of such clusters we therefore

introduce here a slight variant of our methodology.

We now consider a partition of the phylogeny investigated into

a set of sub-trees, chosen with a temporal criterion. Each sub-tree

is associated with a temporal interval and encloses all the leaves in

the phylogenetic tree which have been isolated in such an interval

Figure 3. New comparison strategy results. Top line: Mean topological distance from root to leaves (M), mean depth (d) and asymmetry metric

I ’ for all the inferred phylogenetic trees we considered, computed with the methodology discussed in the main text. Vertical dashed lines mark sizes
N�,A� . In the bottom lines we report the rescaled values for all the curves, where we compare the asymptotic imbalance level of the phylogenies
isolating the linear trend of the curves for NwN� and AwA� , revealing in this way the asymptotic behavior with the functional form f (x)~alog(x)c .

Solid lines are rescaled values of M , d and I ’ while dashed lines are for the relative extrapolations. In the inset we report the numerical values of c for
each phylogeny.
doi:10.1371/journal.pone.0044849.g003
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(see also Fig. 4). For each sub-tree in this set, we measure the mean

topological distance M, the mean depth d and the imbalance

metrics I ’, with the methodology described above. In Fig. 4 we

report the result of this analysis for three phylogenies: Human-Flu

H3N2, which features a strong temporal pattern, the HIV Inter-

Host and Measles viruses, as a reference point of phylogenies

without a marked temporal pattern [19].

In the Measles and HIV Inter-Host phylogenies the average

values of the three imbalance metrics are about the same for each

sub-tree. This suggests that the imbalance level of these two

phylogenies do not depend on the year of isolation of the leaves

considered or, equivalently, that sampling leaves with a temporal

criterion is equivalent to a random sampling. This is a further

evidence of the absence of temporal patterns within both Measles

and HIV Inter-Host phylogenies.

In the Influenza A virus phylogeny, the imbalance properties of

the sub-trees clearly depend on the corresponding temporal

interval of the year of isolation of their leaves. In particular, the

degree of imbalance increases when considering sub-trees corre-

sponding to longer time intervals. Again, this is a further evidence

for the existence of two different time scales characterizing the

dynamics of this virus. At a yearly time scales, where all the strains

are likely to belong to the same quasi-species, the diversification

process is not deeply affected by the host-driven selection. This

reflects in the low imbalance level of the corresponding sub-trees.

On time scales of many years the driving force of the evolution is

the selection induced by the host immune system and many quasi-

Figure 4. Relative behavior of M(N), d(A) and I ’(N) for subtrees of different time intervals. We focus here on the phylogenies of three
RNA virus phylogenetic trees (Human-Flu H3N2 (top), HIV Inter-Host (middle), Measles virus (bottom),) considering the imbalance properties of their
sub-trees, extracted with a temporal criterion. Each sub-tree is associated to a temporal interval (reported in the legend of the pictures), reflecting the
years of isolation of its leaves. For example, in the case of Human Flu H3N2, the curve 1973{w2001 refers to the sub-tree enclosing all the strains, in

our data-set, isolated between 1973 and 2001. For each sub-tree in this set we show the mean topological distance (M), the mean depth (d) and the

asymmetry I ’ computed with the methodology presented in the main text. Asymptotic extrapolations of these curves are reported in the File S1.
doi:10.1371/journal.pone.0044849.g004
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species follow one another; this particular dynamics is detected by

the increasing trend of the imbalance level.

The asymptotic behavior of the mean topological distance M,

the mean depth d and the asymmetry index I ’(N) of the temporal

sub-trees, moreover, attest the increasing trend for the imbalance

level of the Influenza A virus phylogeny, and a very mild

dependence for both Measles and HIV Inter-Host phylogenies (see

File S1 for further details).

Discussion

In the present paper we provided a framework for the

quantification of the imbalance level of phylogenetic trees inferred

from data sequences. Previous analysis of standard balance/

imbalance metrics [14,6] highlighted the difficulty in discriminat-

ing the imbalance level of phylogenies both inferred from real data

and generated by evolutionary models. However, qualitative

differences in the shape of reconstructed phylogenetic trees of

different viruses have been highlighted, as a signature of different

epidemiological features [19].

The methodology presented here makes use of a sampling

procedure that allows to perform statistical analysis on a single

phylogenetic tree. In this way, the dependence of the value of the

imbalance metrics on the number of considered taxa can be

investigated, and this turns out to be the relevant factor in order to

quantify imbalance. The low computational cost of our approach,

moreover, allows for a large statistical analysis of the imbalance

level at a given size, through the sampling of many subtrees with

the same number of taxa, in order to reduce the effect of noise and

fluctuations. As all the statistical approaches, on the other hand,

the significance of the analyses can be deeply affected by the size of

the system, so the inference of phylogenetic trees with large

number of leaves (thus data-sets of hundreds of sequences) is in

order.

We presented here a detailed analysis of the topological

properties of the phylogenetic trees of six RNA viruses inferred

from nucleotide data sequences. In particular, we used the part of

the genome that codifies for proteins more directly involved in the

host immune response, in order to highlight the effect of selection

on the evolutionary dynamics.

Remarkably, we were able to recover and quantify the relative

degree of imbalance of each phylogeny, as both previously pointed

out through qualitative observations and as expected from

reasoning related to the selective pressure mediated by the host

immune system. This is an important result since the the quasi-

species nature of the viral population is in general a confounding

factor for a proper quantification of the phylogentic tree

imbalance. Taking into account this peculiary of the viral

populations, we further provided a framework to discriminate

phylogenetic trees whose shape is characterized by the presence of

a trunk, like the Human Flu H3N2, from phylogenies in which this

pattern is absent (Measles Virus, HIV Inter-Host).

Due to the proliferation of models aimed at explaining the

peculiar evolutionary dynamics of Influenza A virus, we believe

that a quantitative characterization of the imbalance properties of

such a virus is crucial in order to discriminate among predictions

corresponding to different evolutionary processes. The aim of this

work is that of contributing to such a quantitative analysis,

providing both a general mathematical and algorithmic frame-

work as well as a demonstration of its implementation in the

concrete case of discriminating among different RNA viruses

featuring different levels of imbalance. Further works devoted to a

thorough investigation of the predictions of the proposed

methodology on artificial models where imbalance is due to

different selective pressures, for instance neutral selection due to

population bottlenecks [49], could shed light on how different

driving forces behind evolution reflect on the phylogenetic tree

topology.
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