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A B S T R A C T   

Resting-state functional connectivity has generated great hopes as a potential brain biomarker for improving 
prevention, diagnosis, and treatment in psychiatry. This neuroimaging protocol can routinely be performed by 
patients and does not depend on the specificities of a task. Thus, it seems ideal for big data approaches that 
require aggregating data across multiple studies and sites. However, technical variability, diverging data analysis 
approaches, and differences in data acquisition protocols introduce heterogeneity to the aggregated data. Besides 
these technical aspects, a prior task that changes the psychological state of participants might also contribute to 
heterogeneity. In healthy participants, studies have shown that behavioral tasks can influence resting-state 
measures, but such effects have not yet been reported in clinical populations. Here, we fill this knowledge gap 
by comparing resting-state functional connectivity before and after clinically relevant tasks in two clinical 
conditions, namely substance use disorders and phobias. The tasks consisted of viewing craving-inducing and 
spider anxiety provoking pictures that are frequently used in cue-reactivity studies and exposure therapy. We 
found distinct pre- vs post-task resting-state connectivity differences in each group, as well as decreased thalamo- 
cortical and increased intra-thalamic connectivity which might be associated with decreased vigilance in both 
groups. Our results confirm that resting-state measures can be strongly influenced by prior emotion-inducing 
tasks that need to be taken into account when pooling resting-state scans for clinical biomarker detection. 
This demands that resting-state datasets should include a complete description of the experimental design, 
especially when a task preceded data collection.   

1. Introduction 

Resting-state functional brain connectivity is a promising tool for the 
development of potential biomarkers for improving prevention, diag
nosis, and treatment in psychiatry. It is a task-free neuroimaging pro
tocol that patients can generally perform easily irrespective of the type 
or the severity of their condition. Indeed, in recent years, candidate 
resting-state biomarkers have been reported in nearly all psychiatric 
conditions. For example, based on resting-state data, relatively high 
levels (>80 %) of classification accuracy have been achieved for psy
chiatric conditions that include depression (Drysdale et al., 2017), post- 
traumatic-stress disorder (Nicholson et al., 2019, 2020), consciousness 
states (Campbell et al., 2020), or tobacco use disorder (Wetherill et al., 
2019). 

Another key advantage of resting-state biomarkers is that they do not 

depend on the specificities of a task. Consequently, they may first appear 
ideal for between-study comparisons and for collapsing datasets from 
multiple studies and multiple sites, which would improve generaliz
ability and statistical power. This is of critical importance, as 
correlation-based approaches are gradually replaced by predictive 
machine-learning methods, which, although more powerful, require 
large amounts of data (Khosla et al., 2019). Pooling multiple resting- 
state studies is increasingly popular (Abraham et al., 2017; Tanaka 
et al., 2021; Turner, 2013), but it is far from trivial, as shown by the 
modest success of recent multisite studies. Classification algorithms of 
major depressive disorder (Xia et al., 2019) and schizophrenia (Cai et al., 
2020), for instance, poorly generalized from one study to another 
despite high classification accuracy within single studies. 

Importantly, test–retest reliability studies on functional connectivity 
measures have been shown to be poor (Noble et al., 2017), and one 
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should not take for granted that the gain from increasing sample size will 
systematically outweigh the introduction of heterogeneity (Bari et al., 
2019). Heterogeneity can be due to technical variability (e.g. scanner 
type, field strength, imaging sequences…) (Yamashita et al., 2019), 
different data analysis approaches such as functional connectivity, 
amplitude of low frequency fluctuations, graph theory, clustering al
gorithms and pattern classification, as well as differences in data 
acquisition protocols. Despite being task-free, resting-state protocol 
variables such as acquisition duration and whether or not the partici
pants should fixate or close their eyes, were intensely researched and 
discussed (Agcaoglu et al., 2019). However, heterogeneity can also be 
due to differences in transient psychological states. Although many 
studies have tried to predict rather stable traits, resting-state measures 
may not display the same level of within-subject stability. Indeed, 
several studies on healthy participants reported resting-state functional 
connectivity changes to the hippocampus after an associative memory 
task (Tambini et al., 2010), to the dorsal attention network, default 
mode network, and visual networks after a perceptual learning task 
(Lewis et al., 2009), to motor areas after a finger-tapping task (Sarabi 
et al., 2018), or to the olfactory piriform cortex after an olfactory task 
(Cecchetto et al., 2019; Sarabi et al., 2018). This supports that the 
presence of a prior task in the scanner may also alter task-relevant 
resting-state measures in healthy participants. 

To avoid potential “bleeding” effects, resting-state scans are often 
acquired before in-scanner tasks. However, some designs may require 
resting-state scans to occur after a task, and often, tasks outside the 
scanner precede resting-state acquisitions. When such data is incorpo
rated into larger-scale multi-site databases, it is not required to indicate 
whether there was a prior task inside or outside the scanner, with the 
latter being even less likely to be reported in metadata descriptions. This 
can be a major issue for clinical biomarker detection using resting-state 
scans, as it induces unnoticed heterogeneity when pooling open-access 
multi-site data. As in healthy cohorts, we expect prior tasks to influ
ence resting state measures, which can in turn affect the biomarker 
quality of resting-state acquisitions for clinical purposes. However, to 
our knowledge, pre- vs post-task changes have never been reported in 
clinical populations. 

In this study, we want to fill this gap by systematically comparing 
pre- vs post-task resting-state differences in two independent clinical 
cohort. Specifically, this study investigates how resting-state functional 
connectivity changes in smokers and spider-fearful individuals from 
before to after a cue-reactivity exposure task that consisted of presenting 
nicotine or spider cues, respectively. In patient populations, cue- 
reactivity tasks are frequently used in neuroimaging paradigms to 
identify physiological and neural correlates of craving or anxiety, 
respectively. The presentation of relevant cues is also key to exposure- 
based interventions, which is one of the most prominent therapeutic 
approaches in psychiatry. Being exposed to such cues changes the psy
chological state of the participant, as it will increase craving in smokers 
or affect the anxiety levels in phobic populations. This change will likely 
manifest in subsequent resting-state measures. We first tested the hy
pothesis that resting-state connectivity is altered in clinical populations 
by behavioral tasks in smokers. To test whether this hypothesis could 
also generalize to other clinical populations, we applied the same 
analysis to an independent dataset of spider fearful individuals. 

2. Material and methods 

2.1. Participants 

2.1.1. Nicotine use dataset 
We recruited 32 participants with DSM-5 criteria for nicotine use 

disorder (age: 26.0 ± 5.3; gender: 16F, 15 M, 1 non-binary; sex: 17F, 15 
M; daily cigarette consumption: 11.5 ± 5.6, smoking history: 7.4 ± 4.8 
years of smoking, Fagerström Test for Nicotine Dependence (FTND) 
score = 2.8 ± 1.8). We instructed participants to abstain from smoking 

for one hour before the experiment. Exclusion criteria were the use of 
non-cigarette tobacco substitutes such as nicotine patches, mental or 
neurological disorders, and magnetic resonance imaging (MRI)-in
compatibility criteria (metal implants, pregnancy, etc.). The study was 
conducted at the Psychiatric University Hospital of Zurich and was 
approved by the local ethics committee of the Canton of Zurich. Three 
participants were excluded due to high scanner motion, resulting in a 
final analysis sample of N = 29. 

2.1.2. Spider phobia dataset 
This dataset is a subset of a larger study, of which the MRI acquisition 

was still ongoing at the time we performed this analysis (N = 38 as of 
June 15th, 2022). Participants were individuals with sub-clinical spider 
phobia, which we defined as having a Spider Anxiety Screening (SAS, 
Rinck et al., 2002) score above or equal to 8 (age: 22.4 ± 3.8; gender: 
30F, 7 M; sex: 30F, 7 M); Fear of Spider Questionnaire (Szymanski & 
O’Donohue, 1995) score: 51.3 ± 21.0). Exclusion criteria were MRI- 
incompatibility and mental or neurological disorders. This study was 
conducted at the University of Vienna and was approved by the ethics 
committee of the University of Vienna. One participant was excluded 
due to motion, resulting in a final sample of N = 37 for imaging analyses. 

For both studies, participants gave informed written consent and 
received financial compensation. 

2.2. Experimental design 

2.2.1. Nicotine use dataset 
We collected two 7 min long resting-state runs, for which we 

instructed the participants to let their mind wander while looking at a 
fixation dot. Between the two resting-state runs, the participants un
derwent a smoking cue-reactivity task, which consisted in viewing 330 
craving-inducing pictures from the Smoking Cue Database (Manoliu 
et al., 2021) and other smoking databases. In total, the pre-task and the 
post-task resting-state runs were separated by a 20-minute-long cue- 
reactivity task. We refer the reader to Haugg et al., 2022 for more de
tails regarding the cue-reactivity task. We assessed smoking urge levels 
with the German version of the Questionnaire on Smoking Urges (QSU- 
G, Toll et al, 2006), once before the scanning session and a second time 
after the scanning session. 

2.2.2. Spider phobia dataset 
The experimental design of the spider cue-reactivity study was 

analogous to the nicotine use dataset described previously. Spider 
phobics were passively exposed to 300 pictures of spiders or neutral 
pictures, divided into 5 runs of about 7 min. 6 button-press catch trials 
were also randomly included in each run to increase the attention and 
the engagement of the participant. After the first and the last passive- 
viewing runs, we asked the participants how tired they felt on a scale 
of 1 to 10. However, due to technical issues with the interphone (e.g., 
drop in sound quality), we collected pre-post tiredness data for N = 23 
participants only. Before and after the passive-viewing task, we acquired 
resting-runs of about 9 min each for which we asked the participants to 
relax and look at the fixation cross. Approximately 35 min elapsed be
tween the end of first rest period and the start of the second one. Of note, 
all the participants in this group performed a Behavioral Avoidance Test 
(BAT) prior to being scanned, followed by a 15-minute walk to the 
scanning site. 

2.3. MRI acquisition parameters. 

2.3.1. Nicotine use dataset 
MR scans were collected with a 3 T Philips Achieva system (Philips 

Healthcare, Best, The Netherlands) using a 32 phased-array head coil at 
the Psychiatric University Hospital, Zurich. The two resting-state func
tional scans were acquired with a T2*-weighted gradient-echo planar 
imaging (EPI) sequence (repetition time (TR) = 2000 ms, echo time (TE) 

C.S. Lor et al.                                                                                                                                                                                                                                    



NeuroImage: Clinical 37 (2023) 103345

3

= 35 ms, flip angle (FA) = 82◦, 33 slices, no slice gap, voxel size = 3 × 3 
× 3 mm3, field of view (FoV) = 240 × 240 × 99 mm3, total scan 
duration = 7:12 min per run). A high-resolution anatomical T1- 
weighted scan was acquired (FA = 8◦, 237 slices, voxel size = 0.76 ×
0.76 × 0.76 mm3, FoV = 255 × 255 × 180 mm3) at the end of the 
session. 

2.3.2. Spider phobia dataset 
The scans were acquired using a 3 T Siemens Magnetom Skyra 

(Siemens, Erlangen, Germany) with a 32-channel head coil at the Uni
versity of Vienna. Resting-state scans were collected using a multiband 
accelerated T2*-weighted echo planar imaging (EPI) sequence (56 slices, 
no slice gap, multiband acceleration factor = 4, TR = 1250 ms, TE = 36 
ms, FA = 65◦, FOV = 192 × 192 × 146 mm3, voxel size = 2 × 2 × 2.6 
mm3, total scan duration = 08:51 min). Structural images were acquired 
with a magnetization-prepared rapid gradient-echo (MPRAGE) 
sequence (FA = 8◦, 208 slices, voxel size = 0.8 × 0.8 × 0.8 mm, FOV =
263 × 350 × 350 mm3). To decrease head motion, we taped the fore
head of the participant to each side of the MRI head coil, which works by 
providing tactile feedback when moving (Krause et al., 2019). Addi
tionally, we used an eye-tracker to verify that participants were not 
falling asleep. 

2.4. MRI preprocessing 

2.4.1. Nicotine use dataset 
All analyses were performed using the CONN20b toolbox (Whitfield- 

Gabrieli & Nieto-Castanon, 2012) which ran on MATLAB2018a (The 
MathWorks Inc, Natick, Massachusetts, USA) and SPM12 (Wellcome 
Trust Centre for Neuroimaging, London, United Kingdom). Resting-state 
data was preprocessed using CONN’s default preprocessing pipeline 
(labeled as “default preprocessing pipeline for volume-based analyses 
(direct normalization to MNI-space)) and included functional realign
ment and unwarp, slice-timing correction, ART-outlier identification, 
functional and anatomical normalization into standard MNI space and 
segmentation into grey matter, white matter, and CSF. Functional 
smoothing was performed with a 6 mm FWHM Gaussian kernel. Three 
participants with high motion (defined as mean framewise displacement 
(Power et al., 2012) above 0.3 mm and/or<5 min of valid scans for each 
resting-state run after outlier censoring) were excluded from further 
analyses. This resulted in N = 29 participants. 

2.4.2. Spider phobia dataset 
This dataset was preprocessed using fMRIPrep 20.2.6 (Esteban et al., 

2019), which is based on Nipype 1.7.0 (Gorgolewski et al., 2011). 
Anatomical T1-weighted (T1w) images were corrected for intensity 

non-uniformity (INU) and skull-stripped. Anatomical segmentation of 
cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was 
performed on the brain-extracted T1w using Fast (FSL 5.0.9, Zhang 
et al., 2001), and spatial normalization to MNI152NLin6Asym was 
performed through nonlinear registration with antsRegistration (ANTs 
2.3.3), using brain-extracted versions of both T1w reference and the 
T1w template. 

Functional preprocessing was performed as follows: generation of a 
reference volume and its skull-stripped version using a custom meth
odology of fMRIPrep, distortion correction of the reference based on a 
phase-difference fieldmap, co-registration of the reference volume to the 
subject’s T1w space using FLIRT (FSL 5.0.9, Jenkinson & Smith, 2001), 
configured with nine degrees of freedom. Next, head-motion parameters 
with respect to the reference volume (transformation matrices, and six 
corresponding rotation and translation parameters) were estimated 
using MCFLIRT (FSL 5.0.9, Jenkinson et al., 2002), after which the BOLD 
time-series were slice-time corrected using AFNI (Cox, 1996). The cor
rected BOLD time-series were then resampled to MNINLin6Asym space 
as a single interpolation step that combines transformation parameters 
that were previously estimated (motion corrected transformation, field 

distortion corrected warp, BOLD-to-T1w transformation, and T1w-to- 
MNI template transformation) using antsApplyTransforms (ANTs 
2.3.3), configured with Lanczos interpolation. 

Framewise Displacement and anatomical component-based noise 
regressors (aCompCor, Behzadi et al., 2007, performed with fMRIprep’s 
custom thresholds) were also estimated from CSF and the WM seg
mentation maps. 

An additional spatial smoothing step with a Gaussian kernel of 6 mm 
FWHM was performed in CONN. One participant with high motion 
(mean FD > 0.3 mm) was excluded, resulting in a total number of 37 
participants for further analysis. 

2.5. Denoising 

While preprocessing pipelines differed, the time courses were 
denoised using the same pipeline in CONN. Preprocessed data was 
denoised with a linear regression method, which included an aCompCor 
noise correction procedure with the first five principal components of 
WM masks and CSF masks as noise regressors as well as realignment 
parameters and ART-derived outliers regressors. Following CONN’s 
standard denoising pipeline, we applied default band-pass filtering 
(0.008–0.09 Hz) and linear de-trending. 

2.6. ROI-to-ROI functional connectivity analysis 

2.6.1. ROI mask description 
To test for pre-post resting-state changes, we performed an ROI-to- 

ROI functional connectivity analysis of brain regions involved in 
substance-use disorders (Koob & Volkow, 2016) as ROIs for the smokers 
dataset. We used the same ROIs for the phobia dataset because our 
primary intention was to check for the generalizability of the findings, 
and also because many of these regions are also associated with anxiety 
disorders. Specifically, we included anatomical masks of the anterior 
cingulate cortex (ACC), medial prefrontal cortex (mPFC), bilateral 
amygdala, caudate, hippocampus, insula, nucleus accumbens, and 
thalamus (8 ROIs in total). All the masks were provided by the CONN 
toolbox and corresponded to regions of the Harvard-Oxford atlas, 
excepted for the mPFC, which was derived from ICA analyses based on 
Human Connectome Project data (van Essen et al., 2013) (Fig. 1) 
because we found no equivalent in the Harvard-Oxford atlas. 

2.6.2. First-level analysis 
The signal was averaged across voxels within a mask, resulting in one 

time course per ROI. Pearson’s r correlation values between time courses 
were then computed for each pair of ROIs, and Fischer-transformed. We 
will refer to them as resting-state functional connectivity (rsFC) values. 

2.6.3. Second-level analysis 
We performed two-tailed paired t-tests comparing pre-task and post- 

Fig. 1. Brain regions used as seeds in seed-based analyses and ROI-to-ROI 
analyses. Masks for the bilateral amygdala, dorsal striatum (putamen and 
caudate), ventral striatum/nucleus accumbens, thalamus, insula, hippocampus 
and anterior cingulate cortex (ACC) were taken from the Harvard-Oxford atlas. 
A mask for the medial prefrontal cortex (mPFC) was derived from the Brain 
Connectome Project dataset and provided by the CONN toolbox. 
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task rsFC maps and applied Bonferroni correction to control for multiple 
testing (28 tests). 

2.7. Seed-based functional connectivity analysis 

In addition to ROI-to-ROI analyses, we performed seed-based ana
lyses with each ROI as an independent seed. Seed-based analysis differs 
from ROI-to-ROI as it allows probing for rsFC between a seed and brain 
clusters outside of our selected brain regions without prior spatial 
averaging over voxels inside predefined masks. Here, we averaged the 
time courses within a seed, and we computed the correlation value be
tween the seed and each voxel of the whole brain. We used paired t-tests 
comparing pre-task and post-task rsFC maps and used CONN’s default 
significance threshold criterion (uncorrected voxel-wise p < 0.001). To 
select clusters for which rsFC differs significantly at post-task compared 
to pre-task, we chose CONN’s default False Discovery Rate (FDR) 
correction with an additional Bonferroni correction at the cluster level to 
correct for multiple seeds testing (cluster p-FDR-corrected < 0.05/8 =
0.00625). 

3. Results 

3.1. Behavioral changes 

3.1.1. Nicotine use dataset 
Craving levels as assessed by the QSU right before scanning (pre- 

urge = 10 ± 31) and right after scanning (post-urge = 47 ± 30) 
increased considerably (p < 0.0001, Wilcoxon’s signed rank test). 

3.1.2. Spider phobia dataset 
Tiredness, as assessed orally after the first (pre-tiredness = 3.1 ± 2.0) 

and after the last run of the passive-viewing task (post-tiredness = 5.7 ±
1.6), also increased considerably (p < 0.0001, Wilcoxon’s signed rank 
test). 

3.2. ROI-to-ROI analysis results 

In the nicotine use dataset, the ROI-to-ROI analysis showed a pre- 
post decrease of rsFC between the following pairs of ROIs (Fig. 2A): 
thalamus - insula (p-unc = 0.0040), thalamus - amygdala (p-unc =
0.0206), as well as nucleus accumbens - mPFC (p-unc = 0.0285), and an 
increase of rsFC between: hippocampus - amygdala (p-unc = 0.0073), 
and hippocampus - insula (p-unc = 0.0112) (Fig. 2A). However, no 
detected differences survived Bonferroni correction (p > 0.05/28 =

Fig. 2. ROI-to-ROI pre-post functional connectivity matrix and bar plots. The upper part of the matrix contains rsFC before the task, and post-task rsFC is mirrored on 
the lower half. (A) In the nicotine use disorder dataset, paired-t-tests (◦p-unc < 0.05, two-tailed) comparing pre and post task rsFC showed a decrease in nucleus 
accumbens–mPFC, thalamus-amygdala, thalamus-insula, and an increase in hippocampus-amygdala and insula-hippocampus, but none survived Bonferroni 
correction. (B) In the spider phobia dataset, mPFC-amygdala, mPFC-hippocampus, thalamus-amygdala, and thalamus-hippocampus rsFC significantly decreased, 
with the last two connections being significant after Bonferroni correction (*p < 0.05/28 = 0.0018). Abbreviations: medial prefrontal cortex (mPFC), anterior 
cingulate cortex (ACC). Error bars in bar plots correspond to SEM. Nsmokers = 29. Nphobia = 37. 
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0.0018). 
In the spider phobia dataset, we found a significant decrease of 

thalamus - amygdala rsFC (p-unc = 0.0003, p-corr = 0.009) and thal
amus – hippocampus rsFC (p-unc = 0.0016, p-corr = 0.0448). There was 
also a decrease of amygdala - mPFC rsFC (p-unc = 0.0053) and hippo
campus - mPFC rsFC (p-unc = 0.0480) but these two did not survive 
Bonferroni correction (Fig. 2B). 

3.3. Seed-based analysis results 

In the nicotine use dataset, pre-post task rsFC changes comprised (1) 
decreased rsFC between the insular seed to a cluster in the right thal
amus, (2) decreased rsFC between the dorsal striatal seed and a cluster in 
the lingual gyrus, and (3) increased rsFC between the mPFC seed to 

clusters in various cortical areas (e.g supramarginal gyrus, precentral 
gyrus) and a decreased rsFC to clusters in the cerebellum. 

In the spider phobia dataset, we found (1) decreased rsFC between 
the ACC seed and cortical regions, and increased rsFC with a cerebellar 
cluster, (2) decreased rsFC between the amygdala seed and a thalamic 
cluster, (3) increased rsFC between the dorsal striatal seed to clusters in 
the cerebellum and decreased connectivity to several cortical areas, and 
(4) increased rsFC between the hippocampus and cortical clusters 
including visual areas. 

Finally, in both datasets, we found a large significant decrease in 
connectivity between the thalamic seed and clusters in cortical regions, 
including the middle temporal gyrus, supplementary motor area, ante
rior cingulate cortex, precuneus and insula. In addition, the spider 
phobia dataset showed significantly increased thalamo-cerebellar 

Table 1 
Seed-based functional connectivity changes following a smoking cue-reactivity task. Clusters were labelled using the Automated Anatomical Labeling (AAL) Atlas by 
the CONN toolbox. The table reports all clusters with p-uncorrected < 0.001 at the voxel level and p-FDR < 0.05 at the cluster level. *clusters that survive an additional 
Bonferroni correction to control for multiple seeds testing at the cluster level (p-FDR < 0.05/8).  

Seed Cluster (X,Y,Z) Corresponding region (AAL labelling) Size Cluster 
p-FDR 

Increase (+) 
Decrease (-) 

Accumbens +12 +50 -02 Paracingulate Gyrus R 72 0.018065 - 
+12 +44 +54 Frontal Pole R 59 0.018065 - 
+02 +54 -16 Frontal Medial Cortex 

Frontal Pole R 
58 0.018065 - 

Amygdala      
ACC      
Dorsal Striatum -16 -58 -02 Lingual Gyrus L 104 0.003159* - 

þ16 -58 -06 Lingual Gyrus R 90 0.004050* - 
Hippocampus +14 +38 +54 Superior Frontal gyrus R 

Frontal Pole R 
59 0.044545 - 

-64 -08 +18 Postcentral Gyrus L 
Precentral Gyrus L 

55 0.044545 +

Insula þ04 -18 þ04 Thalamus R 91 0.003493* - 
mPFC -56 -46 þ52 Supramarginal Gyrus L 311 <0.0000001* þ

-38 -58 þ46 Lateral Occipital Cortex L 
Superior Parietal Lobule L 
Angular Gyrus L 

81 0.006103* +

þ06 -46 -04 Lingual Gyrus R 
Vermis 4 5  
Cerebelum 4 5 

80 0.006103* - 

-04 -50 +00 Lingual Gyrus L 56 0.027660 - 
+58 -06 -16 Middle Temporal Gyrus R 51 0.030029 - 
-26 -50 +34 no AAL label 50 0.030029 +

-20 -54 +04 Precuneus 48 0.030412 - 
Thalamus þ56 -40 þ04 Middle Temporal Gyrus R 

Lateral Occipital Cortex R 
Supramarginal Gyrus R 
Angular Gyrus R 

681 <0.0000001* - 

00 -10 þ56 Supplementary Motor Area R/L 
Anterior Cingulate Cortex 
Precentral Gyrus R/L 

411 <0.0000001* - 

-04 -46 þ54 Precuneus 
Postcentral Gyrus L 
Precentral Gyrus R 

193 0.000013* - 

þ46 þ08 -12 Temporal Pole R 
Planum Polare R 

175 0.000023* - 

þ44 -04 þ06 Insular Cortex R 
Central Opercular Cortex R 

100 0.001397* - 

þ56 þ14 þ08 Inferior Frontal Gyrus R 97 0.001397* - 
þ40 -08 þ44 Precentral Gyrus R 96 0.001397* - 
-44 -18 +10 Heschl’s Gyrus L 

Central Opercular Cortex L 
Insular Cortex L 

70 0.007211 - 

+56 -40 +04 Temporal Pole L 62 0.000928 - 
+28 +42 -08 Frontal Pole R 59 0.001164 þ

-36 -68 +04 Lateral Occipital Cortex L 55 0.001586 - 
-44 -04 +08 Central Opercular Cortex L 52 0.002009 - 
+16 -10 +08 Thalamus R 52 0.002009 þ

+58 +02 +30 Precentral Gyrus R 50 0.002358 - 
-18 -14 +10 Thalamus R 

Thalamus L 
45 0.001397 þ

-18 +14 +16 Caudate L 44 0.027058 +

+36 -44 -20 Temporal Occipital Fusiform Cortex R 41 0.032880 -  
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Table 2 
Seed-based functional connectivity changes following exposure to spider stimuli. Clusters were labelled using the Automated Anatomical Labeling (AAL) Atlas by the 
CONN toolbox. The table reports all clusters with p-uncorrected < 0.001 at the voxel level and p-FDR < 0.05 at the cluster level. *clusters that survive an additional 
Bonferroni correction (p-FDR < 0.05/8) to control for multiple seeds testing at the cluster level.  

Seed Cluster (X,Y,Z) Corresponding region (AAL labelling) Size Cluster 
p-FDR 

Increase (þ) 
Decrease (-) 

Accumbens      
Amygdala þ02 -24 þ08 Thalamus R 174 0.002637* - 

þ32 þ56 -08 Frontal Pole R 143 0.004492* +

-06 +34 +06 Cingulate Gyrus, anterior 114 0.010248 - 
+38 -72 -28 Cerebelum 83 0.032384 +

ACC -10 -24 þ52 Precentral Gyrus R/L 
Postcentral Gyrus R/L 
Superior Parietal Lobule L 
Precuneous Cortex 

1153 <0.000001* - 

þ24 -40 þ58 Postcentral Gyrus R 
Superior Parietal Lobule R 

213 0.000293* - 

þ52 -14 -08 Middle Temporal Gyrus,  
posterior R 

174 0.000707* - 

þ30 þ16 þ50 Middle Frontal Gyrus R 171 0.000707* +

þ12 -52 -48 Cerebellum 164 0.000744* +

-12 -76 -26 Cerebellum 81 0.020264 +

+24 -22 +76 Precentral Gyrus R 78 0.020614 - 
-30 -78 +42 Lateral Occipital Cortex,  

superior L 
73 0.023657 +

Dorsal Striatum  -62 þ00 þ26 Central Opercular Cortex L 
Precentral Gyrus L 
Planum Temporale L 
Postcentral Gyrus L 
Superior Temporal Gyrus, posterior L 
Supramarginal Gyrus,  
posterior L 

Planum Polare 

1294 <0.000001* - 

þ08 -24 þ52 Precentral Gyrus R/L 
Postcentral Gyrus R 

862 <0.000001* - 

-40 -12 þ44 Postcentral Gyrus L 
Precentral Gyrus L 

690 <0.000001* - 

-14 -50 -52 Cerebellum 398 0.000001* +

-24 -30 þ50 Precentral Gyrus L 
Postcentral Gyrus L 

356 0.000002* - 

þ46 -16 þ56 Postcentral Gyrus R 
Precentral Gyrus R 

273 0.000022* - 

þ26 -52 -54 Cerebelum 188 0.000372* +

þ40 -36 þ10 Planum Temporale R 156 0.001114* - 
þ50 -10 þ18 Central Opercular Cortex R 152 0.001162* - 
þ16 -54 -46 Cerebelum 111 0.005882* +

Hippocampus þ08 -80 þ32 Cuneal Cortex R/L 
Frontal Pole L 
Lateral Occipital Cortex, 
Superior L 

333 0.000011* +

-08 +60 +18 Frontal Pole L 124 0.006988 - 
-14 -86 +48 Lateral Occipital Cortex, 

Superior L 
119 0.006988 +

Insula      
mPFC      
Thalamus þ08 -24 þ52 Postcentral Gyrus R/L 

Precentral Gyrus R/L 
Superior Temporal Gyrus, posterior L 
Superior Parietal Lobule R 
Superior Temporal Gyrus, anterior L 
Superior Parietal Lobule L 
Planum Temporale L 
Middle Temporal Gyrus, temporoccipital part L 
Supramarginal Gyrus,  
posterior L 
Middle Temporal Gyrus,  
posterior L 
Central Opercular Cortex L 
Temporal Pole L 

8880 <0.000001* - 

-02 -20 þ08 Thalamus R/L 1183 <0.000001* þ

þ58 -12 -02 Middle Temporal Gyrus,  
posterior R 
Superior Temporal Gyrus,  
anterior/posterior R 

844 <0.000001* - 

þ44 -50 -30 Cerebellum 799 <0.000001* þ

-20 -34 -44 Cerebellum 680 <0.000001* þ

-02 þ34 þ24 301 0.000014* þ

(continued on next page) 
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connectivity and intra-thalamic connectivity during the post run as 
compared to the pre run. We also found increased intra-thalamic con
nectivity in the nicotine use dataset (albeit uncorrected for multiple 
seeds testing). All clusters are reported in Table 1 and Table 2 and 
illustrated in Fig. 3. 

4. Discussion 

Previous studies have shown that behavioral tasks (Cecchetto et al., 
2019; Sarabi et al., 2018) can affect functional MRI (fMRI) resting-state 
functional connectivity of healthy populations, but such alterations have 
never been investigated in clinical populations. Here, we compared 
resting-state functional connectivity before and after a smoking cue- 
reactivity task in smokers and a spider cue-reactivity task in spider 
phobics. We found significant rsFC alterations in the nicotine use dis
order dataset when the mPFC, insula, dorsal striatum and thalamus were 
defined as seeds, and in the spider phobia dataset, when the amygdala, 
ACC, dorsal striatum, hippocampus, and thalamus were defined as 
seeds. Of note, in both datasets, we found a decreased rsFC between the 
thalamic seed and cortical areas, as well as increased rsFC with a cluster 
within the thalamus itself, which indirectly reflects an increase in 
thalamic regional homogeneity. Finally, thalamus-amygdala and 
thalamus-hippocampus ROI-to-ROI rsFC were significantly reduced for 
spider phobics. 

In the spider phobia group, our findings include a decreased 
hippocampus-thalamus ROI-to-ROI rsFC, as well as an increase of hip
pocampal seed connectivity with visual areas, which could reflect hip
pocampal reorganization related to stress, fear retrieval or fear 
extinction due to being exposed to aversive stimuli (Chang & Yu, 2019). 
The dorsal striatum also becomes connected to somatosensory cortical 
areas (postcentral gyrus), and motor control areas (precentral gyrus), 
which might be linked to fight-or-flight mechanisms or inhibitory con
trol mechanisms following fear exposure (Stanley et al., 2021). In the 
smokers group, other seed-based connectivity alterations include a 
decreased connectivity between the thalamus and regions such as the 
precuneus, the ACC and the insula. This is in line with previous studies 
that contrasted smokers and non-smokers (Chaoyan Wang et al., 2018), 
or relapsers vs non-relapsers (Chao Wang et al., 2020), which indicates 
that these brain changes might be related to psychological changes in 
the nicotine use disorder patients (e.g. increased craving). 

However, the pre-post changes of psychological and neural states are 
not uniquely driven by the clinical specificities of the task, and the 
change of connectivity does not exclusively have to be attributed to 
changes of urge to smoke or fear states. Many other psychological states 
vary from pre to post periods, among which cognitive fatigue, tiredness, 
or sleepiness at the end of a scanning session, as well as hyper-vigilance 
and hyper-attention to sensory bottom-up information at the beginning 
of the session are not uncommon. This is notably illustrated by an in
crease of self-reported tiredness scores over the course of scanning. The 
similarity between changes in thalamic-based connectivity in both 

datasets (Fig. 4), namely increase of intra-thalamic connectivity and 
decrease of cortico-thalamic connectivity, is quite remarkable. Among 
many other processes, the thalamus is known for playing a key role in 
regulating sleep-wake cycles (Scammell et al., 2017). Akin to our study, 
human (Hale et al., 2016) and animal studies (Sysoev et al., 2021) also 
found both decreased thalamo-cortical and increased intra-thalamic 
connection when tracking participants or mice during the process of 
falling asleep. Further, decreased thalamo-cortical connectivity has 
been associated with unconsciousness induced by anesthesia (Akeju 
et al., 2014) and being sleep-deprived (Shao et al., 2013), whereas 
symmetrically, increased thalamo-cortical functional connectivity has 
been linked to chronic insomnia (Kim et al., 2021). Considering the 
consistency of the results across a wide range of consciousness/sleep- 
related operationalizations, this decrease of thalamo-cortical connec
tivity has been proposed as a solid hallmark for changes of consciousness 
states (Picchioni et al., 2014). This indicates that our thalamic connec
tivity change likely reflects a reduction of vigilance (using an eye 
tracker, we did not see any of the participants of the spider phobia study 
fall asleep) which may further confound biomarker detection. However, 
the current data is not conclusive if the vigilance reduction is due to 
patients having been in a hyper-vigilant state during pre-task resting- 
state scans, due to vigilance reducing below baseline levels during post- 
task resting-state scans, or both. Of note, to verify our post-hoc suppo
sition, we correlated the change (post-pre) in tiredness scores and 
change in thalamic connectivity with each of the cortical and thalamic 
clusters we found in our thalamic seed-based analysis, but we did not 
find any significant association (pcorrected < 0.05). However, the tired
ness scores in our experiment were collected informally, more as a mean 
to engage the participants rather than as a valid psychological measure, 
and due to technical issues, we could not acquire 40 % of them. Hence, 
our current data is not sufficient to clarify if the thalamus-related 
changes that we observed in both groups are associated with changes 
in vigilance. 

Resting-state data has long been a potential candidate for identifying 
clinical biomarkers of mental disorders, including tobacco use disorder 
(John R. Fedota & Stein, 2015), with the hope that tracking treatment 
outcome and stratifying disorders into subtypes would help designing 
personalized treatment plans. However, the field suffers from important 
drawbacks: uncertainty of machine-learning target labelling (e.g. psy
chiatrists can disagree when assigning a diagnosis to a patient), unclear 
boundaries between psychiatric disorders, mismatch between disorder 
definition, symptoms and neural underpinnings, etc. (Parkes et al., 
2020; Yamada et al., 2017). Further, single-study findings tend to poorly 
generalize across multiple studies, an issue that has been partly attrib
uted to site-specific technical characteristics (imaging sequence, scanner 
type, field strength…) or differences in data acquisition protocols 
(Yamashita et al., 2019). Besides these technical aspects, differences in 
psychological states can also contribute to data heterogeneity. Our re
sults in two different clinical or subclinical populations corroborate this 
view, as task-induced increase of craving and phobic alertness were 

Table 2 (continued ) 

Seed Cluster (X,Y,Z) Corresponding region (AAL labelling) Size Cluster 
p-FDR 

Increase (þ) 
Decrease (-) 

Cingulate Gyrus, 
anterior  
Paracingulate Gyrus R 

-54 -68 þ08 Lateral Occipital Cortex,  
inferior L 

223 0.000390* - 

-06 -84 þ32 Cuneal Cortex L 140 0.002637* - 
þ06 -74 þ26 Cuneal Cortex R 137 0.002642* - 
+00 -56 -36 Vermis 106 0.008652 +

+10 -56 -02 Lingual Gyrus R 99 0.009813 - 
-16 -58 -08 Lingual Gyrus L 99 0.009813 - 
+62 +00 +14 Precentral Gyrus R 84 0.017996 - 
-12 -76 -22 Cerebelum 61 0.045306 +

+48 +22 -28 Temporal Pole R 58 0.047569 -  
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accompanied with large resting-state changes in disorder-relevant brain 
regions. 

Our study supports that psychological states can affect resting states 
considerably. However, whether psychological states should be as 
similar as possible to reduce resting state scan variability or whether one 
should accept higher levels of heterogeneity to make claims of larger 
generalizability depends on the research question. For example, 
employing a pre-resting state behavioral task can augment clinical 
markers (e.g. higher craving in smokers), but makes resting-state task- 
dependent again, which makes it less suitable for data pooling. Based on 
the results of our study, we encourage the fMRI research community to 
a) harmonize resting-state data at the data acquisition level rather than 
at the analysis level by acquiring resting state scans before behavioral 

tasks, and b) include extensive information on prior tasks in the meta- 
data, so that subsequent researchers have more control on how much 
psychological heterogeneity they want to accept for their secondary- or 
mega-analysis. 

Only if this information is systematically provided can one try to 
harmonize datasets and account for the presence of prior tasks or known 
psychological states (e.g., measured by questionnaires). A straightfor
ward approach would be to regress out the influence of the tasks. To do 
so one would add machine learning predictors for tasks (or psycholog
ical scales) and compare whether adding a post-task subset to a pre-task- 
only dataset worsens model prediction accuracy. Harmonization could 
also be done without accounting for explicit measures of psychological 
states, e.g. by applying the methods that have been developed to 

Fig. 3. Seed-based functional connectivity changes following a smoking cue-reactivity task and a phobic cue-reactivity task in nicotine use disorder and spider 
phobia, respectively. Voxel-level p < 0.001 and cluster-level p-FDR < 0.05 without correction for multiple seeds were used here as significance threshold for 
illustrative purposes. Clusters that survived an additional Bonferroni correction for multiple seed testing are reported in Table 1 and 2. 
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harmonize fMRI scans across different sites, such as turning a site-wise 
de-meaning (SWD) strategy (Reardon et al., 2021) into a condition- 
wise (pre vs post) de-meaning strategy. Another interesting approach 
could consist in applying sophisticated harmonization strategies that 
have been developed based on travelling subjects (Yamashita et al., 
2019). Likewise, recent methodological advances might help mitigate 
the problem with pre-post effects. For example, covariance-based 
functional connectivity methods as opposed to more standard Pearson- 
based approaches (Strain et al., 2022), as well as some analytical steps 
such as tangent space parametrization and shrinkage approaches, might 
be less sensitive to pre-post effects, or might help mitigate them (Pervaiz 
et al., 2020). However, this promising future research direction requires 
additional experiments to assess if and which of these approaches is 
most beneficial. 

4.1. Limitations 

First, this study is about converging results regarding pre- vs post 
task effects on resting state scans in two independent datasets and not 
about testing for clinical group differences. To find rsFC changes that are 
specific to the smoking task or the smoking population, a control group 
of smokers exposed to non-smoking related pictures, or a non-smoking 
group exposed smoking pictures would be required. Thus, the clinical 
interpretability of disorder-specific findings is limited by the lack of 
control groups for each clinical cohort. Here, a direct comparison be
tween the spider phobia group and the nicotine use group is limited by 
confounding sources such as technical differences in fMRI acquisition, 
paradigm, and data preprocessing pipeline. The spider phobia pre-post 
analysis should not be seen as a control group analysis, but as a 
corroboration analysis that informs the boundary conditions for which 
the claim that clinically relevant rsFC measures differ from pre- to post- 
task is valid. Finally, while it is likely that pre-post changes, either 
specific to a particular clinical condition or more general effects (such as 
vigilance changes) will also be found in other clinical conditions, this 
will need to be demonstrated in further studies. 

4.2. Conclusion 

In all, this study confirms that resting-state measures in clinical 
populations can be substantially altered after emotion-inducing tasks. 
Hence, pooling resting-state scans for biomarker detection of stable 
clinical traits should consider whether it was acquired before or after a 
task that may change the psychological state of the patients. This implies 
that when publishing and making resting-state data publicly available 
(Tanaka et al., 2021; van Essen et al., 2013), the complete experimental 
design should be reported as standard practice. This includes a detailed 
description of the resting-state acquisition, and whether or not other 
tasks were performed before the resting-state acquisition, no matter if 
inside or outside the MR scanner. Even though task-free resting-state 
acquisitions are very suitable for pooling of data in search for potential 
biomarkers in psychiatry, data aggregation and interpretation of results 
needs to consider not just technical differences but also task-induced 
psychological states of the patients. 
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