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An important question for neural encoding is what kind of neural systems can convey

more information with less energy within a finite time coding window. This paper first

proposes a finite-time neural encoding system, where the neurons in the system respond

to a stimulus by a sequence of spikes that is assumed to be Poisson process and the

external stimuli obey normal distribution. A method for calculating the mutual information

of the finite-time neural encoding system is proposed and the definition of information

efficiency is introduced. The values of themutual information and the information efficiency

obtained by using Logistic function are compared with those obtained by using other

functions and it is found that Logistic function is the best one. It is further found that

the parameter representing the steepness of the Logistic function has close relationship

with full entropy, and that the parameter representing the translation of the function

associateswith theenergyconsumptionandnoiseentropy tightly. Theoptimumparameter

combinations for Logistic function to maximize the information efficiency are calculated

when the stimuli and the properties of the encoding system are varied respectively. Some

explanations for the results are given. The model and the method we proposed could be

useful to study neural encoding system, and the optimum neural tuning curves obtained

in this paper might exhibit some characteristics of a real neural system.

Keywords: neural tuning curve, information efficiency, rate coding, finite-time window, logistic function

Introduction

To some extent, a neural system can be viewed as an information processing system, where
information from the environment is encoded by the system and then processed by another.
Many neural encoding schemes are proposed, among which firing rate coding scheme has been
extensively explored. Neural tuning curves, or stimulus-response curves, are often used to model
the input-output relationship of neurons, where the neural coding scheme is usually rate coding.
To construct such models, one needs to collect the firing rates of an isolated neuron presented by
given inputs. The neuron is then treated as a “black box” and is fitted using the data with a certain
function, i.e., one does not need to know the details of the underlying mechanisms of the neurons;
he only needs to find a function to fit the input-output data well. This raises an important question
here. That is, though these tuning curves fit the input-output data of the neurons well, why real
neurons process information in such a way?
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Information theory (Alexander and Frédéric, 1999;
McDonnell et al., 2011; Rolls and Treves, 2011) can be used to
explain the underlying mechanisms of information processing
for neural systems, which may consist of only one single neuron
(Ikeda and Manton, 2009) or a population of neurons (Ganguli
and Simoncelli, 2014). It is suggested that the neural systems
have evolved to be optimum information processing systems
during the long time evolution in the rigorous environment
(Mlynarski, 2014). Namely, the neural systems are optimized by
the evolution process of the nature to convey more information
with less energy. Three factors should be considered for an
optimum neural encoding system (Kostal and Lansky, 2013).
Firstly, mutual information, rather than entropy of the neural
responses, should be used to quantify the information processing
capacity of the neurons. This is because mutual information
represents the amount of information conveyed by the neural
responses about a set of stimuli, and large entropy does not mean
large mutual information. Secondly, the factor of encoding time
should be considered (Bethge et al., 2003a). As a matter of fact,
neurons have to complete the encoding task within a short time
period. This is because the subsequent stimulus might come in
very short time and the neural system has to encode ceaselessly
these arriving stimuli. Furthermore, to ensure a rapid response of
the neural system to the stimulus, which is vital for creatures to
survive in a rapidly changing environment, the encoding process
must be finished in very short time. Thirdly, energy consumption
needs to be included in the system (Kostal and Lansky, 2013;
Biswa et al., 2014). This is rational because energy consumption
of the neural system occupies a considerable portion of the total
energy consumption of creatures (Zhu et al., 2002), and less
energy consumption implies more chance of survival in the
rigorous environment.

There have been many studies on determining the tuning
curves of the neurons using information theory. The method
of entropy maximization of the information theory is used to
determine the tuning curves of the neurons given that the
distribution of the stimuli is known (Dayan and Abbott, 2001).
Neural systems are optimized based on Fisher information
(McDonnell and Stocks, 2008). The tuning curves of the neural
systems are optimized to get largest mutual information (Nikitin
et al., 2009). The mutual information is optimized if the tuning
curves of neurons are discrete and these discrete values are
obtained by gradient decent method (Nikitin et al., 2009).
With mutual information theory, the optimal strength of the
electrical synapses is determined to achieve a least ratio of energy
to information (Moujahid et al., 2011). There are also some
researches concerning the analysis of optimal tuning functions
(Bethge et al., 2003b; Yaeli and Meir, 2010).

However, the studies on optimum tuning curves concerning
all the three aforementioned factors are insufficient. The aim
of this paper is to investigate what kind of neural tuning
curves could make a neural encoding system with finite-time
window have a high information efficiency, i.e., can convey
more information about a set of stimuli with less energy
consumption. This paper is organized as follows. In Section
Model and Method, the model of the neural encoding system
is described; a calculation method for calculating the mutual

information for stimulus with variable steps is proposed and
the definition of information efficiency is introduced. In Section
Results, it is shown that Logistic functions are the optimum
tuning curves of the neural system by analyzing the effects of
the neuronal channel noise and the energy consumption on
the optimum tuning curve and by comparing the values of the
information efficiency obtained by Logistic functions and other
functions. The relationship between the information efficiency
and the parameters of the Logistic function is investigated, and
the optimum combinations of the parameters for maximizing
the information efficiency are also explored. Conclusions and
discussions are presented in Section 4.

Model and Method

In this section, a finite-time neural encoding system based on
the firing rate coding is presented. A method for calculating the
mutual information of the encoding system is proposed.

Model Neural System with Poisson Neurons
Stimuli are inputted into a neuron (or a population of neurons),
which encodes the stimuli into the firing rates. The strength of
the stimuli (e.g., the light intensity) is supposed to be continuous
and obeys Gaussian distribution, of which the probability density
is described by:

p (s) =
1

√
2πσ

exp(−
(s−s)2

2σ2
) (1)

where s is the strength of the stimulus, sǫ [smin, smax] ; s is the
mean of the stimulus strength.

The spike sequence is assumed to be Poisson process, as
the neural responses are usually noisy and often modeled by
Poisson statistics (Dayan and Abbott, 2001; Nikitin et al., 2009).
Suppose y=λ(s) is the firing rate (response) function of the
neuron, then for every stimulus s, the neuron will output
Poisson spike sequences with the mean firing rate λ(s). We
assume the encoding task be completed within a short time
window T.

Mutual Information
We use mutual information to characterize the amount of
stimulus information encoded in the number of spikes emitted
by the neuron. Let H be the full response entropy, which is
described by

H =
∞
∑

r= 0

prlog2(pr) (2)

where r = 0, 1, 2, . . . ,∞ is the number of spikes of the neuron; pr
is the probability of a response r and is related to the conditional
probability p (r|s) and the probability density p (s) that stimulus
s is presented as follows

pr =
∫ smax

smin

p (r|s) p (s) ds (3)
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Let Hn be the noise entropy which is caused by the noisy nature
of the neural response, which is calculated by

Hn =
∑

r

∫ smax

smin

p (s) p(r|s)log2(p (r|s) )ds (4)

with

p (r|s) =
(λ (s)T)re

−(λ(s)T)

r !
(5)

λ (s) = Fmaxf(s) (6)

where p (r|s) is the conditional probability; λ (s) is the mean
firing rate (response) of the neuron corresponding to the stimulus
strength s, representing the tuning curve of the neuron; f(s)
is normalized tuning curve of the neuron; and Fmax is the
maximum firing rate of the neuron.

Then the mutual information can be obtained by

Im= H−Hn. (7)

According to Equation (6),λ (s)T is the average number of spikes
within time window T. In terms of Equations (3) and (5), p (r|s)
and p(r) keep unchanged if FmaxT keeps invariant (note that
λ (s)T = FmaxTf(s)). Thereby H, Hn, and Im keep unchanged if
FmaxT keeps invariant. Consider that a population of N neurons,
where neuron i has a maximum firing rate Fimax, is used to encode
the stimulus. The N neurons are assumed to receive the same
stimulus but response to the stimulus statistically independently.
The number of spikes emitted by neuron i, ni, within the time
window T, is a random variable of Poisson distribution with
mean Fimaxf(s)T and variance Fimaxf(s)T. As the N neurons in
the population respond to the stimulus independently, the total
number emitted by the N neurons within the time period T,
r =

∑

i ni is also a random variable of Possion distribution
with mean

∑

i F
i
maxf(s)T and variance

∑

i F
i
maxf(s)T. Therefore,

the population encoding system with N neurons is equivalent
to a one-neuron system with maximum firing rate being the
summation of the N maximum firing rates of the N-neuron
system, i.e. Fmax =

∑

i F
i
maxf(s). Therefore, we only discuss one-

neuron system and treat FmaxT as one parameter in the following
analysis. Finite-time window means that T is not very large,
implying that FmaxT is not very large if the population size of the
neurons is not very large either.

Information Efficiency
Since spike generation and transmission occupy the main part
of the energy consumption in the brain (Zhu et al., 2002; Kostal
and Lansky, 2013), we use the number of spikes to represent
the energy consumption for the encoding system. Thereby
the energy consumption, E, can be described by E =

∑

r p (r) r.
We use an objective function that takes account of both the
mutual information and the energy consumption to characterize
the information encoding efficiency (denoted by IE), which is
written as

IE = (2Im−1)−γE. (8)

We determine the value of the parameter γ by defining that
the value of the objective function should be zero if the neuron
does “nothing” but just amplifies the input signals by a factor of
TFmax/(smax − smin) and lets them pass through. For example,
given a neural encoding system with smin = −2, smax =
2, σ= 1, and TFmax = 300, we set the tuning curve of the
neuron as (s+ smin)

∗TFmax/(smax − smin). This linear tuning
curve does “nothing” except for amplifying the stimulus and
taking a translation. For the given parameters smin, smax and σ, a
sole γ could be determined. Here, we get Im= 2.2177 and E= 150
by numerical simulations, and hence we can get γ = 0.0233.
γ is set at0.0233 unless otherwise stated in this paper. Therefore,
if a tuning curve is better than the linear tuning curves, the
information efficiency will be larger than zero; otherwise, it will
be less than zero. The better the tuning curve is, the larger value
of information efficiency will be.

Calculations with Variable Sampling Step
To calculate the mutual information, we sample the stimulus
strength into discrete points as si, i = 1, 2, 3, · · ·M. The
stimulus strength of si corresponds to the firing rates Fmaxf(si).
The response of the neuron will be a random variable
obeys Poisson distribution with mean r = FmaxTf(si) and
variance FmaxTf(si). The conditional probability of the discrete

version p(rj|si) will be calculated as (λ(si)T)re−(λ(si)T)

rj!
, and

p(si) = 1√
2πσ

expǫ(− (si−s)2

2σ2
)(si+1−si). According to Equation (3),

we have to carry out 3Mceil(FmaxTf (si)) times of multiplication
to obtain Hn. Therefore, if M and FmaxTf (si) are large (note
that FmaxT may be the summation of the N maximum firing
rates of the N-neuron system, thereby FmaxTf(si) may be large
if the population size is large), large amount of calculations is
needed, especially when we search for the optimum parameter
combinations to maximize IE (in this case, we need to calculate IE
under different values of parameter combinations). To reduce the
calculation burden, we propose a sampling scheme with variable
step size in this paper. We sample f (s) into discrete points f

(

sj
)

,
j=0,1,2,. . . ,M. △f

(

sj
)

= f
(

sj
)

−f
(

sj−1

)

. △f
(

sj
)

can be different
from△f (si) for i 6= j, which is determined by follows.

As Hn =
∑

i,j p (si) p(rj|si)logp(rj|si) and H =
∑

j p
(

rj
)

logp(rj)

(rj represents the neuronal response of j spikes), we can see that
if rj ≫ FmaxTmax(f (si)), then p(rj|si) ≈ 0 and p

(

rj
)

≈ 0.
Therefore, we limit the range of r as 0 < r < [2maxǫ(f (si) )]
in this paper ([.] means getting the integer part of the
number). Furthermore, as the larger FmaxTf(si) is, the closer the
neighboring conditional probabilities become (For example, if
FmaxTf(si) is very large, p(rj−1|si) ≈ p(rj|si) ≈ p(rj+1|si)). Based
on this observation, we propose a sampling scheme with variable
step size. When FmaxTf(si) is small (f (si) <1 in this paper), we
let △f

(

sj
)

= f
(

sj
)

−f(sj−1) = h/FmaxT. h is 0.001 in this paper.

When FmaxTf(si) ≥ 1, we let. △f
(

sj
)

= h
√
FmaxTf(si)/FmaxT

According to this sampling scheme, we can get discrete points
f
(

sj
)

, j=0,1,2,. . . ,R. Accordingly, we obtain the discrete points of
the stimuli sj which produce f

(

sj
)

. Thus, the continuous variable
of the stimuli, s, is discretized. Owing to the sampling scheme
with variable step size and the limitation of the range of the value
of rj, the computational efficiency is greatly improved.
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Results

Optimum Neural Tuning Curves based on
Information Efficiency
A very important question is what kind of tuning curves are
the optimum tuning curves for the neural coding system. The
expected shape of the neural response distribution when there
is no noise in the neuronal channel can be obtained easily,
basing on the fact that neurons with tuning curves resulting from
entropy maximization have maximum mutual information. It is
known that the tuning curves corresponding to the integral of
the probability density of the stimulus (see Figure 1) leads to
histogram equalization of the neural response and thus results in
maximum entropy. Such tuning curves can be fitted quite well by
Logistic functions when the stimulus follows norm distribution,
which is expressed as

f (s)= 1/(1+e
s
ǫ ), (9)

where ǫ represents the steepness of the function.
When the neuron channel is noisy, maximum entropy

cannot lead to maximum mutual information, i.e., histogram
equalization of the neuronal responses (each neuronal response
has the same probability) cannot lead to maximum mutual
information necessarily. Furthermore, histogram equalization
cannot lead to least energy consumption as well. Then, what is the
optimum tuning curve if both of noise and energy consumption
are considered?

If the noisy channel of neurons is Gaussian and independent
of the inputs, then maximum entropy leads to maximum mutual
information if energy consumption is neglected. The estimate
for λ(s), λest= r/T, will be a Gaussian variable with mean λ

and variance λ/T. Its square root will have mean
√

λ and
variance 1/(2T). As the variance of

√
λest is independent of, λ,√

λ should have the maximum entropy distribution. This means
that if the response of the neuron obeys Poisson distribution,

FIGURE 1 | The integral of the probability density of the stimuli and the

fitted Logistic function. smin = −2, smax = 2, σ= 1, s = 0. The steepness of

the logistic function is 0.41. Fixed sampling step is adopted to show the

integration process clearly in this Figure.

the optimum tuning curves would have relationship with the

function ( 1

1+e
s
ε
)
2
(Note that Poisson distribution approximate

Gaussian distribution well when λ is large). This relationship
can also be explained in the respect of noise entropy. The
noise entropy described in Equation (4) can be rewritten as

Hn =
∑

iHn(si) with Hn (si) =
∑

j p (si) p
(

rj|si
)

log
p(rj|si) =

∑

j p (si) p
(

rj|r
)

log
p(rj|r) where r= Tλ(s). Since p

(

rj|r
)

obeys
possoin distribution with variance r, small values of λ(s) leads to

small value of Hn (si). Therefore, (
1

1+e
s
ε
)
2
or 1

1+e
s−µ

′
ǫ

with µ
′
>0

will be a better tuning curve for reducing noise entropy than
1

1+e
s
ǫ
. Adding the energy cost (determined by the parameter γ)

will also tend to push λ(s) to lower values, since lower firing rate
results in lower energy consumption. Therefore, considering the
three factors, i.e., the integral of input probability distribution,
noise entropy, and the energy consumption all together, the

optimum tuning curve may take a form like [ 1

1+e
s−µ

′
ǫ

θ
] with

θ > 1 and µ
′
>0. As a matter of fact, for any input probability

distribution, the curve of the integral of the input probability
(suppose that it is fitted by f(s)) is the optimum tuning curve if
noise is neglected and γ= 0; f(s−µ)θ may be the optimum tuning
curve if both noise and energy are considered.

However, it is interesting that [ 1

1+e
s
ǫ
]
θ
or [ 1

1+e
s−µ

′
ǫ

]
θ
can be

approximated well by the simple logistic function 1

1+e
s−µ

ε

with

the parameter values of ε and µ (the translation of the function)

determined by the parameters θ and ǫ(Note that [ 1

1+e
s−µ

′
ǫ

]
θ
can

be changed to [ 1

1+e
s
ǫ
]
θ
by replacing s−µ

′
with s

′= s−µ
′
).

Figure 2 shows an example of the similarity of the function

[ 1

1+e
s
ǫ
]
θ
and the function 1

1+e
s−µ

ε

. Table 1 shows the parameter

projection of the function [ 1

1+e
s
ǫ
]
θ
to the function 1

1+e
s−µ

ε

. This

means that the family of the logistic functions are the tuning
curves that are as good as (or might even better than) the

family of the functions [ 1

1+e
s−µ

′
ǫ

]
θ
. Therefore, we assume that

FIGURE 2 | Similarity of the function [ 1

1+e
s
0.5

1.5
] (black) and the

function 1

1+e
s-0.3
0.45

(red).
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the optimum tuning curve for a noisy system when energy
consumption is considered can be described by 1

1+e
s−µ

ε

. From the

above discussion, it is conceivable that the optimum parameter
values of this tuning curve depend on p(s), γ, Fmax, and T, which
we will discuss in the next section.

To check whether the Logistic function is the best tuning
curve for the information efficiency, other types of tuning
curves are also adopted and comparisons are taken. Let’s
considering power functions f (s) = α+sβ, which are commonly
used forms for tuning curves (Poirazi et al., 2003). We make
a minor modification on them to adapt to our model as
follows:

f (s) =
α+(s+ smin)

β

α+(s+ smax)
β
TFmax. (10)

We fix TFmax= 300 and stimuli variance σ= 1 and carry out
simulations for the two kinds of tuning curves. The simulations
cover the whole parameter space spanned by ε and µ and
the results are plotted in Figure 3 for the Logistic function.
The simulations for the tuning curves of power functions are
also carried out. We searched the whole space spanned by

TABLE 1 | functions [ 1

1+e
s
ǫ

θ
] approximated by functions 1

1+e
s−µ

ε

.

[ 1

1+e
s
ǫ
]
θ

θ 1.5 1.5 1.5 2 2 2 2.5 2.5 2.5

ǫ 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

1

1+e
s−µ

ε

ε 0.09 0.27 0.45 0.08 0.25 0.42 0.07 0.23 0.40

µ 0.05 0.15 0.3 0.1 0.3 0.5 0.15 0.4 0.6

α and β, and the dependency of mutual information, energy
consumption, and information efficiency on the two parameters
are shown in Figure 4. The plateaus of (Figures 3, 4) represent
the regions where the parameters of the tuning curves are
set at appropriate values, i.e., these parameter values lead to
high mutual information or high IE. Therefore, it is rational
that we compare the height of the two plateaus to identify
the better tuning curves for information efficiency. It can
be seen that the plateau of information efficiency resulting
from the Logistic function is higher than 6, while the one
resulting from power function (Equation 10) is lower than
5. Therefore, we conclude that the Logistic function is a
better tuning curve for information efficiency. Simulations
with other kinds of tuning curves, exponential functions and
polynomial functions, are also carried out (results not shown),
and the Logistic function is better than these functions as well.
We also carried out simulations when stimuli variance σ is
varied. The information efficiencies corresponding to various
stimuli distributions for Logistic functions are also higher
than those found by other kinds of functions (the results
not shown in this paper). Therefore, we can conclude that
Logistic functions are the best tuning curves for information
efficiency.

Relationship between Information Efficiency and
the Parameters of Tuning Curves
It is clearly shown in Figure 3B that the energy consumption is
sensitive to the parameter µ and insensitive to the parameter ε

of the Logistic function. The energy consumption decreases with
the increasing of µ. It can be further seen from Figure 3 that the
mutual information and IE increase with the increasing of one
of the parameter (ε or µ), reach the peak, and then decrease, if

FIGURE 3 | The dependency of mutual information, energy consumption, and information efficiency on the two parameters of the Logistic function.

(A) Mutual information. (B) Energy consumption. (C) Information efficiency. TFmax = 300, other parameter values are set the same as those in Figure 1.
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FIGURE 4 | The dependency of mutual information, energy consumption, and information efficiency on the two parameters of the power function. (A)

Mutual information. (B) Energy consumption. (C) Information efficiency. The parameter values are set the same as those in Figure 3.

the other parameter is fixed. To reveal the relationship between
the information efficiency and the two parameters more clearly,
we first fix one parameter and then vary the other parameter.
Figure 5 shows the relationship between ε and the full entropy,
mutual information, and the information efficiency, and it is
shown that the full entropy is very low when ε is very small.
That is because when ε is very small, the Logistic function is
very steep, and therefore the too steep Logistic function is far
from the curve plotted by the integral of the probability density
(see Figure 1), resulting in small value of full entropy. With the
increasing of ε, the Logistic function gets closer to the integral
of the probability density, resulting in higher full entropy. The
highest full entropy occurs at about ε= 0.3 (It is worthy of noting
that totally overlap of the Logistic function and the integral of the
probability functionmay not result in the highest full entropy due
to the noisy nature of the neuron) and then decreases with the
further increasing of ε. It is very interesting to see that the shape
of the curve of the mutual information is almost the same as that
of the full entropy. Additionally, the energy consumption keeps
approximately constant due to the invariance of the parameter µ

(see Figure 3B). Therefore, the dependency of IE on parameter
ε (see Figure 5B) is approximately the same as that of Im (It
is worthy of noting that IE is not measured in unit of bit as
Im, and the negative value of IE means that the corresponding
tuning curve is even worse than the one just linearly amplifying
the stimuli). In short, if µ is fixed, the full entropy is sensitive
to the parameter ε The curves for the full entropy, mutual
information and the information efficiency have the same
shape.

Figure 6 shows the relationship between µ and the noise
entropy, mutual information and the information efficiency. It
can be seen from Figure 6 that the noise entropy is sensitive to

FIGURE 5 | The relationship between ε and the full entropy, mutual

information, and the information efficiency. µ= 0; other parameter values

are set the same as those in Figure 3.

the parameter µ. It decreases with the increasing of µ, resulting
in the increasing ofmutual information whenµ is not too large. It
can be seen from Figure 3B clearly that the energy consumption
decreases with increasing µ rapidly. Thereby, the information
efficiency increases with increasing µ rapidly as well. Therefore,
a Logistic function with its location being shifted a little to
the right side of the horizontal axis has higher information
efficiency.

Optimum Parameter Combinations for Various
Stimuli Distribution and Coding Window
We further explore the optimum parameter combinations of εm
and µm to maximize the information efficiency. As discussed in
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FIGURE 6 | The relationship between µ and the noise entropy, mutual

information, and the information efficiency. ε= 0.25, other parameter

values are set the same as those in Figure 3.

the first subsection of this section, it is intuitive that the optimum
tuning curve is the curve of the integral of the input probability
if T is very large and γ = 0. Thereby εm is the steepness of
the logistic function that fits this integral curve, and µm = 0.
Therefore, εm will be large if the input probability distribution
is flat (i.e., σ is large), while εm will be small if σ is small. On
the other hand, if T is small and γ is large, then functions of

[ 1

1+e
s−µ

′
ǫ

]
θ
with large values of θ and µ

′
may be good tuning

curves. Correspondingly, the logistic function 1

1+e
s−µ

ε

with small

value of ε and large value ofµmay be good tuning curves (see the
parameter mapping of the two families of functions in Table 1).
This implies that εm will be small and µm will be large if T is
small and γ is large. These intuitive observations are confirmed
by simulation results shown by Figures 7–9.

Figures 7A,B shows the dependency of εm and µm on the
parameter σ and the corresponding maximum information
efficiency. It is shown that with the increase of the variance
of stimulus distribution σ, the optimum parameter value of εm
increases monotonously. The maximum information efficiency is
low when σ is small (see Figure 7). This is because the entropy of
the input signal is low in the case of low value of σ. Themaximum
information efficiency increases with σ and reaches the peak value
5.4 when σ= 1.

Figure 8 shows the dependency of µm on the parameter
γ. It is shown that if γ is large, i.e., the energy consumption
is heavily weighted, then µm is large. Namely, µm increases
with the increase of. γ. εm is insensitive to the parameter
value of γ.

Figure 9A shows the sensitivity of εm andµm to the parameter
T, namely TFmax (see the explanation of this joint parameter
in Section Model and Method). It is found that the optimum
parameter values of εm and µm increase if TFmax gets increased.
As the variance of λest, λ(s)/T, approaches to 0 when T is
very large, εm will be exactly the steepness of the Logistic
function that fits the integral of input probability (around 0.41
according to Figure 1), if the energy consumption is neglected.

A

B

FIGURE 7 | The dependency of εm and µm on σ and the corresponding

maximum information efficiency. (A) The dependency of εm and µm on σ;

(B) The corresponding maximum information efficiency. The parameter values

are set the same as those in Figure 3.

FIGURE 8 | The dependency of µm on γ. The parameter values are set

the same as those in Figure 3.

As discussed previously, εm will be much smaller than 0.41 when
T is very small due to the noise effect. Therefore, the value of
εm increases with the increasing of TFmax. Energy consumption
is very sensitive to the parameter T. It is proportional to T if
other parameters keep invariant. To save the energy thereby to
increase the information efficiency, µm needs to be increased
with the increasing of T (Note that µm is very sensitive to the
energy consumption according to Figure 8). This explains the
plot of µm vs. TFmax in Figure 9A. If TFmax gets larger, the
according maximum information efficiency also gets larger (see
Figure 9B).
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A

B

FIGURE 9 | The dependency of εm and µm on TFmax and the

corresponding maximum information efficiency. (A) The dependency of

εm and µm on TFmax; (B) The corresponding maximum information efficiency.

The parameter values are set the same as those in Figure 3.

Conclusions and Discussions

We use information theory to search the optimum neural
tuning curves to maximize the information efficiency. The
information efficiency considered in this paper concerns three
factors, i.e., mutual information, coding time window and energy
consumption.

We proposed a finite-time neural encoding system, where the
spike sequence of the neuron corresponding to a stimulus obeys
Poisson process and the external stimuli obey norm distribution.
We also propose a calculation method based on the variable
sampling step to calculate the mutual information and the
information efficiency. The effects of the neuronal channel noise
and the energy consumption on the optimum tuning curve are
analyzed and the calculations of the mutual information and
the information efficiency are carried out. It is found that the
Logistic functions are the best tuning curves in the sense that the
information efficiency resulting from Logistic functions is higher
than that resulting from other kinds of functions. Then we study
the relationship of the information and information efficiency of
the neural system with the parameters of Logistic tuning curves.
It is revealed that the parameters representing the steepness of the
Logistic function (ε) relates more closely with the full entropy,
while the parameters representing the location of the function
in the horizontal axis (µ) relates more closely with the noise

FIGURE 10 | Comparison of the information efficiency of the simple

neural model and the model with refractoriness under the different

parameters. The refractoriness is 5ms,TFmax= 20,ε = 0.25,µ= 0.5, σ varies

from 0.2 to 2.

entropy and energy consumption. The curves for the full entropy,
mutual information and the information efficiency have the same
shape if the parameter representing the location is fixed, while
a Logistic function with its location being shifted a little to the
right side of the horizontal axis has higher information efficiency
if the parameter ε is fixed. We further explore the optimum
combinations of the parameter values of the Logistic tuning curve
for maximizing the information efficiency when the properties of
the stimuli and the neural system vary. It is shown that with the
increase of the variance of stimulus distribution, the optimum
parameter value of parameter representing the steepness (εm)
increases monotonously; εm increases when the encoding time
window ormaximumfiring rate of the neuron gets larger; andµm

increases with the increase of γ. Our results consist with the fact
that Logistic functions, which could fit experimental data very
well in many neural experiments, may be the actual tuning curves
in many real neural systems (Dayan and Abbott, 2001; Poirazi
et al., 2003; McDonnell and Stocks, 2008). And also, the results
about the optimum parameters of the Logistic function might be
some characteristics of a real neuronal information processing
system.

In this paper, we used Poisson process to model the output
of noisy rate-coding neurons. The result in this paper can be
extended to more real neural models, for example, Poisson
process with absolute refractoriness (Dayan and Abbott, 2001).
Poisson process with absolute refractoriness means that a neuron
cannot fire until the fixed time period due to the refractoriness is
finished. After the refractoriness, the spike intervals of the firing
sequences follow exponential distribution. The simulation results
show that all the results got in the paper are valid when the
refractoriness is much less than the mean of the spike intervals,
which is actually the case in real neural systems. Figure 10
shows that the information efficiency in a neural model with
refractoriness is roughly equal to (or a slighter higher than) that
of Poisson process model (The two neural models have the same
inputs and the same tuning curves). Therefore, the results got in
previous sections with Poisson process neural models are valid
for the more real neural models.
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