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Approximately 3% of the world population suffers from depression, which is one of
the most common form of mental disorder. Recent findings suggest that an interaction
between the nervous system and immune system might be behind the pathophysiology
of various neurological and psychiatric disorders, including depression. Neuropeptides
have been shown to play a major role in mediating response to stress and inducing
immune activation or suppression. Corticotropin releasing factor (CRF) is a major
regulator of the hypothalamic pituitary adrenal (HPA) axis response. CRF is a stress-
related neuropeptide whose dysregulation has been associated with depression. In this
review, we summarized the role of CRF in the neuroimmune mechanisms of depression,
and the potential therapeutic effects of Chinese herbal medicines (CHM) as well as other
agents. Studying the network of CRF and immune responses will help to enhance our
understanding of the pathogenesis of depression. Additionally, targeting this important
network may aid in developing novel treatments for this debilitating psychiatric disorder.

Keywords: depression, neuroimmune system, corticotropin releasing factor, HPA axis, stress

INTRODUCTION

Depression, also termed as clinical depression or major depressive disorder (MDD), is a
common but serious mental disorder affecting the quality of human life. Depression is
characterized by discrete episodes of more than 2 weeks’ durations with distinct changes in
cognition, and neurovegetative functions and inter-episode remissions (American Psychiatric
Association, 2013). Depression is one of the most common mood disorders currently affecting
approximately three percent of the world’s population (GBD 2015 Disease and injury incidence
and prevalence collaborators, 2016), and is one of the leading contributors to the global
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burden of diseases. Depression shows gender specificity in which
women have a lifetime incidence of depression two times greater
than men. Also depression is shown to be associated with elevated
risk of cardiovascular, cerebrovascular disease and other forms
of disease-related mortality (Steffens et al., 1999; Bradley and
Rumsfeld, 2015). In addition, patients with depression have
higher suicidal tendency which makes it a potentially life-
threatening mental disorder (Duman et al., 2016).

Corticotropin releasing factor (CRF) was originally identified
by Vale et al. (1981). CRF is a key regulator of the hypothalamic-
pituitary-adrenal (HPA) axis, which is the most important
neuroendocrine system mediating the stress response. Upon
stress exposure, CRF is released from the hypothalamus and
it stimulates the production of a series of down-stream
stress hormones, including adrenocorticotropin (ACTH) and
glucocorticoids (Belvederi Murri et al., 2014). Glucocorticoids
in turn inhibit the endocrine activity of the hypothalamus and
pituitary gland, forming a negative feedback loop. This feedback
loop is vital for the regulation and homeostasis of the stress
response system (Slominski et al., 2013). Dysregulation of the
HPA axis has extensive effects on the body, and triggers a series
of behavioral, physiological, and metabolic responses (Bao and
Swaab, 2010; Swaab et al., 2005). HPA axis hyperactivity is a
common finding in the pathology of depression (Kinlein et al.,
2015). In depression patients, overproduction of CRF was found
in parallel with changes in other components of the HPA axis
(Lightman, 2008). Therefore, CRF is believed to contribute to the
symptoms of depression by regulating activity of the HPA axis.

The immune system serves as the first line of defense
against multiple harmful stimuli from the environment. In
mammals, the immune system can be divided into two
anatomically distinct components: the neuroimmune system
and the peripheral immune system. The peripheral immune
system consists of different immune cells mainly derived from
multipotent hematopoietic stem cells in the bone marrow, such as
lymphocytes, mast cells, phagocytes, macrophages, neutrophils,
dendritic cells, and natural killer cells (Hashimoto et al., 2011;
Hodes et al., 2015). The primary residential immune cells of
the neuroimmune system are glial cells (Gimsa et al., 2013;
Beardsley and Hauser, 2014). Disorders of the immune system are
associated with several chronic diseases (O’Byrne and Dalgleish,
2001), and interactions between the nervous system and the
immune system play an essential role in depression (Wohleb
et al., 2016). Previous studies have shown that CRF receptors
are widely expressed in T cells and glial cells (Stevens et al.,
2003; Chatoo et al., 2018). Also, immune cell dysfunction has
been observed in depression and chronic exposure to CRF and
glucocorticoids inhibits T-cell proliferation (Oh et al., 2012;
Jin et al., 2016). Additionally, the expression levels of glial
fibrillary acidic protein (GFAP), a marker of astrocytes, is found
to be decreased in patients suffering with depression (Miguel-
Hidalgo et al., 2000). Cytokines, including interleukin-6 (IL-6),
interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNFα)
and interleukin-10 (IL-10), can induce the secretion of CRF
upon exposure to stress, and CRF can in turn mediate the
level of these cytokines (Kariagina et al., 2004; Chen H. et al.,
2018). Thus, it is suggested that the CRF is a key regulator of

immune responses in depression. Novel antidepressants can be
developed based on the regulatory role of CRF in depression. For
example, a large number of Chinese herbal medicines (CHM)
hold potential for treating depression because of their abilities
to suppress inflammation and normalize elevated CRF levels.
Drugs directly modulate CRF signaling and HPA axis activity,
such as CRF1 antagonists, can also be potent antidepressants.
This review summarizes the evidence highlighting the role of
CRF in the neuroimmune regulation of depression and provides
a biological basis for developing effective treatments for this
psychiatric disorder.

NEUROBIOLOGY OF DEPRESSION

Depression is a disorder with complex pathogenesis which is not
well understood because of highly variable pathophysiological
course. Familial studies suggest that depression is a
heterogeneous mental disease (Belmaker and Agam, 2008).
Besides genetic factors, environmental adversities like overall
health status, emotional abuse and social problems are also risk
factors that lead to depression (Li et al., 2016). At the moment,
there is no established mechanism for the interaction between
the genetic and environmental factors involved in the onset and
development of the depression (Otte et al., 2016).

The mammalian stress response is a complex biological
process driven by interactions between the brain and
peripheral systems such as the immune and cardiovascular
systems (McEwen, 2007). Preclinical and clinical studies have
demonstrated that stress and depression are associated with
neuroplasticity which is change in the morphology of neurons,
alterations in the connectivity and activation of neural networks
in a regionally dependent manner (Duman, 2014). Atrophy and
loss of neurons and glial cells are seen in the brains of depressed
subjects and a reduced volume of hippocampus and cortical
brain regions is observed in the pathogenesis of depression (Otte
et al., 2016). Changes in dendritic spine density, dendritic length
and branching patterns have been described in the hippocampus,
amygdala, and prefrontal cortex in response to stress (Davidson
and McEwen, 2012). Besides impaired neuroplasticity, decreased
neurogenesis in the dentate gyrus (DG) of the hippocampus has
also been found in brain of depressed patients (Samuels and
Hen, 2011). Looking at the above-mentioned evidence it can
be stated that depression affects an individual by changing the
neural structures and networks.

CORTICOTROPIN-RELEASING FACTOR
(CRF) AND HPA AXIS: AN OVERVIEW

Corticotropin-releasing factor (CRF), also termed as
corticotropin releasing hormone (CRH), is a 41-amino acid
polypeptide. The CRF family also includes three urocortins apart
from CRF which are urocortin 1, urocortin 2, and urocortin
3 (Keck, 2006). Members of the CRF family bind to two type
of receptors: Corticotropin-releasing factor receptor 1 (CRF1)
and Corticotropin-releasing factor receptor 2 (CRF2) which
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are expressed differently in the nervous system and peripheral
tissues. CRF1 is highly expressed in the brain, cerebellum, and
pituitary, with a lower expression in peripheral tissues such
as skin and adrenal gland (Potter et al., 1994). The expression
of CRF2 in CNS is more limited being restricted primarily to
subcortical areas such as the hypothalamus and amygdala (Reul
and Holsboer, 2002a). CRF2, however, is widely expressed in
peripheral tissues including heart, lung, adrenal gland, ovaries
and testes (Naughton et al., 2014; Ketchesin et al., 2017).

Corticotropin releasing factor is a key component of the
HPA axis. The HPA axis is composed of the hypothalamus,
the pituitary gland and the adrenal glands and is a major
regulator of endocrine stress response (Keck, 2006). Different
brain regions are involved in the stress response system, such
as amygdala, hippocampus and the prefrontal cortex (PFC)
(Bao and Swaab, 2010). During the stress state, the neuronal
activation in these regions converges on the hypothalamus
and activates the endocrine stress response (Waters et al.,
2015). Typically, CRF is secreted by the median paraventricular
nucleus (PVN) in the hypothalamus (as a response to
various stressors) and released from the terminals of secretory
neurons. CRF is transported by the local vascular system,
and stimulates the pro-opiomelanocortin (POMC) transcription
and adrenocorticotropic hormone (ACTH) release (also named
corticotropin) by binding to CRF1 in the anterior pituitary
gland (Lightman, 2008; Slominski et al., 2013). ACTH acts
on the adrenal cortex resulting in the synthesis and release
of glucocorticoids (cortisol in humans and corticosterone in
rodents), which have broad biological effects in the body
(Arborelius et al., 1999; Slominski et al., 2013). Glucocorticoids
are the main end effectors of HPA activation and also exert
negative feedback effects on the hypothalamus and the pituitary
gland to inhibit CRH and ACTH production, respectively.
Two types of glucocorticoid receptors have been identified: the
mineralocorticoid receptor (MR) and the glucocorticoid receptor
(GR). Glucocorticoids act on these two kinds of receptors to
terminate the stress response (Bao and Swaab, 2010).

DYSFUNCTION OF CRF AND HPA AXIS
IN DEPRESSION

The HPA axis mediates the endocrine stress response in both
basal and pathological conditions. Hyperactivity of HPA axis has
been observed as one of the most fundamental mechanisms in the
pathophysiology of psychiatric disorders, including depression
(Vreeburg et al., 2009). Increased concentrations of CRF in
cerebrospinal fluid and CRF mRNA expression in the PVN
have been observed in depression patients (Nemeroff et al.,
1984; Raadsheer et al., 1995). ACTH and cortisol levels increase
in parallel with the hypersecretion of CRF and result in
adrenal hypertrophy (Lightman, 2008; Wang et al., 2017). The
hyperactivity of HPA axis is accompanied by an impaired
HPA negative feedback, and result in hypercortisolemia (de
Kloet et al., 2005). Long-lasting abnormal HPA axis activity
disrupts endocrine system homeostasis, resulting in a series of
physiological, behavioral and mental consequences, and drives

the pathogenesis of psychiatric disorders including depression
(Bao et al., 2012).

The role of the HPA axis in depression is age-dependent.
HPA axis hyperactivity is a common finding in younger patients
(Murphy, 1991; Vreeburg et al., 2009). However, results of studies
focusing on older patients are mixed. Consistent with findings
in younger adults, high cortisol levels were also found in some
older depressed subjects (Gotthardt et al., 1995; O’Brien J. T.
et al., 2004). Inversely, decreased serum and urinary cortisol levels
were observed in other older patient samples (Morrison et al.,
2000; Oldehinkel et al., 2001). These findings suggested that both
hyper as well as hypoactivity of the HPA axis are implicated in
late-life depression (Ancelin et al., 2017). The hypocortisolemia
could be due to the chronic exhaustion of the HPA axis (Bremmer
et al., 2007). With increasing age, patients with depression show
a greater change on the HPA axis activity compared to people
without depression, especially in circulating cortisol and ACTH
levels (Stetler and Miller, 2011; Belvederi Murri et al., 2014).
the HPA axis gets more and more vulnerable to dysregulation
with increasing age (Ancelin et al., 2017). This change may
be caused by age-related changes in different elements of the
HPA axis, such as increasing instability of MRs and biosynthetic
dissociation of adrenocortical secretion (Ferrari et al., 2001;
Berardelli et al., 2013).

Interestingly, the prevalence of depression in women is several
times greater than that in men (Kessler et al., 1993). Sex
differences in CRF receptors have been found in almost all
brain regions (Weathington et al., 2014). Given the association
between CRF and depression, it has been hypothesized that
CRF receptors may mediate the gender–dependent prevalence
of depression (Waters et al., 2015). In adult rats, CRF1 binding
in females is overall greater than that in males, with higher
binding in accumbens (ACC), dorsal CA3 and subregions in
basal forebrain such as nucleus accumbens shell (AcbS) and
olfactory tubercle (OT) (Weathington et al., 2014). Females also
have higher CRF2 binding in lateral septum, whereas in other
brain regions, such as posterior bed nucleus of the stria terminalis
(BST) and ventromedial hypothalamus, males have greater CRF
binding (Weathington et al., 2014; Beery et al., 2016). The sex
differences of CRF receptors may be a result of evolutionary
change to adapt the different adult social behavior that benefits
the reproductive success (Weathington et al., 2014). Similar
gender bias has also been observed in the key symptoms of
depression such as hyperarousal and inability to concentrate, and
this bias has been associated with gender differences in CRF
regulation (Bangasser et al., 2016). Therefore, according to the
published literatures, gender differences in CRF regulation and
symptoms of depression strongly support the involvement of
CRF in depression.

The CRF system also has a vital role both in stress responses
and depression. In depression, excess glucocorticoid levels,
caused by hyperactivity of the HPA axis, result in neuronal
damage and immune disturbances (Reul and Holsboer, 2002b;
Koutmani et al., 2013). CRF stimulates neurogenesis and
attenuates the neuronal damage on neural stem/progenitor
cells caused by glucocorticoids in mice (Koutmani et al.,
2013). Increased numbers of CRF expressing neurons and
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elevated CRF mRNA expression were found in the PVN of
hypothalamus of patients with depression (Raadsheer et al.,
1994, 1995). The dysregulation of CRF caused extensive negative
effects on the body, such as reduction in appetite, stress-
induced analgesia, sleep disturbances, and anxiety (Swaab
et al., 2005; Bao and Swaab, 2010). These effects can be
mimicked in experimental animals by intracerebroventricular
injection of CRF (Holsboer et al., 1992; Holsboer, 2001).
CRF overexpression in CNS of mice caused stress-induced
hypersecretion of stress hormones and depression-like behaviors
(Lu et al., 2008). CRF acts through CRF1 and CRF2 receptors to
regulate the depressive-like behaviors, and these receptors play
different roles in stress-induced HPA response. Restraint stress
induced a rapid and strong down-regulation of hippocampal
CRF1 receptor mRNA, while CRF2 receptor mRNA was
upregulated in the same region (Greetfeld et al., 2009). Mice
lacking CRF1 receptor showed impaired stress-induced HPA
response (Muller et al., 2000). In contrast, CRF2-deficient
mice showed increased depression-like behaviors (Bale and
Vale, 2003; Todorovic et al., 2009), and this effect may be
due to elevated hippocampal CRF1 receptor activity caused
by MEK/ERK pathway activation in the absence of CRF2
(Todorovic et al., 2009). CRF1 receptor has an essential role
in mediating the effect of CRF on HPA axis. A study in rats
proved that chronic forced swim stress-induced depressive-
like behaviors required the activation of CRF/CRF1 signaling
in the basolateral nucleus of the amygdala (Chen L. et al.,
2018). Mice lacking CRF2 receptor showed early termination
of HPA response, which indicates that CRF2 receptor may be
involved in the maintenance of HPA drive (Coste et al., 2000).
CRF receptors are widely expressed in the CNS. Therefore,
the CRF driven regulation of stress-coping behaviors can be
independent of the HPA axis activity. Decreased anxiety was
observed in a mouse model where CRF1 was inactivated in
anterior forebrain and limbic brain structure while functioning
normally in the pituitary (Muller et al., 2003). Taken together,
these findings suggest a homeostatic role for CRF in the
nervous system. Dysregulation of CRF may cause a series of
stress-related diseases which include depression as well. The
above discussed roles of CRF1 and CRF2 receptors toward
CRF regulation, which leads to the development of depression,
might help in better understanding this stress-related psychiatric
disorder. Therefore, normalizing the abnormal CRF secretion or
blocking the CRF receptors can be effective strategies for the
treatment of depression.

NEUROIMMUNE SYSTEM AND
DEPRESSION

The earliest indication demonstrated that depression is likely
to be associated with inflammation, as it is reported that
patients treated with recombinant human interferon alpha
developed psychiatric complications (Renault et al., 1987).
Subsequently, immune variations have also been observed in
depressed subjects. The degree of neutrophilia, monocytosis,
and leukocytosis is positively related with the severity of

depression, which indicates that an inflammatory cascade
might be linked to depression (Maes et al., 1992). However,
mitogen-induced lymphocyte proliferation and natural killer
cell activity were found to be inhibited in depression patients
(Herbert and Cohen, 1993). Furthermore, elevated serum levels
of several pro-inflammatory cytokines, such as TNFα, IL-1β,
and IL-6, have also been detected in patients with depression
(Howren et al., 2009; Dowlati et al., 2010). Therefore, the
possibility of depression resulting from inflammatory processes,
cannot be ruled out.

The involvement of the immune system in the pathogenesis
of depression is also indicated by high comorbidity rates
between depression and other diseases associated with chronic
inflammation, such as diabetes, cardiovascular disease and cancer
(Evans et al., 2005). The chronic inflammation underlying in
these disease states is a possible mediator or driver of the
progression of depression (Wohleb et al., 2016). Besides the
systemic diseases, psychosocial or environmental stress is another
important contributor to depression (Christoffel et al., 2011).
A study on C57BL/6 mice demonstrated that social defeat
stress can lead to depressive-like behavior (Iniguez et al., 2014).
Cytokine profiles for different animal models of depression
indicates that various forms of stress exposure induces the release
of pro-inflammatory cytokines such as INF-γ, IL-1β, and IL-6
(Hodes et al., 2015), which implicates immune responses as an
underlying mechanism of depression caused by stress.

CRF, CYTOKINES, AND IMMUNE CELLS
IN DEPRESSION

The peripheral immune system and the neuroimmune system are
two distinct compartments of the immune system. Bidirectional
molecular pathways have been described between the peripheral
immune system and the neuroimmune system which enable the
immune communication (Wohleb et al., 2016). The blood-brain
barrier (BBB) mediates the trafficking of peripheral immune cells
into the CNS and the exchange of cytokines between the blood
and the CNS (Erickson et al., 2012). Cytokines produced in
peripheral immune cells, like IL-6 and IL-1β, can act on glial cells
and neurons in the CNS (Hodes et al., 2015).

Corticotropin releasing factor and HPA axis activity are
known to be modulated by cytokines (Pan et al., 2006).
Cytokines and their receptors are expressed in both CNS and
PNS (Hopkins and Rothwell, 1995). Lipopolysaccharide (LPS)
injection into experimental animals induced the synthesis of
peripheral pro-inflammatory cytokines such as IL-1, IL-6, and
TNFα. These cytokines can cross the BBB and regulate the
activity of the HPA axis through multiple cytokine receptors
(Utsuyama and Hirokawa, 2002). Depression is associated
with the pro-inflammatory cytokine (IL-1, IL-6, and TNFα)
via regulation of CRF (O’Brien S. M. et al., 2004). IL-1
and TNFα stimulate the secretion of IL-6, which in turn
exerts negative feedback regulation on the production of
IL-1 and TNFα (O’Brien S. M. et al., 2004). IL-6, IL-1β,
and TNFα stimulate the secretion of CRF and results in
hyperactivity of the HPA axis (Dentino et al., 1999; Kariagina
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et al., 2004). A CRF1 antagonist (SSR125543) can block the
effects of inflammatory cytokines on stress-related behaviors
(Knapp et al., 2011). Moreover, CRF can induce the release
of TNF-α in glial cells (Wang et al., 2003). Another study
demonstrated that intraperitoneal injection of CRF increased
the expression of TNF-α and IL-6 (Chen H. et al., 2018).
These results imply that during depression, proinflammatory
cytokines stimulate the secretion of CRF, and CRF activation
may in turn facilitate secretion of proinflammatory cytokines.
Anti-inflammatory cytokines play different roles in CRF-
driven regulation of depression. IL-10, an anti-inflammatory
cytokine produced in lymphocytes and CNS structures such
as pituitary and hypothalamus, plays a key role in limiting
immune responses and further inhibiting the production of
cytokines (Smith et al., 1999; Kiecolt-Glaser and Glaser,
2002). IL-10 attenuates the proinflammatory state produced
by LPS (Hennessy et al., 2011). In clinical studies, patients
with depression treated with four antidepressants (venlafaxine,
L-5-hydroxytryptophan, fluoxetine, and imipramine) showed
increase in the production of IL-10 (Kubera et al., 2000, 2001).
Under conditions of stress, IL-10 production by lymphocytes
or hypothalamus is increased along with the levels of ACTH
and CRF (Smith et al., 1999). IL-10 has been suggested
to prevent the passive behavior caused by CRF injection
(Hennessy et al., 2011). As IL-10 can stimulate the secretion
of ACTH, this preventive effect may be partly due to the
ACTH mediated short feedback loop inhibition of CRF (Smith
et al., 1999). Another clinical study showed that CRF treatment
suppresses IL-10 production in both Alzheimer’s disease (AD)
patients and healthy controls, and this process was regulated
by T cells (Oh et al., 2012). Both proinflammatory and
anti-inflammatory cytokines can enhance the production of
CRF. However, the effects of CRF on proinflammatory and
anti-inflammatory cytokines are opposite. CRF stimulates the
secretion of proinflammatory cytokines while it suppresses
the secretion of anti-inflammatory cytokines. Taken together,
interactions between CRF and cytokines play a crucial role
in the pathology of depression and targeting the network of
cytokines and CRF may be an effective therapeutic strategy for
this mood disorder.

Peripheral immune cells such as T cells play an important role
in the stress-induced immune response (Haczku and Panettieri,
2010). The immunomodulatory effect of CRF is not restricted
to the nervous system as CRF also exerts peripheral regulatory
effects on skin, the gastrointestinal tract and the cardiovascular
system (Slominski et al., 2013). CRF receptors are expressed by
a variety of immune cells, such as mast cells, dendritic cells,
B cells, and T cells (Chatoo et al., 2018; Harle et al., 2018).
Chronic exposure to CRF and glucocorticoids results in immune
dysregulation such as a reduction in T-cell proliferation (Oh et al.,
2012; Jin et al., 2016). One primary function of T cells in the
immune system is to produce cytokines. CRF suppresses the anti-
inflammatory cytokine IL-10 in regulatory T (Treg) cells, a kind
of T cells that contribute to stress-related exacerbation in AD
(Oh et al., 2012). A recent study demonstrated that CRF can
disturb the immunosuppressive effect of Treg cells on CD4+ T
cells via suppressing a protein named dedicator of cytokinesis

8 (DOCK8), and this effect may contribute to stress-induced
aggravation of AD (Jin et al., 2016). Interestingly, lymphocytes
like T cells, and B cells also have the ability to secrete CRF
(Kravchenco and Furalev, 1994). The interactions between T cells
and CRF in depression are yet to be explored.

Accumulating evidence suggests that glial cells, a major
cellular component of the neuroimmune system, are also
involved in the pathology of depression. Oligodendrocytes,
astrocytes, and microglia are some of the most common types
of glial cells in the CNS (Miller and O’Callaghan, 2005). Loss
of glial cells in amygdala and subgenual prefrontal cortex
has been reported in depressed subjects (Ongur et al., 1998;
Hamidi et al., 2004). A decrease in expression of GFAP, a
marker of astrocytes, was observed in depression patients
(Miguel-Hidalgo et al., 2000). In addition, glial ablation in
the pre-frontal cortex induced depressive-like behaviors in rats
(Banasr and Duman, 2008). These findings suggest a crucial
role of glial cells in depression, and glial cell dysfunction may
contribute to progression of this disorder. Microglia belongs
to macrophage populations, and plays a key role in CNS
homeostasis (Perry and Teeling, 2013). Microglia are in a resting
state under basal conditions. They can undergo morphological
changes and modulate into phagocytic cells once activated
(Vilhardt, 2005). Activated microglia and astrocytes produce
pro-inflammatory cytokines such as TNFα, IL-1, and IL-6,
resulting in neuroinflammation (Lee et al., 2000; Zhu et al.,
2010). Intracerebroventricular administration of LPS induced
an up-regulation of proinflammatory cytokines along with an
increase in reactive glial markers, and resulted in depressive-
like behaviors (Huang et al., 2008). In the CNS, inflammasomes
regulate neuroinflammation by mediating the maturation and
secretion of pro-inflammatory cytokines (Singhal et al., 2014).
Activation of inflammasomes has been found in depression
patients (Alcocer-Gomez and Cordero, 2014). In depressed
rats, proinflammatory cytokine-related inflammation is mediated
by nucleotide binding oligomerization domain-like receptor
family pyrin domain-containing 3 (NLRP3) inflammasome
(Pan et al., 2014). Chronic stress failed to induce depressive
behaviors in the absence of NLRP3 inflammasome (Alcocer-
Gomez et al., 2016). Activation of NLRP3 inflammasome
in glial cells could also induce depressive-like behaviors in
rats (Yue et al., 2017). Furthermore, glial cells mediate
the neuroinflammatory process and are involved in the
pathogenesis of depression (You et al., 2017). Both CRF1
and CRF2 receptors are expressed in both microglia and
astrocytes (Stevens et al., 2003). The activation of microglia
and astrocytes in neuroinflammation is mediated by CRF,
and this process may be a underlying mechanism of several
neurological diseases, including depression (Kritas et al., 2014).
Abnormalities in oligodendrocytes have been described in several
mood disorders, such as schizophrenia, bipolar disorder, and
depression (Aston et al., 2005). A reduction in total glial
cells and oligodendrocytes has been found in amygdala of
the brains of depressed subjects while no significant difference
in astrocytes or microglia density was observed (Hamidi
et al., 2004). There is no direct evidence of the presence of
CRF receptors in oligodendrocytes, but CRF elevates cyclic
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adenosine monophosphate (cAMP) level in these cells (Wiemelt
et al., 2001). Thus, CRF receptors may also be expressed in
oligodendrocytes as CRF1 is the primary mediator of increase
in cAMP in response to CRF stimulation (Stevens et al., 2003).
Further studies are needed to elucidate the relationship between
oligodendrocytes and CRF.

Cumulatively, CRF regulates the immune responses in
the CNS by mediating cytokine production and activation
of peripheral immune cells and glial cells (Figure 1). The
CRF-mediated immune responses play a crucial role in the
pathogenesis of a series of neurological diseases, including
depression. However, a recent study reported that chronic high-
dose captopril (CHC) administration can induce a specific
form of depressive-like behavior. This effect is caused by
Treg reduction and microglial activation with unaltered CRF
levels and HPA axis activity (Park et al., 2017). This finding
suggests that the activation of immune cells as a response
to depression can also be independent of CRF and the HPA
axis regulation.

POTENTIAL APPLICATION OF CHINESE
HERBAL MEDICINES IN TREATING
DEPRESSION

The links between immune responses and depression have
inspired the application of anti-inflammation therapies in the
treatment of depression. In depressed patients who also suffer
from coronary artery disease, statin treatment can downregulate
IL-1β expression and function as an anti-inflammation therapy
of depression (Ma et al., 2016). Another study demonstrated
that chronic treatment with the non-steroidal anti-inflammatory
drug (NSAID), celecoxib, reversed the depressive-like behavior
in stressed rats by inhibiting cyclooxygenase (COX)-2 expression
(Guo et al., 2009). Ginseng total saponins (GTS) are effective
in attenuating lipopolysaccharide- (LPS) induced depression-
like behavior because of its peripheral anti-inflammatory activity
(Kang et al., 2011). Ethyleicosapentaenoate (EPA) has been used
to treat depression, and such an activity likely originates from
suppression of inflammation and upregulation of nerve growth
factor (NGF) (Song et al., 2009). Besides the use of drugs, other
approaches that suppress inflammation may also be a potential
treatment strategy for depression. A recent clinical study suggests
that transcutaneous auricular vagus nerve stimulation (taVNS)
can alleviate multiple symptoms of depression and one of the
possible underlying mechanisms is that taVNS may inhibit
inflammatory responses and relieve stress (Kong et al., 2018).

It is worth noting that many CHM have been long
used for anti-inflammatory properties. The biologically
active components of CHM has been reported to inhibit
proinflammatory pathways (Pan et al., 2011). Anti-depression
effects have been found in a vast number of CHM such as
Tianshu capsule, Danggui-Shaoyao-San, and Kai-Xin-San (Xu
et al., 2011; Zhu et al., 2016; Sun et al., 2018). Thus, these
CHM hold potential as anti-depression medications. In rats,
tribulus terrestris saponins (TTS) treatment significantly reduced
chronic mild stress (CMS) induced increase of serum CRF (and

CORT) and depressive-like symptoms, which indicates that
antidepressant effects of TTS may be attributed to down-
regulation of HPA axis hyperactivity by CRF regulation (Wang
et al., 2013). Salidroside (SA) showed antidepressant activities
in olfactory bulbectomized rats by reversing the elevated CRH
expression in hypothalamus and serum CORT level, and the
normalization of HPA axis hyperactivity by SA may be due
to its anti-inflammatory properties (Yang et al., 2014). Oral
administration of saikosaponin A, one of the main constituents
of Chai hu, restored the elevated pro-inflammatory cytokines
levels and CRF level in depressed rats (Chen X. Q. et al.,
2018). However, direct intracerebroventricular injection of
saikosaponin A failed to affect CRF levels, while saikosaponin
D, another major component of Chai hu, increased CRF
mRNA level in the hypothalamus in the same study (Dobashi
et al., 1995). Therefore, instead of directly affecting CRF
levels, saikosaponin A may regulate CRF levels by suppressing
neuroinflammation (Chen X. Q. et al., 2018). These findings
suggest that antidepressants, including CHM can restore HPA
axis hyperactivity by decreasing CRF levels, and such effect may
be due to direct regulation of CRF levels, or indirect regulation
of neuroimmune mechanisms.

Although many CHM have shown promising antidepressant-
like effects, their exact mechanisms of action remain unclear.
Future studies are needed to find out their direct targets in
depression treatment. Depression is a multifactorial disease.
Most CHM act through multiple mechanisms simultaneously.
Therefore, they have advantages over other single-target drugs in
depression treatment. In addition, the compatibility of CHM may
have better therapeutic effects than using a single drug in treating
complex diseases, such as depression. Developing novel plant-
based medicines against depression is an important imperative
to strengthen the public health and enrich our knowledge about
the potential use and value of CHM.

CRF1 ANTAGONISTS AND OTHER
ANTIDEPRESSANTS

Corticotropin releasing factor exerts its effect on various tissues
via acting on CRF receptors. As CRF/CRF1 signaling involved
in the pathogenesis of depression, blocking CRF1 receptor may
be an effective therapeutic approach. Several CRF1 receptor
specific antagonists with potent antidepressant-like effects have
been developed (Zoumakis et al., 2006). For example, a selective
CRF1 receptor antagonist E2508 shortened immobility time
in the rat forced swim test (Taguchi et al., 2016). Besides
treating depression, CRF1 receptor antagonists may have many
other applications because of the multifaceted actions of
CRF/CRF1 system. For example, potential clinical applications
of CRF1 receptor antagonists include the treatment of anxiety,
allergy, autoimmune inflammatory disorders, epilepsy and so
on (Grammatopoulos and Chrousos, 2002). In aged rats, two
CRF1 receptor antagonists, R121919 and antalarmin, prevented
chronic stress-induced anxiety-related behavioral and memory
deficits (Dong et al., 2018). Although CRF1 receptor antagonists
show promising effects in rodents, their clinical efficacy is mixed.
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FIGURE 1 | Schematic illustration of CRF regulation of the endocrine and immune system in depression. CRF mediates the activity of the HPA axis and the
neuroimmune system. It also exerts regulatory effect on other peripheral tissues such as skin, gastrointestinal tract and cardiovascular system. Chronic exposure to
stress results in CRF hypersecretion and HPA axis hyperactivity. Elevated CRF level stimulates the production of pro-inflammatory cytokines by peripheral immune
cells, these peripheral cytokines can cross the blood-brain barrier and activate astrocytes and microglia in the CNS. CRF can also directly activate astrocytes and
microglia. The activated astrocytes and microglia secrete more pro-inflammatory cytokines. These astrocytes- and microglia-derived cytokines have a broad effect
on the CNS, drive neuroinflammation and produce depression-like behavioral alterations.

GSK561679, BMS-562086, GSK561679, and GW-876008 yield
negative results in clinical trials in patients with depression
and anxiety disorders (Griebel and Holsboer, 2012; Dunlop
et al., 2017). In contrast, two clinical trials with pexacerfont
and verucerfont showed positive effects in treating withdrawal
symptoms and stress-induced alcohol craving (Schwandt et al.,
2016; Morabbi et al., 2018). One possible reason of these
failures might be the heterogenous response to CRF1 receptor

antagonists treatment (Licinio et al., 2004). These individual
differences may be caused by genetic variability of CRHR1, the
gene encoding for CRF1 receptor, or different activity in CRF-
CRF1 systems (Spierling and Zorrilla, 2017; Davis et al., 2018).
Further studies can focus on developing personalized treatment
plans for depression. Evaluating genetic or non-genetic markers
may aid in developing specific CRF1 antagonists for specific
patient subgroups. Besides CRF1 receptor antagonists, activation
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of CRF2 with two selective agonists, urocortin 2 (UCN 2) and
urocortin 3 (UCN 3), reversed depression- and anxiety-like
behaviors (Bagosi et al., 2016). The development of selective
antagonists of CRF1 receptor or agonists of CRF2 receptor may
aid in developing novel treatments to a wide array of stress-
related diseases, including depression.

Several other antidepressants have been used for the treatment
of depression, such as triple uptake inhibitors, monoamine
oxidase inhibitors and selective monoamine reuptake inhibitors
(de Oliveira et al., 2018). Overall, the efficiency and the
therapeutic window of anti-depressants are limited. Only about
50% of all patients receiving anti-depressants have complete
remission (Nestler et al., 2002). Moreover, the mechanism of
action of anti-depressants is usually much more complex than
expected. As a result, anti-depressant medications generally cause
a variety of side effects. Therefore, it is extremely important
to develop novel anti-depressants having high efficiency and
less side effects.

CONCLUSION

Depression is a very complex neurological disorder. The normal
functioning of the brain is carried out by intricate interactions
between CNS and peripheral systems such as gastrointestinal
tract, cardiovascular system, and immune system. Dysregulation
of any key mediators in these systems may break the homeostasis
and subsequently result in neurological diseases. CRF affects the
various biological processes in human body, and an increasing
volume of data suggests a crucial role for CRF in the immune
regulation of depression. CRF is a key regulator of the HPA
axis, which is a common pathway of stress response involved
in the pathogenesis of a variety of neurological diseases and
it can also regulate the neuroimmune system by mediating
cytokine production and neuroinflammation. CRF receptors are
expressed in peripheral immune cells, glial cells and neurons.

Dysregulation of CRF caused by external and internal factors
can result in neuronal and endocrinal consequences and drives
depressive behaviors. It is notable that bidirectional regulation
is a common feature of the interactions between CRF, immune
cells and cytokines. Further studies are required to establish a
deeper understanding of the complex network of CRF-mediated
immune crosstalk in depression.

In conclusion, this review provides a basis for the crucial
role of CRF in the neuroimmune regulation of depression.
Studying the interaction of CRF and immune responses
can help enhance our understanding of the pathogenesis of
depression. Furthermore, targeting this network may facilitate
new therapeutic approaches to counteract depression, and other
stress-related diseases.
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