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The PPAR-g agonist pioglitazone modulates
inflammation and induces neuroprotection in
parkinsonian monkeys
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Abstract

Background: Activation of the peroxisome proliferator-activated receptor gamma (PPAR-g) has been proposed as a
possible neuroprotective strategy to slow down the progression of early Parkinson’s disease (PD). Here we report
preclinical data on the use of the PPAR-g agonist pioglitazone (Actos®; Takeda Pharmaceuticals Ltd.) in a paradigm
resembling early PD in nonhuman primates.

Methods: Rhesus monkeys that were trained to perform a battery of behavioral tests received a single intracarotid
arterial injection of 20 ml of saline containing 3 mg of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP). Twenty-four hours later the monkeys were assessed using a clinical rating scale,
matched accordingly to disability, randomly assigned to one of three groups [placebo (n = 5), 2.5 (n = 6) or 5 (n =
5) mg/kg of pioglitazone] and their treatments started. Three months after daily oral dosing, the animals were
necropsied.

Results: We observed significant improvements in clinical rating score (P = 0.02) in the animals treated with 5 mg/
kg compared to placebo. Behavioral recovery was associated with preservation of nigrostriatal dopaminergic
markers, observed as higher tyrosine hydroxylase (TH) putaminal optical density (P = 0.011), higher stereological cell
counts of TH-ir (P = 0.02) and vesicular monoamine transporter-2 (VMAT-2)-ir nigral neurons (P = 0.006).
Stereological cell counts of Nissl stained nigral neurons confirmed neuroprotection (P = 0.017). Pioglitazone-treated
monkeys also showed a dose-dependent modulation of CD68-ir inflammatory cells, that was significantly decreased
for 5 mg/kg treated animals compared to placebo (P = 0.018). A separate experiment to assess CSF penetration of
pioglitazone revealed that 5 mg/kg p.o. induced consistently higher levels than 2.5 mg/kg and 7.5 mg/kg. p.o.

Conclusions: Our results indicate that oral administration of pioglitazone is neuroprotective when administered
early after inducing a parkinsonian syndrome in rhesus monkeys and supports the concept that PPAR-g is a viable
target against neurodegeneration.

Background
Peroxisome proliferator-activated receptors (PPARs) are
ligand-dependent transcription factors. Activation of the
PPAR-g subtype is known to increase insulin sensitiza-
tion, modulate glucose and lipid metabolism. Pioglita-
zone (Actos®; Takeda Pharmaceuticals Ltd.) is a
thiazoledinedione (TZD) and a highly selective PPAR-g

agonist. It is currently approved as an oral monotherapy
and adjunctive therapy for patients with type 2 diabetes
mellitus (T2DM; [1,2].
A growing body of evidence points towards chronic

neuroinflammation having a key role in Parkinson’s Dis-
ease (PD) pathogenesis [3-6]. This suggests that anti-
inflammatory strategies may be beneficial to prevent
PD’s typical progressive loss of dopaminergic nigral neu-
rons [7]. PPAR-g activators reduce inflammation by
inhibiting expression of proinflammatory cytokines and
metalloproteases [8,9]. In a model of neuroinflammation
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by intrastriatal injection of lipopolysaccharides (LPS),
pioglitazone decreased glial activation, improved mito-
chondrial function and attenuated oxidative stress, pre-
serving nigral dopaminergic cell count and partially
restoring striatal dopamine [10,11]. In mouse models of
PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyr-
idine (MPTP) intoxication, oral administration of piogli-
tazone reduced glial activation and attenuated loss of
substantia nigra (SN) pars compacta dopaminergic (DA)
neurons, promoted l�Ba induction and blocked NF�B
and iNOS activation [12,13] In nonhuman primates
(NHP) the most used models of PD are induced by
MPTP administration [14] which, similar to mice, it
induces loss of dopaminergic nigral cells and their stria-
tal terminals as well as inflammation that persists many
years after the original neurotoxin exposure [15-17].
Yet, the effects of PPAR-g agonists in a NHP PD model
have not been assessed and its investigation may define
whether the clinical translation of this strategy is valid
[18,19].
Here we report our evaluation of the disease modify-

ing properties of pioglitazone in a paradigm resembling
early PD in NHP. We hypothesized that the PPAR-g
agonist would modulate the inflammatory reaction
induced by the neurotoxin MPTP and, in consequence,
prevent nigral cell loss and associated PD syndrome. We
chose to induce a hemiparkinsonian model by a single
intracarotid artery administration of MPTP due to the
stability and replicability of the model [20]. We started
pioglitazone administration 24 hours after neurotoxin
challenge to resemble the ongoing degeneration
observed in PD patients [21,22]. Oral dosing was equiva-
lent to the one used to treat diabetic conditions. Our
results demonstrate that pioglitazone administration
attenuated the inflammatory response, preserved dopa-
minergic nigrostriatal function and improved PD signs
in this experimental paradigm.

Methods
Animals
Adult rhesus monkeys (Macaca mulatta, 5-7 years old)
were obtained from the Wisconsin National Primate
Center (WNPRC) and singly housed with a 12-hr
light/dark cycle at the WNPRC facility. Purina monkey
chow and water was available ad libitum. The animals’
diet was supplemented with fruit during the testing
sessions and daily enrichment. All efforts were made
to minimize the number of animals used and amelio-
rate their suffering. This study was performed in strict
accordance with the recommendations in the Guide
for the Care and Use of Laboratory Animals of the
National Institutes of Health. Two sets of experiments
were carried out: a neuroprotective and a CSF penetra-
tion analysis. The protocols were approved by the

Institutional and Animal Care Committee at the Uni-
versity of Wisconsin-Madison (permits #: G00492 and
G00569, respectively).

Behavioral Evaluations
All behavioral training and evaluations used positive
reinforcement to entice monkeys’ cooperation. Monkeys
were evaluated weekly using a clinical rating (CR) scale
as previously described [23,24]. The scale ranges from 0
to 32; a score of 0 corresponds to normal behavior and
32 to extreme severe parkinsonian symptoms. Fine
motor skills (FMS) were tested using a movement
assessment panel computerized system 3 days per week
[24]. General activity was assessed pre-MPTP and once
per month after MPTP using image digitization followed
by computerized post-processing of animal movement
(Viewpoint, Inc; [24]).

Induction of PD syndrome
After baseline data collection was completed, 20 rhesus
monkeys (male, 5-7 yrs, 4-8 kg) received a unilateral
intracarotid artery injection of 3 mg of MPTP-HCl
(Sigma) in 20 ml of saline (rate: 1.33 ml/min) as pre-
viously described [23]. The procedure was performed in
a state-of-the-art surgical suite under isofluorane
anesthesia (1-2%). Throughout the procedure vital signs
were monitored and recorded. Each animal was given
cefazolin (25 mg/kg i.m.) and buprenex (0.01 mg/kg
i.m.) upon waking up response and 24 hours post
surgery.
Twenty-four hours after MPTP administration, the 20

animals were behaviorally assessed with the CR scale
and 16 monkeys were selected (CR score ≥ 9 points),
matched according to PD signs, randomly assigned to
one of three groups (see below) and their treatments
started.

Pioglitazone dosing
To assess for pioglitazone side effects in non-diabetic
animals, one month before MPTP surgery a glucose tol-
erance test, general serum panel, glycosylated hemoglo-
bin, and insulin levels were performed. Afterwards the
animals received pioglitazone (5 mg/kg p.o.) once a day
for 7 days and the tests repeated.
After 1 month of washout the animals were intoxi-

cated with MPTP and 24 hours later animals were
selected and treatments started. Once a day until the
end of the study, the animals received oral dosing of
vehicle, (n = 5), 2.5 (n = 6) or 5 mg/kg (n = 5) of piogli-
tazone [1]. During treatment animals were weighed
weekly and serum samples were taken monthly. Before
necropsy, a glucose tolerance test was performed. The
animals were trained for blood sampling using positive
reinforcement.

Swanson et al. Journal of Neuroinflammation 2011, 8:91
http://www.jneuroinflammation.com/content/8/1/91

Page 2 of 14



Necropsy and tissue preparation
Three months post-MPTP the animals were anesthe-
tized with sodium pentobarbital (25 mg/kg iv) and
transcardially perfused with heparinized saline, followed
by 4% paraformaldehyde (PFA; [23,24]). Brains were
post-fixated in 4% PFA for 12-24 hours and cryopro-
tected by immersion in a graded (10-40%) sucrose/0.1
M phosphate buffered saline (PBS, pH 7.2) solution.
The tissue was cut frozen (40 μm sections) on a sliding
knife microtome. All sections were stored in a cryopro-
tectant solution before processing.
All other major organs were examined and sampled

for histology at the time of necropsy. Tissues were fixed
in 10% neutral buffered formalin, and routinely pro-
cessed for hematoxylin and eosin staining.

Immunohistochemistry
Brain coronal sections were stained with Nissl or by
immunohistochemical methods according to our pre-
viously published protocols [23,24]. Antibodies used
include: tyrosine hydroxylase (TH; 1:20,000; Immunos-
tar, Hudson, WI), vesicular monoamine transporter 2
(VMAT2; 1:1000; Phoenix Pharmaceuticals, Belmont,
CA), glial fibrillary acidic protein (GFAP; 1:2,000; Dako-
Cytomation, Glostrup, Denmark), heme-oxygenase-1
(HO-1; 1:1,000; Assay Designs “Stressgen”, Ann Arbor,
MI), nitrotyrosine (1:300; Millipore, Billerica, MA), and
CD68 (1:3,000; DakoCytomation, Glostrup, Denmark).

Neuroanatomical Evaluation
The optical density (OD) of TH and VMAT2 immunor-
eactive (ir) striatal fibers was quantified within ventral,
medial and dorsal sections of both the caudate and
putamen using NIH ImageJ software. Images of nine
coronal sections per monkey approximately 2 mm apart
were captured using an Epson 1640XL-GA high-resolu-
tion digital scanner. ImageJ was calibrated using a step
tablet, grey scale values were converted to OD units
using the Rodbard function, and the mean OD for each
area of interest was recorded.
The total number of TH-ir, VMAT2-ir, and Nissl neu-

rons in the right and left substantia nigra (SN) was cal-
culated using unbiased stereological cell-counting
methods described previously [23,25-27]. The optical
dissector system consisted of a computer assisted image
analysis system including a Zeiss Axioplan 2 imaging
photomicroscope (Carl Zeiss, Inc) hard-coupled to a
MAC5000 high precision computer-controlled x-y-z
motorized stage, and a MicroFire CX9000 camera
(Optronics, Goleta, CA). Neuronal counts were per-
formed using Stereo Investigator Version 7.5 (Micro-
BrightField, Williston, VT). The SN was outlined under
a low magnification (2.5×). The total number of TH-ir
and VMAT2-ir neurons within the counting frame was

counted using a 100× oil immersion objective with a 1.4
numerical aperture. Six equally spaced sections from
each subject containing the SN were used for analysis.
The amount of CD68, GFAP, HO-1, and nitrotyrosine

immunoreactivity (ir) was quantified within the SN
using NIH ImageJ software. Images from five coronal
sections per monkey approximately 2 mm apart were
captured using a Nikon E800 microscope equipped with
a SPOT camera. CD68-ir was calculated using the parti-
cle count function of the ImageJ program, which refers
to the quantification of objects of a certain size within a
region of interest in a thresholded image. The object
size was set between five and 75 square pixels. The par-
ticle number and their total area within each region of
interest was then analyzed and recorded. For GFAP,
nitrotyrosine and HO-1-ir, ImageJ was calibrated using
a step tablet, grey scale values were converted to OD
units using the Rodbard function, and the area in pixels
above a threshold of 0.30 OD units was recorded.

Analysis of plasma and CSF levels of pioglitazone
To determine CSF penetration of pioglitazone, five rhe-
sus monkeys (female, 6-7 yrs, 5-6 kg) received daily oral
administration of placebo, 2.5, 5 or 7.5 mg/kg of piogli-
tazone. Each dosing was given for a period of 8 days.
Plasma and immediately thereafter, CSF samples were
obtained at baseline and approximately 5 hours after the
last dose of pioglitazone. CSF and blood collections
were performed under ketamine (7 mg/kg i.m.) and
medetomidine (0.05 mg/kg i.m.) anesthesia. Animal vital
signs were monitored until they completely recovered.
Samples were stored at -80°C until analysis.
Drug levels were evaluated by HPLC methods as

described by Sripalakit et al. [28] with modifications.
Plasma and CSF samples were stored at -80°C until ana-
lysis. To purify the samples, they were thawed and pro-
cessed through solid phase extraction (SPE) based on a
previously described method with modifications [28].
One ml of sample was processed with 1 ml KH2PO4

(0.1 M) and 400 μl rosiglitazone as the internal standard
(Rosiglitazone-maleate 2 mg tablets, Avandia®, 10 μg/ml
stock solution in acetonitrile (ACN)/buffer). The SPE
columns (Strata C18-T, 100 mg/1 ml) were preactivated
with 1 ml each of 100% ACN and then 1 ml KH2PO4

(0.1 M). Samples were added and then washed with 1
ml methanol-Kh2PO4 (30:70) and 1 ml K2HPO4. Col-
umns were allowed to dry for 5 minutes and then were
eluted by adding 500 μl ACN:H2O (40:60) and 500 μl
ACN:H2O (50:50). For plasma samples, the elution was
centrifuged at 3,000 for 5 minutes and transferred into
HPLC vials. For CSF samples, the elution was dried
under air at 60°C to concentrate the sample, resus-
pended in 250 μl of 50% CAN, and transferred into
HPLC vials.
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Pioglitazone standards were prepared as reported [28]
with concentrations of 2,400, 1,200, 600, 300, 150, 75,
37.5, 18.75, 9.38, 4.69 ng diluted in 1 ml of plasma or
CSF, 1.0 ml KH2PO4 with 400 μl internal standard.
Standards were linear in plasma (r2 = 0.996) and in CSF
(r2 = 0.997).
HPLC analysis used a Beckman HPLC system consist-

ing of an automated sampler with a 100 μl loop, dual
pumps, and a diode array analyzer for UV detection.
Measurement was made at 269 nm wavelength. Chro-
matographic conditions and column were based on pre-
viously described methods and samples were injected as
100 μl. Retention times for rosiglitazone and pioglita-
zone were 4.3 and 10.1, respectively. Assay precision
was 7.25% at 300 nag and 11.9% at 75 nag of pioglita-
zone (n = 9). Accuracy was 103.57% ± 2.53 (mean ±
SEM).

Data Analysis
Sample size was defined by a priori power analysis
based on MPTP-treatment differences in motor function
to achieve an alpha = 0.05 and beta < 0.2 (power >
80%). All data was collected and analyzed by investiga-
tors blind to the treatment groups. A P value of < 0.05
was considered statistically significant. All statistics were
performed using SPSS version 17.0 software (SPSS, Chi-
cago, IL).

Results
Pioglitazone improves functional measures of
parkinsonism
Before MPTP treatment all monkeys showed no neuro-
logical impairments, scoring zero in the CR (Figure 1-
A). Twenty-four hrs after intoxication, the animals pre-
sented a typical hemiparkinsonian syndrome, consisting
of tremors in the side contralateral to MPTP infusion,
slowness and decreased amount of movement, as well as
balance and gait impairments (score ≥ 9 points). Over
time the pioglitazone-treated monkeys showed a pro-
gressive improvement, in particular, bradykinesia, gross
motor skills and gait that reached statistical significance
for the 5 mg/kg treated monkeys compared to placebo
at 9 (mean ± SEM, 5 mg/kg pioglitazone 5.60 ± 0.73,
placebo 9.70 ± 0.46) and 11 weeks (5 mg/kg pioglita-
zone 5.60 ± 0.95; placebo 9.20 ± 0.34) (Kruskal-Wallis
test; X 2 = 8.500, df = 2, P = 0.014 and X 2 = 7.833, df =
2, P = 0.02, respectively).
Pioglitazone’s effect on FMS testing was more variable.

Prior to MPTP administration, all subjects were able to
complete the FMS task consistently and quickly with
both hands (Figure 1-B). After MPTP administration,
most monkeys had difficulty in completing the FMS
task under 30 seconds using the hand contralateral to
MPTP dosing (left hand), while exhibiting no deficits in

task performance using the hand ipsilateral to MPTP
administration (right hand). Two of the pioglitazone-
treated monkeys in the 5 mg/kg group showed improve-
ment in FMS. Due to individual variability, a statistically
significant difference was found only in the third week
post-treatment using the hand contralateral to MPTP
dosing (repeated measures ANOVA; F [2,12] = 3.797, P
= 0.04). Post hoc analysis further confirmed the observa-
tion that monkeys treated with 5 mg/kg of pioglitazone
had significantly shorter latency times compared to pla-
cebo (Fisher’s LSD P = 0.023). Performance with the
hand ipsilateral to MPTP administration showed no sig-
nificant differences between treatment groups over time
(repeated measures ANOVA; F [2,12] = 0.771, P =
0.701).
The overall amount of activity of all monkeys was

measured using a digitized monitoring system. No evi-
dence of pioglitazone-induced hyperkinesia was
observed (Table 1). The placebo monkeys showed an
increase in activity in the first month after MPTP, prob-
ably due to a disbalance in brain DA that induced peri-
ods of spontaneous circling to the side of the brain
lesion (observed as bursts of activity) but due to indivi-
dual differences did not reach statistical significance.
Repeated measures ANOVA failed to find in the activity
data a significant effect of time (F [1,12] = 1.885, P =
0.195), treatment (F [2,12] = 1.767, P = 0.213) or an
effect of time × treatment (F [2,12] = 1.462, P = 0.270).

Pioglitazone administration was well tolerated
Throughout the study, clinical and laboratory para-
meters were within range of normal adult male rhesus
monkeys, including glucose levels. Following MPTP
administration, all subjects presented a predictable loss
of weight (approximately 0.5 kg). No significant differ-
ences in weight were observed between treatment
groups (ANOVA; F [2,13] = 0.195, P = 0.825). Necropsy
with histology of major organs of all monkeys did not
show any remarkable finding.

DA striatal fibers and nigral neurons were protected by
pioglitazone
To assess DA striatal terminal fiber condition after MPTP
and pioglitazone treatments analysis of TH and VMAT2
immunostaining were performed. OD quantification of
TH-ir striatal fibers showed a significant loss on the side
ipsilateral to MPTP administration compared to the con-
tralateral side (Wilcoxon Signed Rank test; z = -3.408, P =
0.001, two tailed). There was a significant main effect of
treatment between groups (ANOVA; F [2,143] = 11.76, P
= 0.012). Comparison between groups revealed that the
ipsilateral putamen of the animals treated with 5 mg/kg of
pioglitazone had a significant preservation of TH-ir fibers
compared to placebo (ANOVA; Fisher’s LSD post hoc P =
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0.001; Figure 2). OD quantification of VMAT2-ir striatal
fibers also showed significant loss on the side ipsilateral to
MPTP compared to the contralateral side (Wilcoxon
Signed Rank test; z = -3.408, P = 0.001). Although a slight
preservation in the ipsilateral putamen for animals treated

with pioglitazone was found, it did not reach statistical sig-
nificance (ANOVA; F [2,12] = 0.555, P = 0.25).
DA SN cell survival was evaluated by analysis of TH

and VMAT2 immunohistochemistry, as well as Nissl
histochemistry. Qualitatively, all subjects had

Figure 1 Clinical Rating Score and Fine Motor Skills task. (A) Clinical rating showed a progressive improvement of the hemiparkinsonian
features, which reached statistical significance at 9 and 11 weeks (Kruskal-Wallis test; *P = 0.014, **P = 0.02, respectively). (B) During the fine motor
skills task, the placebo-treated monkeys failed to complete the test with the left hand (hand contralateral to intracarotid MPTP administration) while
some pioglitazone- treated monkeys improved their performance. Due to individual variability, a statistical significant difference was found only in
the third week post-treatment in the 5.0 mg/kg treatment group compared to placebo (*Repeated measures ANOVA; P = 0.023).

Table 1 Duration of burst activity

Treatment Group 1 month Post-MPTP 2 months Post-MPTP 3 months Post-MPTP

Placebo 0.4 ± 0.322 29.5 ± 28.323 2.2 ± 0.776

2.5 mg/kg pioglitazone 0.4 ± 0.196 0.8 ± 0.385 0.6 ± 0.22

5 mg/kg pioglitazone 0.6 ± 0.21 0.9 ± 0.437 0.5 ± 0.409

Two months following MPTP administration, placebo-treated monkeys showed an increase in the duration of burst activity (expressed as the mean ± SEM of the
ratio baseline/post period) compared to baseline. Due to individual differences repeated measures ANOVA; failed to find a significant effect of time (P = 0.195),
treatment (P = 0.213) or effect of time × treatment (P = 0.270).
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preservation of neurons in the side contralateral to
MPTP administration as well as in the ventral tegmental
area. In the ipsilateral SN the placebo-treated monkeys
showed decreased numbers of neurons and the surviving
neurons had a shrunken perikarya and diminished neu-
ropil. The pioglitazone monkeys instead, displayed more
nigral neurons with a large round perikarya and exten-
sive multipolar neurites. Stereological cell counts
showed a significant loss of TH-ir nigral neurons on the
side ipsilateral to MPTP administration compared to the
contralateral side (Wilcoxon Signed Rank test; z =
-3.408, P = 0.001 two-tailed). There was a main effect of
treatment between groups (ANOVA; F [2,13] = 3.493, P
= 0.05). Monkeys treated with 5 mg/kg of pioglitazone
had higher cell counts (53,7345 ± 8,715) in the ipsilat-
eral SN compared to controls (29,175 ± 2,954)
(ANOVA; Fisher’s LSD post hoc P = 0.02; Figure 3).
Interestingly, the contralateral SN of both pioglitazone-
treated groups also had a significantly higher number of
nigral TH-ir cells (2.5 mg/kg, 185,987 ± 6420; 5 mg/kg,
186,064 ± 3,991) compared to controls (159,44 ± 8234)

(ANOVA; Fisher’s LSD post hoc P = 0.014, P = 0.02,
respectively).
VMAT2-ir nigral neuron stereological quantification

showed a significant loss on the side ipsilateral to
MPTP administration compared to the contralateral side
(Wilcoxon Signed Rank test; z = -3.408, P = 0.01 two-
tailed). There was a main effect of treatment between
groups (ANOVA; F [2,13] = 5.958, P = 0.016). A signifi-
cant preservation of VMAT2-ir neurons in the SN ipsi-
lateral to MPTP administration was found in animals
treated with 5 mg/kg of pioglitazone (49,701 ± 5,391)
compared to placebo (29,911 ± 3,631) (ANOVA; Fisher’s
LSD post hoc P = 0.04; Figure 4). No significant differ-
ences between treatment groups were observed in the
contralateral SN.
Nissl-stained nigral neuron stereological quantification

confirmed a significant neuronal loss on the side ipsilat-
eral to MPTP administration in comparison to the con-
tralateral side (Wilcoxon Signed Rank test; z = -3.408, P
< 0.001, two-tailed). There was a main effect of treat-
ment between groups (ANOVA; F [2,12] = 5.414, P =

Figure 2 Preservation of TH-ir fibers in the striatum. Microphotographs of TH immunostained coronal brain sections at the level of the
anterior commisure of (A) placebo (B) 2.5 mg/kg and (C) 5 mg/kg pioglitazone-treated hemiparkinsonian monkeys. Scale bar = 10 mm. Note the
preservation of TH-ir fibers in the caudate and putamen ipsilateral to MPTP insult in pioglitazone-treated animals. (D) Optical density (OD) of TH
immunostaining in the intact and MPTP treated putamen (*ANOVA; P = 0.001).
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0.021). Monkeys treated with 5 mg/kg of pioglitazone
had higher cell counts (57,297 ± 7,033) in the ipsilateral
SN compared to controls (33,974 ± 3,275) (ANOVA;
Fisher’s LSD post hoc P = 0.017; Figure 5).
Measures of dopaminergic innervation correlated with

behavioral performance (Figure 6). The animals that
presented a lower score in the CR (indicating improve-
ment in their PD signs) had more TH-ir OD in the
putamen (Pearson’s correlation; r2 = 0.320, P = 0.002),
as well as more TH (r2 = 0.338, P = 0.024) and VMAT2
(r2 = 0.689, P = 0.003) positive neurons in the SN. Simi-
lar to the CR, better performance in the FMS test
(observed as less time needed to complete the task)
inversely correlated with TH-ir fibers in the putamen (r2

= 0.386, P = 0.004), as well as TH-ir (r2 = 0.654, P =
0.005) and VMAT2-ir (r2 = 0.879, P = 0.004) neurons in
the SN indicating that better performance in the task
was associated with more DA markers in the nigrostria-
tal system. Additionally, the number of TH-ir nigral

cells was positively correlated with the amount of TH-ir
OD in the putamen (r2 = 0.618, P = 0.001).

Pioglitazone attenuated inflammation
Reactive neuroinflammation was evaluated using CD68
(marker for microglia/macrophages) and GFAP (astro-
cyte marker) immunostainings. Qualitative observations
of CD68 (Figure 7) immunostained brain coronal sec-
tions of placebo-treated subjects revealed the presence of
numerous CD68 positive cells in the ventrolateral cau-
date, ventromedial putamen, and the ventral tier of the
SN ipsilateral to MPTP administration. Most of these
cells exhibited characteristic hyperramified morphology
of activated microglia, and many clustered together. In
contrast to placebo-treated animals, pioglitazone-treated
monkeys displayed a dose-dependent CD68 immunor-
eactivity, characterized by mildly active microglia ipsilat-
eral to MPTP administration. Quantification showed a
significant increase in CD68-ir particle number in the SN

Figure 3 Preservation of TH-ir cells in the substantia nigra. Microphotographs of TH immunostained coronal brain sections at the level of
the substantia nigra of placebo (A, a), 2.5 mg/kg (B, b), and 5 mg/kg (C, c) pioglitazone-treated hemiparkinsonian monkeys. Rectangles in A, B
and C indicate the location of high magnification images a, b, c. Scale bar: A, B, C = 1 mm; a, b, c = 325 μm. D: Stereological cell counts
showed a significant preservation of TH-ir cells in the substantia nigra ipsilateral to MPTP insult in 5 mg/kg pioglitazone-treated group compared
to placebo (*ANOVA; P = 0.02), and higher TH-ir cell count in the intact side of animals treated with 2.5 and 5 mg/kg of pioglitazone compared
to placebo (#ANOVA; P = 0.014, P = 0.02).
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ipsilateral to MPTP administration compared to the con-
tralateral side (Wilcoxon Signed Rank test; z = -3.516, P
< 0.01). A significant difference between treatment
groups was found in the side ipsilateral to the MPTP
lesion (ANOVA; F [2,13] = 3.778, P < 0.05). Multiple
comparisons revealed that monkeys treated with 5 mg/kg
of pioglitazone had significantly less CD68-ir particle
counts in the ipsilateral SN (746 ± 142) compared to pla-
cebo (1,331 ± 152) animals (Figure 7; ANOVA Fisher’s
LSD P = 0.018). In addition, there was a significant differ-
ence in the total area covered by the particles between
ipsi and contralateral sides (Wilcoxon Signed Ranks test;
z = -3.516, P < 0.01, two-tailed) and a significant differ-
ence between treatment groups (ANOVA F [2.13] =
4.248, P = 0.038). Multiple comparisons analysis revealed
that animals treated with 5 mg/kg of pioglitazone had a
significantly smaller CD68 immunoreactive area com-
pared to controls (ANOVA; Fisher’s LSD P = 0.015).

GFAP-ir was significantly increased in the SN on the
side ipsilateral to MPTP administration compared to the
contralateral side (Wilcoxon Signed Ranks test; z =
-2.840, P = 0.005 two-tailed), however no significant dif-
ferences were found between treatment groups
(ANOVA; F [2,11] = 0.495, P = 0.622).
Quantification of nitrotyrosine-ir (NO-dependent oxi-

dative stress marker) showed significantly higher levels
in the ipsilateral SN compared to the contralateral side
(Wilcoxon Signed Rank test; P < 0.001). A trend was
revealed toward less intensity in the pioglitazone-treated
monkeys compared to placebo (ANOVA; F [2,13] =
3.079, Fisher’s LSD P = 0.068).
Quantification of HO-1-ir (oxidative stress marker)

did not show significant differences between ipsilateral
vs. contralateral SN (Wilcoxon Signed Rank test; P =
0.569) or between treatment groups (ANOVA; F [2,13]
= 0.555, P = 0.407).

Figure 4 Preservation of VMAT2-ir cells in the substantia nigra. Microphotographs of VMAT2 immunostained coronal brain sections at the
level of the substantia nigra of placebo (A, a), 2.5 mg/kg (B, b), and 5.0 mg/kg (C, c) pioglitazone-treated hemiparkinsonian monkeys. Rectangles
in A, B and C indicate the location of high magnification images a, b, c. Scale bar: A, B, C = 1 mm; a, b, c = 325 μm. D: Stereological cell
quantification showed a significant preservation of VMAT2-ir cells in the substantia nigra ipsilateral to MPTP insult in 5 mg/kg pioglitazone-
treated group compared to placebo (*ANOVA; P = 0.04).
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The number of TH-ir nigral cells inversely correlated
with CD68-ir (Pearson’s correlation; r2 = 0.279, P =
0.014), and nitrotyrosine-ir (r2 = 0.387, P = 0.001) sug-
gesting that the number of surviving DA cells are
affected by inflammation and oxidative stress byproducts
(Figure 6). Interestingly, CR and FMS test also corre-
lated with CD68 staining intensity (r2 = 0.663, P = 0.007
and r2 = 0.697, P = 0.003, respectively).

Oral administration of pioglitazone crosses the blood
brain barrier
Oral dosing to normal animals of 5 mg/kg of pioglita-
zone induced higher levels in plasma (mean ± SEM;
1,741.97 ± 317.16 ng/ml) than 2.5 mg/kg (1,360.53 ±
208.01 ng/ml). Yet, in four of the five monkeys, 7.5 mg/
kg (1,587.24 ± 413.78 ng/ml) dosing did not result in
consistently higher increases of pioglitazone plasma
levels compared to 5 mg/kg (repeated measures
ANOVA; F [2,6] = 1.344, P = 0.329).

CSF levels of pioglitazone compared to plasma showed
more individual variability. A dose of 2.5 mg/kg (25.08 ±
3.52 ng/ml) induced non-detectable levels in two of the five
animals. Both, 5 and 7.5 mg/kg induced consistent measur-
able levels in CSF. Four of the five monkeys had higher
CSF levels of pioglitazone after receiving 5 mg/kg (50.53 ±
23.92 ng/ml) compared to 7.5 mg/kg (17.09 ± 6.22 ng/ml)
(repeated measures ANOVA; F [2,4] = 0.206, P = 0.822).

Discussion
The present study indicates that oral dosing of pioglita-
zone to rhesus monkeys after a single intracarotid artery
injection of MPTP ameliorates the functional and anato-
mical consequences of the neurotoxin. Pioglitazone dos-
ing was well tolerated and consistently higher levels
were found in plasma and CSF after 5 mg/kg p.o.
To maximize the value of this report for clinical trans-

lation, the dosing selected for the efficacy study (2.5 or 5
mg/kg) was equivalent to the ones in use to treat

Figure 5 Preservation of Nissl stained cells in the substantia nigra. Microphotographs of Nissl stained coronal brain sections at the level of
the substantia nigra of placebo (A, a), 2.5 mg/kg (B, b), and 5 mg/kg (C, c) pioglitazone-treated hemiparkinsonian monkeys. Rectangles in A, B
and C indicate the location of high magnification images a, b, c. Scale bar: A, B, C = 2 mm; a, b, c = 50 μm. D: Stereological cell quantification
showed a significant preservation of Nissl positive cells in the substantia nigra ipsilateral to MPTP insult in 5 mg/kg pioglitazone-treated group
compared to placebo (*ANOVA; P = 0.007).
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diabetic conditions. This range varies according to the
species. Mice (20 mg/kg), or rats (3-10 mg/kg) require
higher doses for pioglitazone to be effective [29,30]
compared to adult rhesus monkeys (1-3 mg/kg and up
to 9 mg/kg) and diabetic patients (15, 30, or 45 mg
tablets) [1,31].
Determining when to initiate neuroprotective therapies

is critical in defining its success and the magnitude of its
effects. Currently we are unable to predict who will
develop sporadic PD [22]. The best option in protecting
as many DA nigral neurons as possible is to intervene
early after the onset/diagnosis of the disease. In this
study we started pioglitazone administration soon after
MPTP challenge, attempting to resemble clinical condi-
tions of ongoing degeneration in early PD [21,22]. In rhe-
sus monkeys, a single intracarotid artery MPTP infusion
immediately induces extensive unilateral depletion of

striatal DA (and associated hemiparkinsonian signs, that
allow for the selection and matching of the animals
according to disability) but little loss of TH-ir nigral neu-
rons[32,33]. By 2-3 months, there is extensive loss of
both striatal terminals and nigral neurons. The estab-
lished syndrome has been shown to persist (without
spontaneous recovery) for up to 8 years [20]. This pattern
of neurodegeneration creates a window of opportunity to
test the efficacy of neuroprotective strategies (e.g.:
[20,21]). The placebo-treated monkeys’ behavioral stabi-
lity overtime of the PD syndrome and associated severe
loss of DA markers and Nissl-stained nigral cell counts
confirm that the criteria used for the selection of the ani-
mals was appropriate. Moreover, the Nissl cell counts
confirm that the differences between treatment groups in
DA markers were related to neuroprotection, not to up-
or down- regulation of nigral neuronal phenotype.

Figure 6 Correlations between functional and anatomical markers. Improvement in PD signs measured by clinical rating (CR) was
associated with more TH-ir optical density (OD) in the putamen (Pearson’s correlation; P = 0.0024) and higher number of TH-ir nigral cells (P =
0.002). Fine motor skill (FMS) performance also correlated with the amount of preservation of TH-ir putaminal fibers (P = 0.004) and nigral cells (P
< 0.001). Optical density of nitrotyrosine (N-tyr) (P = 0.001) and CD68 (P = 0.014) immunostaining was negatively correlated with the number of
TH-ir nigral cells. Diamond = placebo, square = 2.5 mg/kg pioglitazone, triangle = 5 mg/kg pioglitazone.
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A caveat for this experimental design is that in mon-
keys, pioglitazone achieves a steady-state at 5-7 days [1]
which limited the availability of the compound between
early dosings. This may have restricted the behavioral
and nigrostriatal recovery, inducing improvements
mostly in CR (which is more sensitive to small DA
changes than FMS) associated to the partial DA nigros-
triatal recovery. Yet, we chose this paradigm and its lim-
itations (rather than intervening before MPTP) due to
its clinical relevance.
Similar to PD patients, MPTP-intoxicated monkeys

present reactive inflammation in the nigrostriatal system
that persists for many years [15,16]. In our study, piogli-
tazone-treated monkeys had a dose-dependent, signifi-
cantly less CD68 expression than placebo animals,
suggesting that pioglitazone decreased the MPTP-
induced inflammatory response. This is the first report
of pioglitazone (or any PPARg agonist) inducing an anti-
inflammatory response in parkinsonian monkeys, and it
agrees with similar findings in other paradigms. For
example, pioglitazone prevented microglia-mediated
lipopolysaccharide (LPS)-induced cell death in cortical
neuron-glia co-cultures as well as in rats with intrastria-
tal injections of LPS [10,34]. In MPTP-treated mice, pio-
glitazone decreased glial activation and nitrotyrosine
accumulation and induced DA nigral protection [12,13].
Although it is not clear if pioglitazone’s effect on

inflammatory cells is PPARg-dependent or independent,
our data supports the concept that pioglitazone can
modulate glia activation and its harmful effects [35].
We found some evidence of less nigral oxidative stress

in pioglitazone-treated monkeys compared to controls.
This was observed as a trend toward a decreased expres-
sion of nitrotyrosine positive cells and a negative correla-
tion between nitrotyrosine immunostaining and the
number of TH-positive nigral neurons. Pioglitazone may
have diminished oxidative stress and supported cell survi-
val indirectly by decreasing microglia activation and its
harmful metabolites and/or attenuating oxidative stress.
It should be noted, however, that since our animals were
euthanized 3 months after MPTP administration, this
may have affected the expression levels of these markers,
compared to microglia immunoreactivity that can persist
for many years. Further studies are currently ongoing to
assess the effects of PPARg agonists in oxidative stress.
Pioglitazone neuroprotective effects may have also

been related or enhanced by mechanisms different from
anti-inflammatory or anti-oxidative pathways. These
mechanisms could have triggered early cell recovery and
prevented or decreased the inflammatory response. For
example, pioglitazone may have facilitated neuropreser-
vation by its effects on glucose metabolism. This com-
pound is currently used clinically as an anti-diabetic
agent by increasing insulin sensitization and modulating

Figure 7 Modulation of neuroinflammation in the substantia nigra. Microphotographs of CD68 immunostained coronal brain sections, at
the level of the substantia nigra of placebo- (A, a), 2.5 mg/kg (B, b), and 5 mg/kg (C, c) pioglitazone-treated hemiparkinsonian monkeys.
Rectangles in A, B and C indicate the location of high magnification images a, b and c. Scale bar: A, B, C = 2 mm; a, b, c = 115 μm. Note the
less intense microglial activation in the substantia nigra ipsilateral to MPTP insult in pioglitazone-treated groups. D: CD68-ir nigral quantification
results. Analysis showed significantly less microglial activation in the pioglitazone-treated groups versus the placebo group (*ANOVA; P = 0.018).

Swanson et al. Journal of Neuroinflammation 2011, 8:91
http://www.jneuroinflammation.com/content/8/1/91

Page 11 of 14



glucose receptors in peripheral tissue [36,37]. MPTP-
induced neurodegeneration increases glucose require-
ments in the substantia nigra pars compacta of rodents
and primates [38,39]. Although we did not observe
changes in glucose blood levels in the animals that
received pioglitazone, it is possible that there was a
functional increase in CNS insulin sensitization, which
may have increased the availability of intracellular glu-
cose in a moment of high request for energy by nigral
neurons.
MPTP toxicity depends on its transformation by intra-

cerebral MAO-B into its metabolite MPP+. Pioglitazone
may induce neuroprotection by inhibiting MAO-B activ-
ity (and in consequence, decrease toxic MPP+ levels
[40]). This possibility is very small in our study, as the
majority of MPTP metabolism is estimated to occur
during the first few hours after exposure [41-43] and
the monkeys started receiving pioglitazone 24 hrs post-
MPTP administration. Although MAO-B inhibition may
not have affected our results, it should be noted that
this property resembles the activity of selegiline and
rasagiline, which are widely used in the clinic as anti-
parkinsonian treatments [44,45].
Pioglitazone’s properties prompted preclinical studies

not only in rodent models of PD [12,13], but also Alz-
heimer disease [46], multiple sclerosis [47,48], amyo-
trophic lateral sclerosis [49], epilepsy [50], stroke
[51,52], and spinal cord injury [53]. In the different
models pioglitazone showed capacity to induce neuro-
protective and/or restorative effects, mainly associated
to modulation of inflammation.
Clinically, pioglitazone has been tested for Alzheimer

disease [54-56], multiple sclerosis [57,58], autism [59],
stroke [60], amyotrophic lateral sclerosis [61], and Frie-
dreich’s Ataxia [62]. The results of these small clinical
trials suggest that its administration can benefit patients
with neurological disorders. In the case of PD, pioglita-
zone’s clinical evaluation is supported by the reports on
its capacity to modulate inflammation, oxidative stress,
and glucose uptake, as well as its ability to inhibit
MAO-B. Our current results further support the testing
of pioglitazone as a disease modifying strategy for early
PD.

Conclusions
This is the first report in nonhuman primates that daily
oral administration of the PPAR-g agonist, pioglitazone,
is neuroprotective in a paradigm resembling early PD.
Findings include modest but significant improvements
in clinical rating, fine motor skills, and preservation of
DA striatal fibers and nigral neurons. These changes
were associated with a significant attenuation of CD68
positive microglia/macrophages. Significant correlations
between behavioral and morphological outcomes were

found. A separate experiment confirmed the ability of
pioglitazone to cross the blood brain barrier. These
results validate PPAR-g as a target to prevent neurode-
generation in early PD.
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