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Abstract

17b-estradiol (E2) plays critical roles in a number of target tissues including the mammary gland, reproductive tract, bone,
and brain. Although it is clear that E2 reduces inflammation and ischemia-induced damage in the cerebral cortex, the
molecular mechanisms mediating the effects of E2 in this brain region are lacking. Thus, we examined the cortical
transcriptome using a mouse model system. Female adult mice were ovariectomized and implanted with silastic tubing
containing oil or E2. After 7 days, the cerebral cortices were dissected and RNA was isolated and analyzed using RNA-
sequencing. Analysis of the transcriptomes of control and E2-treated animals revealed that E2 treatment significantly altered
the transcript levels of 88 genes. These genes were associated with long term synaptic potentiation, myelination,
phosphoprotein phosphatase activity, mitogen activated protein kinase, and phosphatidylinositol 3-kinase signaling. E2 also
altered the expression of genes linked to lipid synthesis and metabolism, vasoconstriction and vasodilation, cell-cell
communication, and histone modification. These results demonstrate the far-reaching and diverse effects of E2 in the
cerebral cortex and provide valuable insight to begin to understand cortical processes that may fluctuate in a dynamic
hormonal environment.
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Introduction

The effects of 17b-estradiol (E2) have been extensively studied

in the female reproductive tract where it is required for

reproductive competency. E2 also targets a variety of other

tissues, including the mammary gland [1], bone [2,3], cardiovas-

culature [4], and brain [5]. E2 plays several critical roles in brain

development, such as influencing sexual dimorphism [6] and

forming synapses [7]. In the cycling female, E2 is an important

regulator of ovulation through its communication with the

hypothalamus and pituitary [8,9]. E2 can also act on brain

regions not associated with reproduction and can influence pain

perception, locomotion, and mood [10].

Numerous experiments have demonstrated that E2 protects the

brain from a variety of insults [11–13]. For example, E2 protects

neuroblastoma cells from H2O2 [14] and beta amyloid [15,16]

toxcicity. Additionally, E2 decreases cellular damage in neurons

that have been treated with excitotoxic levels of glutamate [17]

and hippocampal slice cultures that have been exposed to oxygen

and glucose deprivation [18]. In vivo, E2 reduces inflammation

[19,20] and ischemia-induced damage [21,22] and this protection

is most evident in the cerebral cortex.

In addition to its neuroprotective effects, E2 modulates synaptic

plasticity [23], influences neurotransmission [24,25], and acts as a

neurotrophin [26] to support brain homeostasis. These cumulative

reports suggest that critical changes in gene expression in the brain

are induced by E2. Although the cerebral cortex receives input

from several brain regions and is essential for cognitive and

executive functions [27], the mechanism by which E2 mediates its

effects in the cerebral cortex are unclear. To better understand the

molecular consequences of E2 in the cerebral cortex, we analyzed

RNA sequencing (RNA-Seq) data from the cortices of oil- and E2-

treated, ovariectomized female mice. This unbiased approach

identified E2-regulated genes that provide insight into the multiple

biological processes influenced by E2 treatment.

Materials and Methods

Animals and surgery
14 week old female C57BL/6J mice were obtained from

Jackson Laboratory (Bar Harbor, ME) and maintained on a 12 hr

light/dark schedule with access to water and food ad libitum. After

7 days, mice were anesthetized by inhalation of 4% isoflurane,

bilaterally ovariectomized and then implanted subcutaneously

with silastic tubing (0.062 in/0.125 in, inner/outer diameter, 1 in

length; Dow Corning, Midland, MI) plugged at both ends with

medical adhesive (Dow Corning). The silastic tubing, which

remained in the mice for 7 days, contained either 35 ml of

cottonseed oil or 35 ml of cottonseed oil with 180 mg/ml E2 and

produced a low, physiological level of circulating E2 (,25 pg/ml)

[21,28] that is equivalent to estrus levels in mice [29]. Ovariec-

tomized mice were fed phytoestrogen-free chow and after 7 days,

the mice were sacrificed, the brains were dissected, and cerebral

cortices were harvested. This method of E2 treatment has been
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extensively used to demonstrate the anti-inflammatory and

neuroprotective actions of E2 in the cerebral cortex

[19,21,30,31]. The protocol (#12014) for this study was approved

and carried out in strict accordance with guidelines from the

University of Illinois at Urbana-Champaign Institutional Animal

Care and Use Committee and Division of Animal Resources.

Analgesics were administered after surgery and all efforts were

made to minimize suffering.

RNA isolation
Total RNA was isolated from each cerebral cortex using

Ambion RNAqueous according to the manufacturer’s protocol

(Life Technologies, Grand Island, NY) and treated with Turbo

DNA-free reagent (Ambion, Life Technologies, Austin, TX) to

remove genomic DNA. RNA purity was assessed with native

agarose gel electrophoresis and analysis of the 28S and 18S rRNA

bands. RNA was of high purity, showed no degradation, and was

free of DNA (Fig. S1).

RNA-Sequencing
RNA-seq was completed at the W.M. Keck Center for

Comparative and Functional Genomics at the University of

Illinois Urbana-Champaign. The TruSeq RNA sample prep kit

(Illumina, San Diego, CA) and 1 mg of total RNA were used to

make poly-A selected and barcoded RNA-Seq libraries for each

cortical sample. cDNA libraries were pooled and quantified using

real-time PCR with the Library Quantification kit (Kapa

Biosystems, Woburn, MA). The libraries were sequenced using 3

lanes for 101 cycles with 7 additional cycles for the index read on

the Illumina HiSeq2000 according to the manufacturer’s instruc-

tions. The RNA-Seq libraries produced over 255 million reads

with each individual sample having more than 29 million reads.

The data was then used to generate Fastq files using Casava 1.8.2.

RNA-Seq alignment and statistics
Sequences were aligned using TopHat v. 1.4.1 [32] and Bowtie

1.0 [33]. The genome sequence index was mm10 from UCSC

(http://hgdownload.soe.ucsc.edu/downloads.html#mouse). Raw

read counts were tabulated for each sample at the gene level using

the GTF gene model file for mm10 from UCSC and htseq-count,

from HTSeq v0.5.3p9 (http://www-huber.embl.de/users/anders/

HTSeq/doc/index.html) using the default ‘‘exon’’ feature type

and ‘‘gene_id’’ attribute.

The raw read counts were used in R 3.0.0 [34] for data pre-

processing and statistical analysis using packages from Biocon-

ductor [35] as indicated below. Data are available in the Array

Express database under accession number E-MTAB-2762. Genes

without 1 count per million (CPM) mapped reads in at least 4

samples, irrespective of group, were filtered out and 14,908 of the

37,482 genes passed this filter and were analyzed using edgeR

3.2.3 [36]. The raw count values were used in a negative binomial

statistical model that accounted for the total library size for each

sample and an extra TMM normalization factor for any biases due

to changes in total RNA composition of the samples [37,38]. Tests

for the pairwise comparisons were pulled from the model and

separately adjusted for multiple testing using the False Discovery

Rate (FDR) method [39].

Comparable expression values were generated from read counts

using voom normalized values [40]. The voom values were scaled

to the standard deviation of the mean, hierarchically clustered,

and displayed as heatmaps. Additional annotation information

(gene names, descriptions) was obtained from Ensembl Genes 71,

Mus musculus genes (GRCm38.p1) database using the Ensembl

gene IDs provided in the GTF gene model file.

Cytoscape (Version 3.0.1) was used in conjunction with the

plug-in ClueGO (Version 2.0.7) for network creation [41,42].

KEGG [43], Reactome [44], and Gene Ontology (biological

process) [45] databases were used within the program for network

categorization. Over-representation (enrichment) was calculated in

the program using a right-sided hypergeometric test and

Bonferroni step-down method for multiple test correction.

Transcriptomine from the Nuclear Receptor Signaling Atlas

website was used to determine previously identified E2-regulated

genes. 17b-estradiol was selected as the ligand and .1.1 fold

change in either direction with p,0.05 significance was selected

for ‘CNS, all tissues and cell lines’ and ‘all tissues, all cell lines’

RNA sources.

Real-Time PCR (RT-PCR)
RNA concentrations were measured and cDNA was synthesized

using the iScript kit (Bio-Rad, Hercules, CA) as described by the

manufacturer. cDNA was combined with iQ SYBR Green

Supermix (Bio-Rad, Hercules, CA), and forward and reverse

primers (0.9 mM) for receptor transporter protein 1, Rtp1, (59-

CTGCCCTGCCTTACACTTAC -39 and 59-TCACCTCCTC-

CATCTTCTCG -39), macrophage galactose N-acetyl-galactos-

amine specific lectin 2, Mgl2, (59- GTGACAAGAAAGGAG-

GAATG -39 and 59- GAGATGACCACCAGTAGC -39), NLR-

pyrin domain containing 3, Nlrp3, (59- CCAAGGAGGAAGAA-

GAAGAG -39 and 59- AAGAGACCACGGCAGAAG -39), fatty

acid binding protein 7, Fabp7, (59- GTGACCAAACCAACTGT-

GATTATC -39 and 59- TGTCTCCATCCAACCGAACC-39),

lysozyme 2, Lyz2, (59- TGAAGACTCTCCTGACTC-39 and 59-

ACGGTTGTAGTTTGTAGC -39), succinate dehydrogenase

complex, subunit A, flavoprotein, Sdha, (59-

GCTCATCGGTGTTGCTGTG-39 and 59-

TTGCTCTTATTCGGTGTATGGAC -39), aldolase A fruc-

tose-bisphosphate, Aldoa, (59- GAGAACACCGAGGAGAAC-39

and 59-CCTTGGACTTGATAACTTGG -39), or ribosomal

protein L7, Rpl7, (59- CGCACTGAGATTCGGATG-39 and

59-TTAATTGAAGCCTTGTTGAGC-39). RT-PCR was carried

out using a Bio-Rad iQ5 multicolor Real-Time PCR Detection

System. Samples were run in triplicate with each primer set along

with a standard curve. Ct values were normalized to Rpl7 using

the delta-delta Ct method. Combined data are expressed as the

mean 6 SEM and Student’s t-test was used to detect significant

(p,0.05) differences.

Western Blotting
Extracts from cortical tissue were prepared using RIPA buffer

(Thermo Scientific, Rockford, IL), protease inhibitors (Complete

Mini, Roche, Mannheim, Germany) and phosphatase inhibitors

(Phosphatase Inhibitor Cocktail Set III, Calbiochem, San Diego,

CA). Samples were homogenized using a Pro Homogenizer

(ProScientific Inc., Oxford, CT) and protein concentration was

determined using the bicinchoninic acid (BCA) assay (Thermo-

Scientific) with bovine serum albumin as a standard. 30 mg of

protein was loaded per lane on a 4–12% gradient acrylamide gel.

Proteins were transferred to a nitrocellulose membrane and

probed with an anti-phosphorylated ERK (p44/p42 MAPK,

#9101, Cell Signaling Technology, Danvers, MA) or an anti-ERK

(p44/p42 MAPK, #4695, Cell Signaling Technologies) specific

antibody. Western blots were imaged and quantitated using the

Licor Odyssey Infrared Imaging System and pERK was normal-

ized to total ERK. Combined data are expressed as the mean 6

SEM and Student’s t-test was used to detect significant (p,0.05)

differences in the levels of pERK.

E2-Regulated Gene Expression
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Results and Discussion
To identify E2-mediated alterations in the female cerebral

cortical transcriptome, a comprehensive study was carried out

using a mouse model system. Female mice were ovariectomized

and implanted with silastic tubing containing oil alone or oil with

E2, which produced a low, physiological level of E2 [21]. This

method of E2 treatment has been used in several studies to

demonstrate the anti-inflammatory and neuroprotective actions of

E2 in the mouse cerebral cortex [19,21,30,31]. After 7 days, brains

were dissected and total RNA was isolated from the cerebral

cortices. The isolated RNA was poly-A selected, converted to

cDNA, and analyzed using RNA-Seq.

E2 significantly altered gene expression in cerebral cortex
E2 significantly (FDR p,0.05) altered the expression of 88

genes in the cerebral cortex (Table 1, Table S1). The expression of

these genes is displayed on a heat map (Fig. 1A), where red

indicates a significant increase and blue indicates a significant

decrease in transcript levels. Interestingly, the number of genes

decreased (48) by E2 treatment was slightly greater than the

number of genes increased (40) by E2 treatment.

Of the 88 genes that responded to E2 treatment, 49 were altered

1.2 fold or more (FDR p,0.05, Fig. 1B). Again, the number of

genes decreased (blue) by E2 treatment was greater than the

number of genes increased (red) by E2 treatment suggesting that

E2 is a more potent repressor than activator of gene expression in

the cerebral cortex. However, both heatmaps demonstrated that

E2 differentially regulates gene expression in the mouse cerebral

cortex.

Validation of E2 regulated genes
To validate the RNA-Seq data, we examined a subset of E2-

regulated genes using RT-PCR analysis. In agreement with the

RNA-Seq data, E2 increased Rtp1, Mgl2, and Nlrp3 expression,

decreased Fabp7 and Lyz2 expression, and did not alter the

expression of Sdha and Aldoa (Fig. 2, *p,0.05). Thus, RT-PCR

analysis provided evidence of the accuracy of the RNA-Seq

dataset.

E2-regulated genes
We were interested in determining if any of the 88 genes that

were significantly altered by E2 in the cerebral cortex have

previously been reported as E2-responsive genes. Using the

genome-wide expression profiling database Transcriptomine in

the Nuclear Receptor Signaling Atlas, we found that each of the

88 genes except Rtp1, Gm20634, and 2410137FRik was listed as

an E2-responsive gene in a variety of tissues or cultured cells [46],

but only 5 genes, Aqp4, Bhlhe40, Ednrb, Erbb4 and Igfbp2, were

designated as E2-responsive in the central nervous system. Two

additional studies have reported that Gfap [47] and Slc13a3 [20]

are E2-responsive in the brain. Thus, based on literature and

database searches, the majority of the 88 genes identified in our

dataset are novel, E2-regulated genes in the mouse cerebral cortex.

Interestingly, earlier reports suggest that the gene expression

profile of the hippocampus differs substantially from the gene

expression profile of the cerebral cortex and that acute and

chronic E2 treatments may differentially alter gene expression

[48,49].

The 10 genes that declined most significantly in response to E2

treatment are shown in Table 2. The largest E2-mediated

decrease was observed in cadherin-related family member 1

(Cdhr1), which is a protocadherin in the cadherin superfamily, and

functions as a calcium-dependent cell adhesion and signaling

molecule [50]. The greatest E2-mediated increases in transcript

levels are listed in Table 3. The expression of macrophage

galactose N-acetyl-galactosamine specific lectin 2 (Mgl2), also

referred to as CD301, was most significantly increased. The

function of this gene in the cerebral cortex has not been described.

However, microglia, the resident immune cells in the brain, often

express multiple cluster of differentiation (CD) cell surface proteins

[51]. Siglec1, another CD gene (CD169), is expressed on

macrophages associated with the perivasculature in the rat brain

[52]. These results suggest that E2 may be altering gene expression

in immune cells.

Networks of E2-responsive biological processes and
pathways
To begin to understand how E2 regulates the cerebral cortical

transcriptome, the 88 E2-responsive genes were uploaded to

ClueGO [42] to identify networks of biological processes and

pathways that are altered by E2 treatment (Fig. 3 and Table 4).

The nodes (filled circles) represent biological processes or pathways

associated with the E2-regulated genes based on gene ontology

terms [45], Reactome [44] and KEGG [43] databases. Related

nodes are clustered together in color-coded networks and all of the

nodes in a network are the same color. However, a node can

participate in two networks and those nodes are white. The size of

the node reflects the level of statistical significance of each of the

E2-regulated biological processes or pathways. Thus larger nodes

have increased statistical significance.

The largest network is comprised of 22 nodes (Fig. 3, blue

nodes) and the 14 genes associated with these nodes are listed in

Table 4. Genes associated with this network include glial fibrillary

acidic protein (Gfap) and polo-like kinase 1 (Plk2), which play a

role in long term synaptic potentiation. Synaptic plasticity,

learning, and memory are linked to long term synaptic potenti-

ation. Dual specificity phosphatase 4 (Dusp4) and sprouty-related,

EVH1 domain containing 2 (Spred2) are associated with the

MAPK pathway, which is important in synaptic plasticity and also

plays a role in cell signaling [53]. NUAK family, SNF 1-like kinase

(Nuak1) and tuberous sclerosis 1 (Tsc1) are associated with

phosphoprotein phosphatase regulation and may be contributing

to modulation of protein phosphorylation. Taken together, these

results suggest that E2 is affecting important signal integration

pathways in the cerebral cortex.

Unique to network 2 (green) were biological processes involved

in vasoconstriction and vasodilation which included platelet

derived growth factor B (Pdgfb) and endothelin receptor type B

(Ednrb). Networks 1 and 2 shared genes involved in PI3K activity

such as v-erb-a erythroblastic leukemia viral oncogene homolog 4

(Erbb4) and Pdgfb. The PI3K pathway is important for E2

signaling and inhibition of this pathway blocks downstream ERK

activation by E2 in cortical neuron cultures [54]. Fatty acid

synthesis is a critical function in the brain, which contains the

second highest level of lipids in the body after adipose tissue [55].

Fatty acid metabolic processes were associated with insulin

receptor substrate 2 (Irs2) and Mid1 interacting protein 1

(Mid1ip1) in network 3. Mid1ip1 enhances fatty acid synthesis

and its overexpression in the liver causes triglyceride accumulation

[56]. Irs2 is critical in regulating brain size, since the brains of Irs2

null mice are reduced by ,50% due to decreased neuronal

proliferation [57].

Pathways involved in lipid synthesis were also present in

network 3 (red) and included genes ELOVL family member 5,

elongation of long chain fatty acids (Elovl5) and hydroxyacyl-

Coenzyme A dehydrogenase/3-ketoacyl-coenzyme A thiolase/

enoyl-Coenzyme A hydratase alpha subunit (Hadha) and the

E2-Regulated Gene Expression
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Table 1. 88 E2-responsive genes in the cerebral cortex.

Gene symbol Description FDR p-value Fold change

2410137F16Rik RIKEN cDNA 2410137F16 gene 0.020 1.7

Adcy9 adenylate cyclase 9 0.019 1.2

Agxt2l1 alanine-glyoxylate aminotransferase 2-like 1 3.1E-05 1.8

Ankrd33b ankyrin repeat domain 33B 0.0071 1.2

Apln apelin 0.0043 21.3

Aqp4 aquaporin 4 0.00059 21.3

Bcas1 breast carcinoma amplified sequence 1 3.1E-05 21.3

Bhlhe40 basic helix-loop-helix family, member e40 0.0040 1.2

Btbd17 BTB (POZ) domain containing 17 0.020 21.2

Cd82 CD82 antigen 0.0058 21.3

Cdhr1 cadherin-related family member 1 0.038 22.8

Cmtm5 CKLF-like MARVEL transmembrane domain containing 5 0.0038 21.2

Cnp 29,39-cyclic nucleotide 39 phosphodiesterase 0.010 21.2

Col19a1 collagen, type XIX, alpha 1 0.048 1.3

Cpeb1 cytoplasmic polyadenylation element binding protein 1 0.030 1.1

Cryab crystallin, alpha B 0.0017 21.2

Dusp4 dual specificity phosphatase 4 0.038 1.3

Ednrb endothelin receptor type B 0.011 21.3

Elfn2 leucine rich repeat and fibronectin type III, extracellular 2 0.019 1.1

Elovl5 ELOVL family member 5, elongation of long chain fatty acids (yeast) 0.011 21.2

Erbb4 v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian) 0.044 1.1

Fa2h fatty acid 2-hydroxylase 0.041 21.2

Fabp7 fatty acid binding protein 7, brain 0.001 21.6

Fam107a family with sequence similarity 107, member A 0.016 1.2

Fbxo33 F-box protein 33 0.026 1.1

Fcrls Fc receptor-like S, scavenger receptor 0.030 1.2

Flnb filamin, beta 0.046 1.1

Gdpd5 glycerophosphodiester phosphodiesterase domain containing 5 0.029 21.2

Gfap glial fibrillary acidic protein 0.0013 21.3

Gja1 gap junction protein, alpha 1 0.044 21.1

Gjc2 gap junction protein, gamma 2 0.00059 21.3

Gltp glycolipid transfer protein 0.023 21.2

Gm20634 predicted gene 20634 0.019 21.3

Gsn gelsolin 0.0071 21.2

Hadha hydroxyacyl-Coenzyme A dehydrogenase, alpha subunit 0.019 21.1

Herc1 hect domain and RCC1-like domain 1 0.039 1.1

Hist1h2bc histone cluster 1, H2bc 0.029 21.2

Hivep3 human immunodeficiency virus type I enhancer binding protein 3 0.010 1.2

Igfbp2 insulin-like growth factor binding protein 2 0.00090 21.5

Igfbpl1 insulin-like growth factor binding protein-like 1 0.023 22.3

Irs2 insulin receptor substrate 2 0.0022 1.3

Jam2 junction adhesion molecule 2 0.011 21.2

Lyz2 lysozyme 2 0.0043 21.7

Mag myelin-associated glycoprotein 0.0017 21.3

Mgl2 macrophage galactose N-acetyl-galactosamine specific lectin 2 2.6E-06 3.5

Mid1ip1 Mid1 interacting protein 1 (gastrulation specific G12-like (zebrafish)) 0.038 21.1

Mll1 myeloid/lymphoid or mixed-lineage leukemia 1 0.0020 1.2

Mvd mevalonate (diphospho) decarboxylase 0.048 21.2

Myoc myocilin 0.0017 21.4

Ndufa3 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3 0.022 21.2

E2-Regulated Gene Expression
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solute carrier 25 (Slc25a1). Regulation of ligase activity was

associated with Mid1ip1 and tribbles homolog 2 (Trib2). In

addition to its role in fatty acid synthesis, Mid1ip1 interacts with

Mid1, a ubiquitin ligase and microtubule associated protein

[58,59]. Trib2 functions as an adaptor for protein degradation

through interactions with the E3-ubiquitin ligase Cop1 [60].

Gelsolin (Gsn), which encodes an actin binding protein involved in

signaling and cytoskeletal remodeling [61] is associated with

negative regulation of protein complex disassembly.

Three networks (4–6) were not connected to any of the other

networks. Genes previously reported to be estrogen responsive in

various cell types were included in network 4 (orange). The genes

in this group included crystallin alpha b (Cryab), aquaporin 4

(Aqp4), and insulin-like growth factor binding protein 2 (Igfbp2),

which have been reported as E2-responsive genes in the mouse

uterus [62], cultured rat cortical neurons [63], and rat hippocam-

pal tissue, respectively [64,65]. Myelin is essential for proper nerve

conduction [66] and network 5 (yellow) contained several genes

associated with myelination. Fatty acid 2-hydroxylase (Fa2h),

plasma membrane proteolipid (Pllp), UDP galactosyltransferase

8A (Ugt8a), and tuberous sclerosis 1 (Tst1) have been associated

with oligodendrocytes, which produce myelin. Network 6 (purple)

Table 1. Cont.

Gene symbol Description FDR p-value Fold change

Nlrp3 NLR family, pyrin domain containing 3 0.0020 2.0

Nov nephroblastoma overexpressed gene 0.010 1.3

Nuak1 NUAK family, SNF1-like kinase, 1 0.0013 1.2

Olfml3 olfactomedin-like 3 7.0E-06 21.4

Pcnt pericentrin (kendrin) 0.038 1.1

Pdgfb platelet derived growth factor, B polypeptide 8.8E-08 1.3

Phf15 PHD finger protein 15 0.0013 1.2

Phf21b PHD finger protein 21B 0.021 1.2

Plk2 polo-like kinase 2 0.022 1.1

Pllp plasma membrane proteolipid 0.033 21.2

Prdx6 peroxiredoxin 6 0.043 21.1

Ptn pleiotrophin 0.016 21.2

Ptpn7 protein tyrosine phosphatase, non-receptor type 7 0.046 21.7

Rtp1 receptor transporter protein 1 0.0043 2.8

Serpinb1a serine (or cysteine) peptidase inhibitor, clade B, member 1a 0.011 21.5

Siglec1 sialic acid binding Ig-like lectin 1, sialoadhesin 0.048 1.9

Slc13a3 solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 3 0.014 21.4

Slc25a1 solute carrier family 25 (mitochondrial carrier, citrate transporter), member 1 0.019 21.2

Slc38a3 solute carrier family 38, member 3 0.048 21.2

Sntb2 syntrophin, basic 2 0.012 1.3

Sowahb sosondowah ankyrin repeat domain family member B 0.039 1.2

Spred2 sprouty-related, EVH1 domain containing 2 0.023 1.1

Srrm4 serine/arginine repetitive matrix 4 0.0017 1.2

Tcn2 transcobalamin 2 0.022 21.2

Tet3 tet methylcytosine dioxygenase 3 0.016 1.1

Tfrc transferrin receptor 0.0017 1.2

Tgfbr1 transforming growth factor, beta receptor I 7.1E-07 1.3

Tmem116 transmembrane protein 116 0.038 1.4

Top2a topoisomerase (DNA) II alpha 0.022 21.7

Trib2 tribbles homolog 2 (Drosophila) 0.017 1.2

Trp53inp2 transformation related protein 53 inducible nuclear protein 2 0.038 -1.1

Tsc1 tuberous sclerosis 1 0.017 1.1

Tst thiosulfate sulfurtransferase, mitochondrial 0.0052 21.2

Ugt8a UDP galactosyltransferase 8A 0.038 21.3

Unc5b unc-5 homolog B (C. elegans) 0.021 21.2

Vcam1 vascular cell adhesion molecule 1 0.016 21.3

Vstm4 V-set and transmembrane domain containing 4 0.038 21.4

Vwf Von Willebrand factor homolog 3.1E-05 1.6

doi:10.1371/journal.pone.0111975.t001
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Figure 1. Heatmaps comparing cerebral cortices from oil- and E2-treated mice. Hierarchical clustering was used to visualize the transcript
levels of (A) 88 genes that were significantly altered (FDR p,0.05) by E2 treatment or (B) 49 genes that were altered 1.2 fold or more by E2 treatment
(FDR p,0.05). Each column represents cortical tissue from one mouse (8 mice total) and rows indicate genes. Colors symbolize increased (red) or
decreased (blue) transcript levels.
doi:10.1371/journal.pone.0111975.g001

Figure 2. Validation of transcripts altered by E2 treatment. (A) Quantitative real-time PCR was conducted with gene-specific primers. The
normalized fold change 6 SEM was calculated using the delta-delta Ct method with Rpl7 as a control gene. The Student’s t-test was used to detect
significant differences in oil- and E2- treated animals (4 animals/treatment, *p,0.05).
doi:10.1371/journal.pone.0111975.g002
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included DNA topoisomerase 2A (Top2a) and basic helix loop

helix family, member 40 (Bhlhe40) which are both involved in

chromosome separation. However, Top2a has also been reported

to be expressed in cortical neurons [67] and Bhlhe40, also known

as Stra13, has been implicated in neuronal differentiation [68].

Thus the roles of these genes extend beyond chromosomal

separation.

The network analysis provided insight into the diverse array of

functions that were affected by E2 treatment. However, this

analysis is constrained by existing information in the databases

used, which consequently did not include all of the 88 genes we

identified. Thus we utilized literature searches to provide a more

comprehensive picture of the pathways and processes that were

affected by E2 treatment.

Signaling Pathways
The MAP kinase pathway plays a critical role in neuronal

plasticity and survival [53] and E2 has been implicated in inducing

rapid signaling through this pathway in neuroblastoma cells,

primary cortical neurons, cortical explants, and the cerebral cortex

in vivo [54,69–71]. To determine whether MAP kinase signaling

was activated after longer E2 treatment, we examined the level of

phosphorylated extracellular regulated kinase (pERK) in the

cortices of mice that had been treated with oil or E2 for 7 days.

In fact, the level of pERK was significantly increased in the E2-

treated animals (Fig. 4) demonstrating that E2 modulation of

pERK and MAP kinase signaling is not limited to acute exposures

(5–30 min), but is still enhanced after a longer treatment time.

We identified several E2-regulated genes in the cerebral cortex

that modulate the MAP kinase signaling pathway. Dual specificity

phosphatase 4 (Dusp4) dephosphorylates ERK [72] and is

increased by E2 in breast cancer cells [73]. Thus the E2-mediated

increase in Dusp4 expression could lead to decreased ERK

phosphorylation. Interestingly, expression of protein tyrosine

phosphatase, non-receptor type 7 (Ptpn7) was decreased with E2

treatment and may also be involved in ERK dephosphorylation

[74]. In addition, expression of a repressor of MAP kinase activity,

Spred2, [75] was modestly increased with E2 treatment. The fine-

tuned expression of these genes by E2 highlights the balance that is

needed between phosphorylation and dephosphorylation in the

MAP kinase pathway [74]. Dusp4, Ptpn7 and Spred2 are novel,

E2-responsive modulators of MAP kinase in the cerebral cortex.

Cerebral cortex microvasculature
The brain is one of the most highly perfused organs in the body

[76]. Proper brain function relies on maintenance of an extensive

network of capillaries that form the cerebral microvasculature,

which supplies oxygen and nutrients to meet the demands of this

highly metabolic tissue. The microvasculature is comprised of

endothelial cells surrounded by an extracellular matrix and a

Table 2. E2-regulated genes with the most decreased expression.

Gene symbol Description Fold decrease FDR p value

Cdhr1 cadherin-related family member 1 22.8 0.038

Igfbpl1 insulin-like growth factor binding protein-like 1 22.3 0.023

Ptpn7 protein tyrosine phosphatase, non-receptor type 7 21.7 0.046

Top2a topoisomerase (DNA) II alpha 21.7 0.022

Lyz2 lysozyme 2 21.7 0.0043

Fabp7 fatty acid binding protein 7, brain 21.6 0.0013

Serpinb1a serine (or cysteine) peptidase inhibitor, clade B, member 1a 21.5 0.011

Igfbp2 insulin-like growth factor binding protein 2 21.5 0.0009

Olfml3 olfactomedin-like 3 21.4 7.00E-06

Myoc myocilin 21.4 0.0017

doi:10.1371/journal.pone.0111975.t002

Table 3. E2-regulated genes with the most increased expression.

Gene symbol Description Fold increase FDR p value

Mgl2 macrophage galactose N-acetyl-galactosamine specific lectin 2 3.5 2.60E-06

Rtp1 receptor transporter protein 1 2.8 0.0043

Nlrp3 NLR family, pyrin domain containing 3 2 0.002

Siglec1 sialic acid binding Ig-like lectin 1, sialoadhesin 1.9 0.048

Agxt2l1 alanine-glyoxylate aminotransferase 2-like 1 1.8 3.10E-05

2410137F16Rik RIKEN cDNA 2410137F16 gene 1.7 0.02

Vwf Von Willebrand factor homolog 1.6 3.10E-05

Tmem116 transmembrane protein 116 1.4 0.038

Pdgfb platelet derived growth factor, B polypeptide 1.3 8.80E-08

Sntb2 syntrophin, basic 2 1.3 0.012

doi:10.1371/journal.pone.0111975.t003
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variety of cell types including neurons, astrocytes, microglia, and

pericytes [51]. This complex network is referred to as the

‘‘neurovascular unit’’ since cooperation between these cells is

necessary to maintain microvascular function [77]. Tight junctions

between endothelial cells, together with the surrounding astrocyte

end feet and pericytes form the blood-brain barrier (BBB), which

carefully regulates the exchange of nutrients, water and other

molecules. A dysfunctional BBB can lead to neurodegeneration

and is the hallmark of several brain injuries [78].

Previous studies have shown that E2 decreases BBB permeabil-

ity and thereby limits ischemic damage [79]. We identified several

genes involved in BBB regulation that were altered by E2

treatment. Pdgfb transcript levels were increased by E2 treatment.

Since Pdgfb binds to the Pdgfb receptor on pericytes [80] and mice

with low Pdgfb levels have a dysfunctional BBB [81], Pdgfb is

Table 4. E2-responsive networks and associated genes.

Biological process GO term or Pathway Genes

Network 1

Regulation of centrosome cycle Gja1, Plk2

Inactivation of MAPK activity Dusp4, Spred2

Cell-cell junction assembly Gja1, Ugt8a

Regulation of tissue remodeling Gja1, Tfrc

Regulation of mRNA splicing, via spliceosome Gja1, Srrm4

Carbohydrate derivative transport Gja1, Gltp

Regulation of signal transduction by p53 class mediator Gja1, Spred2

Long-term potentiation Gfap, Plk2

Regulation of cell junction assembly Gja1, Tsc1

Lens development in camera-type eye Cryab, Gja1, Tgfrb1

Regulation of phosphoprotein phosphatase activity Nuak1, Tsc1

rRNA transport Gja1, Tsc1, Tst

Network 2

Cerebellum morphogenesis Herc1, Pcnt

Vasoconstriction Apln, Ednrb, Pdgfb

Vasodilation Apln, Cnp, Pdgfb

Network 3

Fatty acid elongation Elovl5, Hadha

Triglyceride biosynthesis Elovl5, Slc25a1

Histone H4 acetylation Mll1, Phf15

Histone H3-K4 methylation Mll1, Tet3

Regulation of ligase activity Mid1ip1, Trib2

Lysine degradation Hadha, Mll1

Negative regulation of protein complex disassembly Gsn, Mid1ip1

Network 4

Response to estradiol stimulus Aqp4, Cryab, Igfbp2

Vasopressin-regulated water reabsorption Adcy9, Aqp4

Network 5

Myelination Fa2h, Pllp, Tsc1, Ugt8a

Network 6

Meiotic chromosome separation Bhlhe40, Top2a

Network 1 and 2

Olfactory lobe development Erbb4, Pcnt

Regulation of phosphatidylinositol 3-kinase activity Erbb4, Pdgfb

Tissue regeneration Erbb4, Gja1

Regulation of lipid kinase activity Erbb4, Pdgfb

Network 2 and 3

Positive regulation of fatty acid metabolic process Irs2, Mid1ip1

Fatty acid beta oxidation Hadha, Irs2

Regulation of polysaccharide metabolic process Irs2, Pdgfb

doi:10.1371/journal.pone.0111975.t004
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necessary for pericyte proliferation and maintenance [82,83] and a

functional neurovascular unit. Therefore, E2 may be acting to

stimulate synthesis of Pdgfb in pericytes and endothelial cells,

which could enhance autocrine and paracrine signaling to support

BBB function.

E2 decreased the expression of Aqp4, a water transporter

present on astrocyte end feet. These findings are in agreement with

a previous report which indicated that E2 decreases Aqp4

expression and reduces hypoxia-induced swelling of rat cortical

astrocytes in vitro [63]. E2 also decreased the expression of two

solute carriers, Slc13a3, a sodium decarboxylate cotransporter and

Slc38a3, an amino acid transporter, that have been associated with

the BBB [84]. Together, the E2 mediated reduction in Aqp4,

Slc13a3, and Slc38a3 could alter the exchange of water and

solutes at the BBB and help to maintain fluid balance and

homeostasis in the brain.

Von Willebrand Factor (Vwf) was increased by E2 treatment.

Vwf is highly expressed in endothelial cells of brain microvascu-

lature [85] and Vwf-null mice have increased damage compared

to their wild-type counterparts after exposure to hypoxia and

reoxygenation [86], suggesting that this factor is necessary for BBB

adaptability and may help the brain to recover from an hypoxic

event.

E2 has antinflammatory effects on the vasculature [87]. We

found that E2 treatment decreased Vcam1 expression in the

cerebral cortex. Vcam1 attracts leukocytes and monocytes to

inflamed endothelial cells [88]. It has been proposed that E2 may

decrease inflammation of endothelial cell cultures that have been

subjected to an inflammatory agent by decreasing Vcam1

expression [89]. In addition, the E2 induced increase of Tgfb

receptor 1 (Tgfbr1) may increase the sensitivity of Tgfb signaling,

thus reducing inflammation [90]. The combined effects of E2 on

maintaining the BBB (Pdgfb, Aqp4, Slc13a3, Slc38a3, Vwf) and

reducing inflammation (Vcam1, Tgfbr1) could help to protect the

cerebral cortex from injury.

Figure 3. Networks of E2-regulated genes. ClueGO analysis classified the 88 E2-regulated genes into 6 networks. White nodes indicate that a
biological process is associated with two networks. Node size indicates the statistical significance of the biological process represented. Thus, larger
nodes indicate greater statistical significance.
doi:10.1371/journal.pone.0111975.g003
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Oligodendrocytes and Myelin
Oligodendrocytes insulate neuronal axons by extending pro-

cesses that produce lipid rich myelin. Myelin ensheathment of

axons is important for nerve conduction and the loss of myelin

leads to neurodegeneration. We were surprised at the number of

oligodendrocyte-associated genes that were E2 responsive. Ex-

pression of myocillin (Myoc), myelin-associated glycoprotein

(Mag), UDP galactosyltransferase 8a (Ugt8a), fatty acid 2-

hydrolase (Fa2h), 29, 39-cyclic nucleotide 39 phosphodiesterase

(Cnp), CKLF-like MARVEL transmembrane domain containing

5 (Cmtm5) and plasma membrane proteolipid (Pllp) were all

decreased by E2 treatment. A previous study found that turnover

of oligodendrocytes in female rodents was increased and that Cnp

protein expression was less than in males [91]. The decreased

expression of these genes could indicate that E2 increases

oligodendrocyte turnover rates in the cerebral cortex as well.

However, much remains to be learned about the molecular

consequences of decreased expression in this subset of oligoden-

drocyte- associated genes.

Neurite extension
Neurite outgrowth is important for neuronal development,

communication and function [92]. Impairment of neurite exten-

sion is associated with aging and neurodegeneration [93]. E2 can

increase neurite extension in a variety of brain regions through

several pathways including growth factor signaling, PI3K, and

MAP kinase pathways [94]. We identified several genes involved

in neurite extension that were altered by E2 treatment. E2

treatment modestly increased expression of Erbb4, which encodes

a transmembrane protein that binds to neuregulin 1 (Nrg1).

Erbb4-Nrg1signaling enhances neurite outgrowth through activa-

tion of the PI3K and MAP kinase pathways [95]. The E2-

mediated increase in Erbb4 in the cerebral cortex could enhance

neuritogenesis.

The expression of Igfbpl1 and Igfbp2 was decreased by E2

treatment. Igfbpl1 and Igfbp2 bind and sequester growth factors

such as Igf1 [96]. Although Igfbpl1 is expressed in the developing

mouse forebrain [97], the role of Igfbpl1 in the cerebral cortex has

not been examined. In breast cancer cells, a decrease in Igfbpl1

has been associated with an increase in Igf1 levels [98]. E2

Figure 4. E2 increases pERK protein levels. (A)Western blot analysis was used to monitor pERK and total ERK levels in the cortices of mice that
had been treated with oil or E2 for 7 days. (B) pERK values were normalized to total ERK and are displayed as the normalized fold change 6 SEM. The
Student’s t-test was used to detect significant differences in oil- and E2- treated animals (*p,0.05). The number of animals in each treatment group is
indicated at the base of each bar.
doi:10.1371/journal.pone.0111975.g004
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decreases Igfbp2 in the hippocampus [64] which can modulate

Igf1 signaling pathways [99]. Moreover, Igf1 and E2 act

synergistically to promote neurite outgrowth [100]. The E2-

mediated decrease in expression of both Igfbpl1 and Igfbp2 could

potentially allow growth factors such as Igf1 to circulate and

promote neurite extension.

Glial fibrillary acidic protein (Gfap), an intermediate filament

protein specifically expressed by astrocytes, can inhibit neurite

outgrowth [47,101]. The E2-mediated decrease in expression of

Gfap in our studies suggests that E2 supports neurite extension,

and could prevent an age-related increase in Gfap expression.

Overall Implications
E2 alters gene expression through classical pathways that

involve binding of the E2-occupied receptor to DNA. E2 can also

act through non-classical pathways, by activation of membrane-

associated proteins and rapid signaling pathways such as MAP

kinase and PI3K, both of which have been shown to be important

in the brain [102,103]. It has been suggested that cross-talk occurs

amongst the various E2 signaling pathways [104,105] and that the

cumulative E2-activation of several pathways may be required for

effective E2-mediated neuroprotection [102].

Our study reflects the complex nature of E2 action and suggests

that multiple signaling pathways in the cerebral cortex converge to

orchestrate a diverse array of molecular events including those

related to cerebrovascular function, neurite outgrowth, and brain

homeostasis. The molecular impact of E2 treatment has particular

relevance when considering the physiological consequences of

menopause and estrogen replacement therapy. Further under-

standing of these events may provide insight into mechanisms

responsible for estrogen-mediated gene expression and promote

development of targeted treatments that support brain homeosta-

sis.
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