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Abstract
Objectives: Approximately 20%–25% of the global adult population is affected
by metabolic syndrome (MetS), highlighting its status as a major public
health concern. This study aims to investigate the predictive value of cardi-
orenal biomarkers on mortality among patients with MetS, thus optimizing
treatment strategies.
Methods: Utilizing data from the National Health and Nutrition Examination
Survey (NHANES) cycles between 1999 and 2004, we conducted a prospective
cohort study involving 2369 participants diagnosed with MetS. We evaluated
the association of cardiac and renal biomarkers with all‐cause and cardio-
vascular disease (CVD) mortality, employing weighted Cox proportional
hazards models. Furthermore, machine learning models were used to predict
mortality outcomes based on these biomarkers.
Results: Among 2369 participants in the study cohort, over a median follow‐
up period of 17.1 years, 774 (32.67%) participants died, including 260
(10.98%) from CVD. The highest quartiles of cardiac biomarkers (N‐terminal
pro‐B‐type natriuretic peptide [NT‐proBNP]) and renal biomarkers (beta‐2
microglobulin, [β2M]) were significantly associated with increased risks of all‐
cause mortality (hazard ratios [HRs] ranging from 1.94 to 2.06) and CVD
mortality (HRs up to 2.86), after adjusting for confounders. Additionally, a
U‐shaped association was observed between high‐sensitivity cardiac troponin
T (Hs‐cTnT), creatinine (Cr), and all‐cause mortality in patients with MetS.
Machine learning analyses identified Hs‐cTnT, NT‐proBNP, and β2M as
important predictors of mortality, with the CatBoost model showing superior
performance (area under the curve [AUC] = 0.904).
Conclusion: Cardiac and renal biomarkers are significant predictors of
mortality in MetS patients, with Hs‐cTnT, NT‐proBNP, and β2M emerging as
crucial indicators. Further research is needed to explore intervention strat-
egies targeting these biomarkers to improve clinical outcomes.
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Key points
• Cardiac and renal biomarkers are significantly associated with metabolic
syndrome (MetS) mortality.
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• High‐sensitivity cardiac troponin T (Hs‐cTnT) and creatinine show a
U‐shaped association with all‐cause mortality risk among MetS patients.

• Hs‐cTnT, N‐terminal pro‐B‐type natriuretic peptide, and beta‐2 micro-
globulin are effective biomarkers for predicting death in MetS.

1 | INTRODUCTION

Metabolic syndrome (MetS) represents a condition
marked by the convergence of various cardiovascular
and metabolic risk factors.1 This definition encompasses
a range of risk factors, including elevated blood pres-
sure, abnormal blood sugar, abnormal lipid metabolism,
and central obesity.2 The collective impact of these
factors increases the risk of cardiocerebrovascular dis-
eases and diabetes. Hypertension stands out as the most
critical component in MetS,3 closely intertwined with
insulin resistance and abnormal lipid metabolism.4–6 In
2012, about one‐third of the adult population in the
United States (US) suffered from MetS.7 Globally, the
prevalence of MetS stands at 20%–25%, signifying an
escalating concern for public health.8 One study was
conducted from 1999 to 2014, the all‐cause mortality
and cardiocerebrovascular mortality in MetS patients
were 14.5% and 2.9%, respectively.9 MetS is significantly
associated with increased mortality, especially cardio-
vascular disease (CVD) mortality.10

Cardiac biomarkers, such as high‐sensitivity cardiac
troponin T and I (Hs‐cTnT and Hs‐cTnI) and N‐terminal
pro‐B‐type natriuretic peptide (NT‐proBNP), play a
crucial role in evaluating heart function and assessing
the risk of heart diseases.11–14 In patients with hyper-
tension, sustained high blood pressure load can lead to
changes in cardiac structure and function, increasing
the risk of myocardial cell damage.15 Consequently,
elevated levels of Hs‐cTnT and Hs‐cTnI might accelerate
the progression of MetS and thus increase the mortality
risk, especially in cases of MetS combined with hyper-
tension. However, the robustness of this association,
particularly in predicting the death risk in MetS, is not
well‐established due to insufficient evidence. Research
by Pokharel indicates that the mortality risk in MetS
associated with Hs‐cTnT levels correlates with its com-
ponents, highlighting uncertainty in the predictive out-
comes of the biomarker levels for varying numbers of
MetS components.16 In emergency medical situations,
Hs‐cTnT level is commonly employed as a predictor of
CVD mortality risk. Studies on the long‐term effective-
ness of this biomarker in metabolic disorders and car-
diovascular risk assessment are still limited.

Likewise, renal biomarkers, such as creatinine (Cr),
cystatin C (CysC), and beta‐2 microglobulin (β2M), serve
as pivotal instruments in evaluating kidney function
and monitoring the risk of chronic kidney disease
(CKD).17–19 Increasing evidence suggests that renal
dysfunction is a significant factor in the increased death

risk of patients with MetS,20,21 especially considering the
high risk of CVD. However, the accuracy and consist-
ency of these biomarkers in predicting the mortality risk
in MetS patients remain uncertain. Therefore, precise
identification of cardiac and renal biomarker levels in
MetS patients could help in formulating intensified
treatment and prevention strategies for these patients.
Additionally, this could enable researchers to identify
individuals at high risk.

In this context, though the diagnostic criteria for
MetS have been clearly established, the identification of
effective biomarkers for predicting its mortality risk
remains a challenge. The importance of cardiac and
renal biomarkers in mortality risk prediction in MetS
patients has not been accessed. This study aims to
investigate the role of cardiac and renal biomarkers in
predicting the mortality risk among patients with MetS.
We hypothesize that a combination of these biomarkers
may offer more insights into long‐term health outcomes
in patients with MetS, promising not only to optimize
treatment options for patients and provide a more
comprehensive biomarker framework for risk assess-
ment and management of MetS but also to help reduce
future risk of CVD and diabetes.

2 | METHOD

2.1 | Study population

The National Health and Nutrition Examination Survey
(NHANES) is a multi‐cycle, cross‐sectional survey that
integrates population‐specific health questionnaires and
physical examinations to assess the health and nutri-
tional status of adults and children in the United States.
The survey uses a complex, stratified, multistage prob-
ability sampling method, ensuring that the selected
samples can effectively represent the entire US popula-
tion.22 This study used data from three survey cycles
from 1999 to 2004, involving the recruitment of 31,126
participants. Individuals under 18 years of age
(n = 14,065), those who reported pregnancy (n = 715),
those missing fasting blood sample data (n = 9890),
those with fewer than two metabolic abnormality in-
dicators (n = 3662), those missing cardiac and renal
biomarker data (n = 423), and those missing death data
(n = 2) were excluded, resulting in a final sample of 2369
participants (Supporting Information: Figure S1). The
NHANES program has been approved by the Institu-
tional Review Board of the National Center for Health
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Statistics (NCHS) and participants provided signed in-
formed consent forms.

2.2 | MetS

According to the criteria set forth by the American
College of Endocrinology (ACE) and the American
Association of Clinical Endocrinologists (AACE), MetS is
considered present when three or more of the following
five conditions exist2: (1) increased waist circumference:
≥88 cm in women and ≥102 cm in men; (2) elevated
triglycerides: ≥150mg/dL; (3) low high‐density lipo-
protein cholesterol (HDL‐C): <40mg/dL in men and
<50mg/dL in women; (4) elevated blood pressure: sys-
tolic blood pressure (SBP) ≥ 130mmHg or diastolic
blood pressure (DBP) ≥ 85mmHg, or self‐reported use of
antihypertensive medication; and (5) elevated fasting
plasma glucose (FPG): FPG ≥ 100mg/dL or use of
glucose‐lowering drugs.

Clinical data for MetS indicators were obtained at
the mobile examination centers (MEC). Blood samples
were collected from participants who had fasted for ≥8 h
to determine FPG, HDL‐C, and serum triglyceride con-
centrations. Waist circumference and blood pressure
were measured using standard methods. After the par-
ticipant had rested in a quiet sitting position for 5min,
blood pressure was measured on the right arm using a
mercury sphygmomanometer, with three consecutive
readings taken. If needed, take the fourth reading.

2.3 | Cardiorenal biomarkers

During the NHANES 1999–2004 survey cycles, mea-
surements of Hs‐cTnT, Hs‐cTnI, NT‐proBNP, β2M,
CysC, and Cr were conducted on stored residual serum
samples. The limit of detection (LOD) for Hs‐cTnT was
3 ng/L, with a total imprecision expressed as a
coefficient of variation between 2.0% and 3.1%. The LOD
for Hs‐cTnI was 1.6 ng/L, with coefficients of variation of
3.8% (12–28 ng/L), 2.7% (120–280 ng/L), and 2.6%
(9000–21,000 ng/L). NT‐proBNP (Roche Diagnostics)
had detection limits of 5 and 35,000 pg/mL, with a
coefficient of variation of 2.7%–3.1%. Serum β2M and
CysC were measured on the automated multi‐channel
analyzer Siemens Dimension Vista 1500 (Siemens
Healthcare Diagnostics). The detection limits for β2M
were 0.72 and 23.0 mg/L, with coefficients of variation
of 3.42%–3.88%. Cystatin C had detection limits of
0.23 and 8.00 mg/L, with coefficients of variation of
3.54%–4.36%. Serum creatinine was determined using
the Jaffé rate reaction.

For the biomarkers NT‐proBNP, β2M, and CysC,
when the analysis results were below the lower LOD,
they were imputed using the estimated value of the limit
of detection divided by the square root of 2 (LOD/ 2 ).

For results above the upper LOD, impute with an esti-
mated value equal to the upper LOD value. Overall,
NT‐proBNP measurements for 87 individuals were
imputed as LOD/ 2 , β2M measurements for one indi-
vidual each were imputed as LOD/ 2 and upper LOD,
respectively, and additionally, CysC measurements for 3
individuals were imputed as LOD/ 2 .

2.4 | Covariates

Covariates were acquired through standardized ques-
tionnaires during interviews, including age, race, sex,
marital status, education, poverty income ratio (PIR),
smoking status, and drinking status. Marital status was
categorized into married or living with partner, widowed
or divorced or separated, and never married. Education
was classified as less than high school (low), high school
or equivalent (medium), and college graduate or above
(high). PIR was divided into <1.0 and ≥1.0. Smoking
status was categorized into never smoked, former
smoker, and current smoker. Drinking status was
divided into nondrinker, light drinker, moderate
drinker, and heavy drinker. Height and weight were
measured at the MEC, with body mass index (BMI)
calculated as weight (kg) divided by height (m) squared.
The determination of CVD history is made by answering
the question, “Ever told had congestive heart failure/
coronary heart disease/angina or angina pectoris/heart
attack/stroke?” CKD is defined as an estimated glo-
merular filtration rate (eGFR) < 60mL/min/1.73 m². The
eGFR is calculated using the CKD‐EPI 2021 equation
based on serum Cr and CysC.23 Diabetes is defined as
plasma HbA1c ≥ 6.5% or FPG ≥ 126mg/dL, self‐reported
previous diagnosis of diabetes, or use of insulin or oral
hypoglycemic medication.24 The diagnosis of cancer is
based on the question, “Have you ever been told you
had cancer or any type of malignant tumor?” Missing
covariates were imputed using multiple imputation
methods.

2.5 | Ascertainment of mortality

All individuals included in the study were followed up.
Mortality from all causes and CVD was determined by
matching with the national death index (NDI) up to
December 31, 2019. The primary causes of death were
identified based on ICD‐10 codes. CVD mortality was
defined as deaths caused by heart diseases (I00–I09, I11,
I13, I20–I51) and cerebrovascular diseases (I60–I69).25

2.6 | Statistical analysis

Baseline characteristics of participants were compared
by outcome event occurrence. Continuous variables
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with a normal distribution are presented as means with
standard deviations (SD), whereas those with a non-
normal distribution are presented as medians with in-
terquartile ranges (IQR). Categorical variables are ex-
pressed in frequencies and percentages. Between‐group
differences for continuous variables were assessed using
the Student's t‐test or Wilcoxon rank–sum test,
whereas the χ2 test or Fisher's exact test for categorical
variables.

Univariate and multivariate weighted Cox pro-
portional hazards models were employed to assess
the associations of Hs‐cTnT (continuous and quar-
tiles), Hs‐cTnI (continuous and quartiles), NT‐
proBNP (continuous and quartiles), Cr (continuous
and quartiles), β2M (continuous and quartiles), and
CysC (continuous and quartiles) with mortality from
MetS. Considering the skewed distribution of vari-
ables, log‐transformed biomarkers were used for
regression analysis. Three models were formulated:
Model 1 without adjustment; Model 2 adjusted for
age, sex, and race; Model 3 adjusted for age, sex,
race, marital status, PIR, education, drinking status,
smoking status, BMI, CVD, CKD, diabetes, and can-
cer. Hazard ratio (HR) and 95% confidence interval
(CI) were used to assess the risk in the models.
Additionally, restricted cubic spline (RCS) curves
based on multivariate weighted Cox regression were
plotted to visualize the linear or nonlinear relation-
ships between biomarkers and all‐cause mortality,
and CVD mortality. We also performed subgroup
analysis by potential confounders.

Five machine learning models, random forest
(RF), support vector machine (SVM), categorical
boosting (CatBoost), eXtreme gradient boosting
(XGBoost), and light gradient boosting machine
(LightGBM), were employed to predict mortality
from MetS using cardiac and renal biomarkers. The
data were split into a training set (70%, 1658 in-
dividuals) and a test set (30%, 711 individuals).
Models performance metrics included area under the
curve (AUC), accuracy, precision, recall, and F1 score
for both the training and test sets. Based on the best
machine learning model from the training and test
sets, the relative importance of cardiac and renal
biomarkers was determined using Shapley Additive
exPlanation (SHAP) values. A beewarm plot is a more
complex and informative representation based on
SHAP values, which not only indicates the relative
importance of features but also reveals their actual
relationship with the predicted outcome. The top
three biomarkers were selected for incorporating into
the final predictive model, combined with con-
founding variables, to construct the optimal model
for predicting the mortality risk from MetS.

All analyses were performed using R software, with
a two‐tailed test, and a p‐value < 0.05 was considered
statistically significant.

3 | RESULTS

3.1 | Baseline characteristics

In 2369 NHANES study population (weighted population
75,042,131), there were 1157 males and 1229 non‐Hispanic
Whites (Table 1). Among the MetS patients who experi-
enced outcome events, 602 had elevated blood pressure
and were more likely to have underlying conditions.
Median and IQR levels of serum Cr by outcome event
occurrence were 70.72 [61.90–88.40] μmol/L, 79.56 [61.90–
97.24] μmol/L, respectively, with no significant differences
(p > 0.05). Significant differences were observed in the
median levels of Hs‐cTnT, Hs‐cTnI, NT‐proBNP, CysC, and
β2M across different groups (p < 0.001). Furthermore, there
were no significant differences in Cr across different survey
periods (Supporting Information: Table S1). At the same
time, we compare the baseline characteristics of the
included and excluded populations (Supporting Informa-
tion: Table S2). The two groups showed no significant dif-
ferences in terms of gender, educational level, and drink
status (p > 0.05), indicating that the two groups are com-
parable in these aspects.

3.2 | Associations between cardiorenal
biomarkers and mortality risk

During the follow‐up, a total of 774 (32.67%) participants
died from various causes, including 260 (10.98%) CVD‐
related deaths. Table 2 shows the relationship between
different cardiorenal biomarkers and all‐cause mortality.
After multivariable adjustment (Model 3), compared to the
control group (Q1), the highest quartile of NT‐proBNP, and
β2M were associated with an increased risk of all‐cause
mortality by 106% (HR 2.06, 95% CI 1.50–2.83), 94% (HR
1.94, 95% CI 1.24–3.05), respectively. In addition, a similar
association was found between cardiorenal biomarkers and
CVD mortality (Table 3). After adjusting for potential con-
founders (Model 3), the HRs for the highest quartile of Hs‐
cTnI, NT‐proBNP, and β2M compared with the control
group (Q1) were 2.31 (95% CI 1.25–4.28), 2.86 (95% CI
1.26–6.48), and 2.80 (95% CI 1.09–7.18), respectively.

3.3 | Dose–response relationship between
cardiorenal biomarkers and mortality

We used RCS analysis to further explore the potential
nonlinear associations between biomarkers and MetS
mortality. The associations of biomarkers with all‐cause
mortality risk is visualized in Figure 1. Hs‐cTnT, Hs‐cTnI, Cr,
and CysC showed significant nonlinear associations with
all‐cause mortality in MetS (p < 0.05 for nonlinearity),
whereas NT‐proBNP and β2M exhibited positive
linear associations (p > 0.05 for nonlinearity). A nonlinear
association was found only between Cr level and CVD
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TABLE 1 Characteristics of study population by outcome event occurrence.

Characteristics Total (n= 2369)
Without outcome events
(n= 1595)

With outcome events
(n= 774) p‐Value

Age (years) 51.86 (19.69) 43.52 (16.7) 69.04 (13.1) <0.001

Gender

Male 1157 (48.8) 746 (46.8) 411 (53.1) <0.05

Female 1212 (51.2) 849 (53.2) 363 (46.9)

Race/ethnicity <0.001

Mexican American 565 (23.8) 406 (25.5) 159 (20.5)

Other Hispanic 90 (3.7) 59 (3.7) 31 (4.0)

Non‐Hispanic White 1229 (51.8) 780 (48.9) 449 (58.0)

Non‐Hispanic Black 408 (17.2) 292 (18.3) 116 (15.0)

Other Race 77 (3.2) 58 (3.6) 19 (2.5)

Education <0.001

≤11th grade 808 (34.1) 492 (30.8) 316 (40.8)

High school graduate or equivalent 607 (25.6) 419 (26.3) 188 (24.3)

More than high school 954 (40.3) 684 (42.9) 270 (34.9)

Marital status <0.001

Married/Living with partner 1409 (59.5) 967 (60.6) 442 (67.1)

Widowed/Divorced/Separated 526 (22.2) 245 (15.4) 281 (36.3)

Never married 434 (18.3) 383 (24.0) 51 (6.6)

PIR 0.18

≤1 422 (17.8) 272 (17.1) 150 (19.4)

>1 1947 (82.2) 1323 (82.9) 624 (80.6)

Drink status <0.001

Never 494 (20.8) 294 (18.4) 200 (25.8)

Light 685 (28.9) 462 (29.0) 223 (28.8)

Moderate 473 (20.0) 353 (22.1) 120 (15.5)

Heavy 717 (30.3) 486 (30.5) 231 (29.8)

Smoke status <0.001

Never 1180 (49.8) 855 (53.6) 325 (42.0)

Former 700 (29.5) 376 (23.6) 324 (41.9)

Current 489 (20.7) 364 (22.8) 125 (16.1)

BMI (kg/m2) <0.001

<18.5 27 (1.1) 20 (1.3) 7 (0.9)

18.5–24.9 593 (25.0) 439 (27.5) 154 (19.9)

25–30 802 (33.9) 517 (32.4) 285 (36.8)

≥30 947 (40.0) 619 (38.8) 328 (42.4)

MetS component <0.001

Increased waist circumference 1466 (61.9) 906 (56.8) 560 (72.4)

Elevated triglycerides 1047 (44.2) 632 (39.6) 415 (53.6)

Low HDL‐C 967 (40.8) 645 (40.4) 322 (41.6)

(Continues)
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mortality (p < 0.05 for nonlinearity, Supporting Information:
Figure S2).

3.4 | Subgroup analysis

In the subgroup analysis of all‐cause mortality in patients
with MetS and cardiorenal biomarkers (Supporting Infor-
mation: Table S4), after multivariable adjustment, the risk
of death in women aged ≥60 years increased with higher
levels of Hs‐cTnT, Hs‐cTnI, NT‐proBNP, and β2M (p < 0.05,
HR> 1). Similar results were observed in the subgroup
analysis of cardiovascular mortality (Supporting Informa-
tion: Table S5). Furthermore, we applied Spearman's rank
correlation to estimate the correlation between age and
biomarkers (Supporting Information: Figure S3). All six
biomarkers were positively correlated with age, with the
correlation coefficient for NT‐proBNP being 0.64 and for Cr
being 0.18. Meanwhile, among patients with MetS without
comorbidities, NT‐proBNP was a risk factor for both all‐
cause and CVD mortality, whereas β2M and Hs‐cTnI were
risk factors for all‐cause mortality and CVD mortality,
respectively.

3.5 | Performance comparison of
machine learning models

To determine the optimal machine learning model
for predicting mortality in MetS, the 2369 study
subjects were randomly divided into a training set

(70%, N = 1658) and a testing set (30%, N = 711).
Through the comparison of the training set and the
testing set, it is found that the baseline character-
istics of the two groups of objects are comparable
(Supporting Information: Table S3). Six biomarkers
were included, Hs‐cTnT, Hs‐cTnI, NT‐proBNP, Cr, CysC,
and β2M, to construct five machine learning models,
SVM, RF, XGBoost, LightGBM, and CatBoost. We utilized
five evaluation metrics—AUC, accuracy, precision, recall,
and F1 score—to assess the performance of these
machine learning models in the training and testing
cohorts. In the training set, the RF model exhibited the
best predictive performance, with all evaluation metrics
being 1. In the testing set, the CatBoost model demon-
strated the highest AUC (0.862), accuracy (0.805), preci-
sion (0.832), recall (0.892), and F1 (0.861), followed by the
SVM (0.858), RF (0.853), XGBoost (0.847), and LightGBM
(0.828) models (Supporting Information: Table S6).
Figure 2A shows the AUC value with 95% CI for five
machine learning models, and Figure 2B,C shows the
receiver operating characteristic (ROC) curves for RF and
CatBoost, respectively.

3.6 | Global and local explanations of the
machine learning models

To explain how machine learning models predict mortality
in MetS, we aimed to elucidate the impact of each bio-
marker on the predictive models through variable impor-
tance and SHAP values. Ranking the variable importance

TABLE 1 (Continued)

Characteristics Total (n= 2369)
Without outcome events
(n= 1595)

With outcome events
(n= 774) p‐Value

Elevated blood pressure 1310 (55.3) 708 (44.4) 602 (77.8)

Elevated FPG 1240 (52.3) 689 (43.2) 551 (71.2)

CVD 308 (13.0) 96 (6.0) 212 (27.4) <0.001

CKD 182 (7.7) 16 (1.0) 166 (21.4) <0.001

Diabetes 416 (17.6) 178 (11.2) 238 (30.7) <0.001

Cancer 213 (9.0) 79 (5.0) 134 (17.3) <0.001

Hs‐cTnT (ng/L) 6.28 [4.34–10.3] 5.14 [3.81–7.28] 11.21 [7.22–17.88] <0.001

Hs‐cTnI (ng/L) 3.23 [1.7–6.08] 2.54 [1.38–4.46] 5.46 [3.11–10.22] <0.001

NT‐proBNP (pg/mL) 52.49 [22.3–122] 37.03 [16.87–71.10] 133.35 [58.43–313.30] <0.001

β2M (mg/L) 1.99 [1.68–2.43] 1.83 [1.60–2.12] 2.48 [2.06–3.19] <0.001

CyC (mg/L) 0.78 [0.68–0.91] 0.73 [0.65–0.83] 0.92 [0.80–1.13] <0.001

Cr (μmol/L) 70.72 [61.9–88.4] 70.72 [61.9–88.4] 79.56 [61.9–97.24] 0.46

Follow‐up time (years) 17.08 [14.2–18.4] 17.83 [16.93–18.75] 9.67 [5.58–14.00] <0.001

Note: Data are presented as mean ± SD, n (%), or median and IQR.

Abbreviations: β2M, beta‐2 microglobulin; BMI, body mass index; CKD, chronic kidney disease; Cr, creatinine; CVD, cardiovascular disease; CysC, cystatin C; FPG,
fasting plasma glucose; HDL‐C, high‐density lipoprotein cholesterol; Hs‐cTnT, high‐sensitivity cardiac troponin T; Hs‐cTnI, high‐sensitivity cardiac troponin L; MetS,
metabolic syndrome; NT‐proBNP, N‐terminal pro‐B‐type natriuretic peptide.
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TABLE 2 Association of cardiorenal biomarkers with all‐cause mortality.

Biomarker
Model 1 Model 2 Model 3
HR (95%CI) HR (95%CI) HR (95%CI)

Log‐Hs‐cTnT 19.29 (12.7–29.3)** 3.35 (1.99–5.62)** 1.91 (1.11–3.27)*

Q1 Ref Ref Ref

Q2 1.39 (0.97–1.99) 0.74 (0.50–1.09) 0.74 (0.50–1.11)

Q3 3.88 (2.80–5.37)** 0.92 (0.63–1.38) 0.86 (0.57–1.31)

Q4 10.8 (7.70–15.11)** 1.53 (0.99–2.36) 1.19 (0.74–1.91)

ptrend <0.01 <0.01 >0.05

Log‐Hs‐cTnI 3.07 (2.34–4.02)** 1.59 (1.31–1.93)** 1.33 (1.08–1.64)**

Q1 Ref Ref Ref

Q2 1.65 (1.08–2.53)* 0.80 (0.53–1.21) 0.77 (0.50–1.19)

Q3 2.94 (2.10–4.13)** 0.86 (0.64–1.16) 0.80 (0.59–1.08)

Q4 5.79 (4.43–7.55)** 1.55 (1.17–2.06)** 1.24 (0.92–1.65)

ptrend <0.01 <0.01 <0.01

Log‐NT‐proBNP 5.35 (4.43–6.45)** 2.21 (1.86–2.62)** 1.89 (1.55–2.29)**

Q1 Ref Ref Ref

Q2 1.50 (1.06–2.13)* 1.02 (0.67–1.56) 1.09 (0.71–1.65)

Q3 2.76 (2.00–3.80)** 1.29 (0.93–1.78) 1.32 (0.97–1.78)

Q4 9.28 (6.86–12.55)** 2.28 (1.64–3.17)** 2.06 (1.50–2.83)**

ptrend <0.01 <0.01 <0.001

Log‐Cr 17.9 (6.16–51.9)** 2.70 (0.76–9.56) 0.68 (0.14–3.33)

Q1 Ref Ref Ref

Q2 1.28 (0.92–1.76) 0.81 (0.60–1.11) 0.86 (0.62–1.18)

Q3 1.32 (0.93–1.87) 0.71 (0.50–1.01) 0.71 (0.49–1.04)

Q4 3.38 (2.47–4.63)** 1.18 (0.86–1.62) 0.89 (0.62–1.28)

ptrend <0.01 >0.05 >0.05

Log‐CysC 261.2 (78.98–863.6)** 21.34 (9.36–48.67)** 7.01 (2.14–22.99)**

Q1 Ref Ref Ref

Q2 1.62 (1.00–2.61)* 1.06 (0.66–1.73) 1.14 (0.68–1.91)

Q3 3.50 (2.15–5.71)** 1.29 (0.77–2.16) 1.29 (0.76–2.21)

Q4 10.21 (6.77–15.40)** 1.69 (1.09–2.63)* 1.35 (0.83–2.17)

ptrend <0.01 <0.01 >0.05

Log‐β2M 109 (34.8–341.6)** 29.76 (16.34–54.20)** 20.75 (9.47–45.48)**

Q1 Ref Ref Ref

Q2 2.03 (1.31–3.15)** 1.12 (0.77–1.63) 1.15 (0.78–1.70)

Q3 3.94 (2.36–6.57)** 1.31 (0.79–2.16) 1.29 (0.77–2.16)

Q4 12.62 (8.41–18.96)** 2.32 (1.52–3.53)** 1.94 (1.24–3.05)**

ptrend <0.01 <0.01 <0.01

Note: Model 1: Unadjusted model. Model 2: Adjusted for age, race, and gender. Model 3: Model 2+ education, marital status, PIR, smoke status, drink status, BMI, CVD,
CKD, diabetes, and cancer.

Abbreviations: β2M, beta‐2 microglobulin; BMI, body mass index; CKD, chronic kidney disease; CI, confidence interval; Cr, creatinine; CysC, cystatin C; CVD,
cardiovascular disease; HR, hazard ratio; Hs‐cTnT, high‐sensitivity cardiac troponin T; Hs‐cTnI, high‐sensitivity cardiac troponin L; NT‐proBNP, N‐terminal pro‐B‐type
natriuretic peptide.

**p < 0.01; *p < 0.05.
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TABLE 3 Association of cardiorenal biomarkers with CVD mortality.

Biomarker
Model 1 Model 2 Model 3
HR (95%CI) HR (95%CI) HR (95%CI)

Log‐Hs‐cTnT 29.71 (16.81–52.53)** 6.09 (3.29–11.30)** 2.79 (1.18–6.63)*

Q1 Ref Ref Ref

Q2 2.60 (1.02–6.60)* 1.37 (0.52–3.61) 1.36 (0.49–3.79)

Q3 8.28 (3.34–20.50)** 1.92 (0.72–5.12) 1.67 (0.59–4.69)

Q4 25.38 (9.92–64.92)** 3.47 (1.28–9.40)* 2.33 (0.79–6.85)

ptrend <0.01 <0.01 <0.05

Log‐Hs‐cTnI 4.21 (2.83–6.26)** 2.59 (1.90–3.53)** 2.07 (1.45–2.95)**

Q1 Ref Ref Ref

Q2 2.81 (1.29–6.12)** 1.29 (0.60–2.78) 1.29 (0.58–2.85)

Q3 4.47 (2.19–9.14)** 1.20 (0.61–2.36) 1.07 (0.54–2.12)

Q4 13.67 (7.41–25.22)** 3.36 (1.79–6.32)** 2.31 (1.25–4.28)**

ptrend <0.01 <0.01 <0.01

Log‐NT‐proBNP 7.43 (5.66–9.75)** 3.17 (2.40–4.19)** 2.34 (1.61–3.42)**

Q1 Ref Ref Ref

Q2 1.88 (0.73–4.84) 1.27 (0.50–3.21) 1.31 (0.52–3.28)

Q3 3.54 (1.46–8.56)** 1.61 (0.67–3.85) 1.57 (0.66–3.78)

Q4 15.45 (6.62–36.03)** 3.65 (1.61–8.25)** 2.86 (1.26–6.48)*

ptrend <0.01 <0.01 <0.01

Log‐Cr 33.48 (7.90–141.9)** 7.81 (1.79–34.02)** 1.17 (0.26–5.15)

Q1 Ref Ref Ref

Q2 1.97 (1.17–3.34)* 1.20 (0.68–2.11) 1.37 (0.80–2.36)

Q3 1.71 (0.96–3.04) 0.86 (0.49–1.49) 0.86 (0.50–1.50)

Q4 4.89 (2.89–8.25)** 1.53 (0.86–2.73) 0.96 (0.52–1.78)

ptrend <0.01 >0.05 >0.05

Log‐CysC 347.6 (80.91–1493)** 31.65 (7.88–127.12)** 5.04 (1.02–24.88)*

Q1 Ref Ref Ref

Q2 2.41 (1.14–5.09)** 1.50 (0.68–3.29) 1.78 (0.81–3.88)

Q3 6.41 (2.70–15.23)** 2.09 (0.83–5.27) 2.36 (0.97–5.73)

Q4 17.46 (7.88–38.67)** 2.32 (0.96–5.63) 1.77 (0.80–3.93)

ptrend <0.01 <0.05 >0.05

Log‐β2M 128.8 (35.58–466.5)** 37.77 (13.07–109.15)** 15.00 (4.05–55.49)**

Q1 Ref Ref Ref

Q2 3.46 (1.50–8.02)** 1.78 (0.76–4.20) 1.86 (0.76–4.60)

Q3 5.45 (2.44–12.18)** 1.62 (0.67–3.88) 1.65 (0.67–4.09)

Q4 22.84 (10.70–48.73)** 3.50 (1.44–8.46)** 2.80 (1.09–7.18)*

ptrend <0.01 <0.01 <0.05

Note: Model 1: unadjusted model. Model 2: adjusted for age, race, and gender. Model 3: model 2+ education, marital status, PIR, smoke status, drink status, BMI, CVD,
CKD, diabetes, and cancer.

Abbreviations: β2M, beta‐2 microglobulin; BMI, body mass index; CKD, chronic kidney disease; CI, confidence interval; Cr, creatinine; CysC, cystatin C; CVD,
cardiovascular disease; HR, hazard ratio; Hs‐cTnT, high‐sensitivity cardiac troponin T; Hs‐cTnI, high‐sensitivity cardiac troponin L; NT‐proBNP, N‐terminal pro‐B‐type
natriuretic peptide; PIR, poverty income ratio.

**p < 0.01; *p < 0.05.
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F IGURE 1 Association between cardiorenal biomarkers and all‐cause mortality in MetS patients. Adjusted for age, race, gender, education,
marital status, PIR, smoke status, drink status, and BMI. The red solid line and gray area represent the estimated HR values and their
corresponding 95% CIs, respectively. (A) Hs‐cTnT. (B) Hs‐cTnI. (C) NT‐proBNP. (D) Cr. (E) CysC. (F) β2M. BMI, body mass index; HR, hazard ratio;
Hs‐cTnT, high‐sensitivity cardiac troponin T; Hs‐cTnI, high‐sensitivity cardiac troponin L; NT‐proBNP, N‐terminal pro‐B‐type natriuretic peptide;
MetS, metabolic syndrome; PIR, poverty income ratio.

based on the RF and CatBoost models, Hs‐cTnT, NT‐
proBNP, and β2M emerged as the top three important
variables in both models (Figure 3A–C). Figure 3D–F dis-
plays the dependency plots for the top three features
determined by average absolute SHAP values, revealing
similarities in the relationship between SHAP values and
variable values across features.

3.7 | CatBoost model for the combined
assessment of biomarkers in predicting
all‐cause mortality

In the original model, the addition of Hs‐cTnT, NT‐
proBNP, and β2M individually resulted in AUC of 0.901,
0.903, and 0.903, respectively (Supporting Information:
Figure S4). The combinations of biomarkers, Hs‐cTnT
+NT‐proBNP, Hs‐cTnT+β2M, and NT‐proBNP+β2M,
showed minor improvements in model performance,
with AUCs of 0.903, 0.904, and 0.904, respectively.
Combining all three biomarkers, the CatBoost model's
predictive performance was higher than that of the

individual biomarkers and was significantly better than
the original model, with an AUC of 0.904.

4 | DISCUSSION

In this nationally representative prospective cohort study,
significant associations were found between cardiac bio-
markers (Hs‐cTnT, Hs‐cTnI, and NT‐proBNP) and renal
biomarkers (β2M, CysC, and Cr) with mortality in MetS.
Additionally, a U‐shaped association was observed between
Hs‐cTnT, Cr, and all‐cause mortality in patients with MetS.
Furthermore, by employing five advancedmachine learning
models—LightGBM, CatBoost, XGBoost, RF, and SVM—we
successfully identified Hs‐cTnT, NT‐proBNP, and β2M as
strong predictive indicators for mortality outcomes in pa-
tients with MetS. Currently, there is a lack of risk models for
patients with MetS, especially predictive models that
include biomarkers with strong prognostic value. These
findings provide a new perspective on the relationship
between cardiac and renal functions and the prognosis of
patients with MetS.
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Consistent with other studies, our data show that 55.3%
of patients with MetS also have hypertension, indicating
that elevated blood pressure is common among individuals
with MetS.26,27 Our findings suggest that cardiac biomarkers
are of significant value in predicting mortality risk in pa-
tients with MetS, especially CVD mortality, which signifi-
cantly increases within the highest quartiles of Hs‐cTnI and
NT‐proBNP. Hs‐cTnI is a marker of myocardial injury.28

In the context of MetS, Hs‐cTnI can be used to improve the
burden of diabetic complications,29 especially in in-
dividuals with CVD, identifying subgroups with a high
mortality risk.30 Hs‐cTnT exhibits a U‐shaped associa-
tion with all‐cause mortality, where Hs‐cTnT levels
between 3.84 ng/L and 6.33 ng/L serve as a protective
factor. Extremely low Hs‐cTnT levels might indicate
insufficient cardiac stress or a lack of necessary phys-
iological responses, which could predispose in-
dividuals to adverse health outcomes.

Our findings are consistent with previous research,
providing strong evidence for the prognostic value of
NT‐proBNP in populations with MetS.31–34 In Cox mul-
tivariate analysis, NT‐proBNP was associated with both
all‐cause and CVD mortality. Furthermore, in subgroup
analysis, high levels of NT‐proBNP were identified as a
risk factor for mortality in patients with MetS without a

history of CVD. Therefore, elevated NT‐proBNP may
reflect underlying or overt CVD risk. Elevated natriuretic
peptides indicate atrial or ventricular dilation due to
pressure or volume overload, accelerating cardiac
remodeling.35–37 Additionally, natriuretic peptides play
significant roles in vascular function and remodeling.
Other factors, such as endothelin, angiotensin II, and
tumor necrosis factor‐alpha, have been found to stim-
ulate BNP secretion in vitro, increasing vascular
reactivity and promoting CVD development.38 More-
over, there is a strong positive correlation between age
and NT‐proBNP, with older adults having significantly
higher levels than younger individuals.39 The relative
association of NT‐proBNP with all‐cause and CVD
mortality remains consistent across age groups.

The renal biomarker β2M also demonstrated pre-
dictive value, with its highest quartile values being sig-
nificantly associated with all‐cause mortality and CVD
mortality in MetS. Under normal conditions, the pro-
duction rate of β2M is constant, and it is filtered by the
glomeruli, then reabsorbed and degraded in the tubules,
resulting in its minimal presence in blood and urine.40

β2M is metabolism‐dependent and closely related to
renal function, becoming an indicator for early diag-
nosis of renal function impairment.41 Previous studies

F IGURE 2 AUC value and ROC curves in machine learning model evaluation. (A) AUC value and 95% CI for five machine learning models.
(B) ROC curves for RF model. (C) ROC curves for CatBoost model. AUC, area under the curve; CI, confidence interval; ROC, receiver operating
characteristic curve; RF, random forest.
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have further underscored the importance of β2M in
predicting adverse outcomes in MetS, especially as an
indicator for the development of CKD. Over 9‐year
follow‐up, patients with full MetS were 2.5 times more
likely to develop CKD than those without it.42 HDL‐C,
one of the manifestations of dyslipidemia in MetS, plays
a crucial role in anti‐atherosclerosis and reducing the
risk of CVD. Studies reveal a negative correlation
between β2M levels and HDL‐C, where high β2M indi-
cates lower HDL‐C and increased cardiovascular
risk.43,44 Measuring β2M holds significant value in
identifying high‐risk individuals within the MetS popu-
lation, especially in the context of low HDL‐C levels.

Machine learning algorithms, widely used for pre-
dicting new biomarkers and gaining new information

about disease pathogenesis, analyze large amounts of
health data to identify potential disease patterns.45,46

By using machine learning models, we further
strengthened the evidence of these biomarkers as
independent predictors of mortality risk in patients
with MetS. Feature importance analysis using RF and
LightGBM models indicated that Hs‐cTnT, NT‐proBNP,
and β2M are strong predictive indicators for mortality
outcomes in patients with MetS. The addition of single
and combined cardiac and renal biomarkers signifi-
cantly improved model performance, with AUCs
ranging from 0.901 to 0.904. This approach provides a
more precise risk assessment tool, thereby helping to
reduce disease risk and supporting personalized
medicine.

F IGURE 3 Explanation of cardiorenal biomarkers in RF and CatBoost models. (A) Variable importance in RF model. (B) Variable importance
in CatBoost model. (C) SHAP summary plot in CatBoost model. Red dots corresponded to higher feature values, and blue dots corresponded to
lower feature values. (D–F) SHAP dependence plot of top three variables shared by RF and CatBoost models. β2M, beta‐2 microglobulin; Cr,
creatinine; CysC, cystatin C; Hs‐cTnT, high‐sensitivity cardiac troponin T; Hs‐cTnI, high‐sensitivity cardiac troponin L; NT‐proBNP, N‐terminal
pro‐B‐type natriuretic peptide; RF, random forest; SHAP, Shapley Additive exPlanation.
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Overall, the findings of this study emphasize the
importance of cardiac and renal biomarkers in identi-
fying cardiovascular event risk and assessing mortality
risk in MetS, and demonstrate the potential of machine
learning in risk assessment.

However, our study also has certain limitations. First,
the sample size was relatively small, and the study
population mainly came from specific geographical
areas, which may restrict the generalizability of our
findings. Future research should consider a more
diverse population and longer follow‐up times to en-
hance the relevance of these results. Additionally, this
analysis was limited by the reliance on initial baseline
measurements of biomarkers, which may diminish the
accuracy of predictive models. Other health risk factors
such as genetics, lifestyle, and individual medical his-
tory could also influence the interpretation of bio-
markers. Finally, the classification of all‐cause mortal-
ity and CVD mortality in NHANES was entirely based
on ICD codes. Although this method has received
validation from the Centers for Disease Control and
Prevention (CDC) in the United States and is com-
monly used in many CDC reports or related published
reports, we cannot rule out the possibility of errors in
the cause of death determination.
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