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Strategies for combating bacterial biofilm infections

Hong Wu1,2, Claus Moser1, Heng-Zhuang Wang1, Niels Høiby1,2 and Zhi-Jun Song1,3

Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile

environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune

responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations

demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical

observations and experimental studies indicated clearly that antibiotic treatment alone is in most cases insufficient to eradicate biofilm

infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become

important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm infections and scientific

investigations, discusses the diagnosis and treatment of different biofilm infections and introduces the promising laboratory progress,

which may contribute to prevention or cure of biofilm infections. We conclude that, an efficient treatment of biofilm infections needs a

well-established multidisciplinary collaboration, which includes removal of the infected foreign bodies, selection of biofilm-active,

sensitive and well-penetrating antibiotics, systemic or topical antibiotic administration in high dosage and combinations, and

administration of anti-quorum sensing or biofilm dispersal agents.
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INTRODUCTION

A structured consortium attached on a living or inert surface formed

by microbial cells sticked to each other and surrounded by the self-

produced extracellular polymeric matrix is known as biofilm. The

formation of biofilm is considered an adaptation of microbes to hos-

tile environments.1–2 A typical development of biofilm—taking

Pseudomonas aeruginosa as an example—includes several stages, i.e.,

attachment to a surface; formation of microcolonies; development of

young biofilm; differentiation of structured mature biofilm, and dis-

persal of mature biofilm.2–4 Experimental evidences of P. aeruginosa in

vitro and in vivo demonstrated clearly that biofilm bacterial cells are

significantly more resistant to antibiotics and host immune defense

than their planktonic counterparts.4–7 Aggressive and intensive anti-

biotic treatment is usually helpful to control the exacerbations of

chronic biofilm infections induced by dispersed bacteria and reduce

the biofilms, but can not eradicate the biofilm infections,7–8 because

the minimal concentration of antibiotic for eradication of mature

biofilm is difficult to reach in vivo.5 Therefore, once a bacterial biofilm

infection established, it becomes difficult to eradicate. Bacterial bio-

film formation is widely found in natural environments with water,

and also in human diseases, especially in the patients with indwelling

devices for the purpose of medical treatments.2,7 With the progress of

medical sciences, more and more medical devices and/or artificial

organs are applied in the treatment of human diseases. However, as

a consequent, bacterial biofilm infections become also frequent. It has

been reported that vast majority, if not all, of the medical devices or

prostheses may result in biofilm infections, which include intravenous

catheters,9 vascular prosthesis,10 cerebrospinal fluid shunts,11 pros-

thetic heart valves,12 urinary catheters,12 joint prostheses and ortho-

pedic fixation devices,13 cardiac pacemakers,14 peritoneal dialysis

catheters,15 intrauterine devices,16 biliary tract stents,17 dentures,18

breast implants,19 contact lenses20 and in the dental area caries and

periodontitis, and so on. In addition, there are also biofilm infections

not associated with foreign bodies, such as chronic airway infections in

cystic fibrosis (CF) patients21 or patients with chronic obstructive

pulmonary diseases,22 native valve endocarditis, chronic otitis

media,23 chronic sinusitis24 and chronic (diabetes) wound infec-

tions.25–26 It has been estimated that most bacterial infections in

human are correlated with biofilm and about 50% of the nosocomial

infections are indwelling devices-associated.27

Bacterial biofilms are characterized as highly resistant to antibiotic

treatment and immune responses.7 Although it is well known that

antibiotic treatment is currently most important and effective measure

for the control of microbial infections, however, antibiotic treatments

are almost impossible to eradicate biofilm infections. In vitro and in

vivo experiments demonstrated that the minimum inhibitory concen-

tration (MIC) and the minimum bactericidal concentration (MBC)

for biofilm bacterial cells were usually much higher (approximately

10–1 000 times) than the planktonic bacterial cells.4–6 The effective

antibiotic MBC in vivo for biofilm eradication are therefore impossible

to reach by conventional antibiotic administrations due to the toxici-

ties and the side effects of antibiotics and the limitation of renal and

hepatic functions. Treatment of biofilm infections becomes therefore

challenging and attracts significantly scientific attention. Numerous of
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clinical investigations have been performed, which would benefit the

control of biofilm. The review would focus mainly on the clinical

treatment of bacterial biofilm infections based on the achievements

in biofilm researches in combination with our clinical experiences.

Diagnosis of biofilm infections

Clinical evidences of biofilm infection. According to the features of

biofilm development, mature biofilms are significantly resistant to

antibiotic chemotherapies and they will intermittently disperse plank-

tonic bacterial cells to the environments. Hence, a typical biofilm

infection is usually a chronic infection with intermittent exacerba-

tions; antibiotic treatments could be helpful to control the acute

exacerbations, but difficult to eradicate the infection. Generally bio-

film infection could be suspected, if a patient has one of the clinical

manifestations shown in Table 1.

Routine microbiological examinations. Traditional microbiological

examination includes sample collection, microbial cultivation, iden-

tification and tests of antibiotic susceptibilities, in which appropriate

sample collection is essential according to our clinical experiences. For

example, in patients suspected for foreign body-associated biofilm

infections, at least 4–5 pieces of tissue biopsy from different sites next

to the prosthesis suspected infection are needed to avoid a false nega-

tive result. The prostheses, catheters or stents and other foreign bodies

taken out from patients due to suspicion of biofilm infections should

be sent for microbiological examinations. For the microscopy and

culture-negative samples, if the patients are highly suspected for bio-

film infections clinically, additional microbiological techniques might

be helpful for the diagnosis of biofilm infections.

New techniques of microbiology. Routine microbiological examina-

tions are important and reliable for diagnosis of infections, but some-

how less sensitive for biofilm detection. Therefore new techniques of

microbiology should be introduced as efficient complements of rou-

tine microbiology or part of the novel routine methods in hospitals.

It has been proved that proper sonication of indwelling devices

(implants or prostheses or catheters) from the patients with suspected

infection could significantly improve the detection rate of bac-

teria.13,28–29 In microscopy and culture negative samples from the

patients with clinical suspicion of biofilm infection, a 16S ribosomal

RNA polymerase chain reaction (PCR) (bacteria) or 18S and 28S

rRNA PCR (fungi) examinations could be appreciated,30–31 which

have been applied as part of our laboratory examinations for several

years. In addition, peptide nucleic acid fluorescence in situ hybridi-

zation has been demonstrated useful to identify biofilm infections

in cystic fibrosis and chronic wounds.26,32 Besides bacteria detec-

tion, fluorescence in situ hybridization is highly sensitive in invasive

yeast infections, but less sensitive for moulds.33

TREATMENT OF MICROBIAL BIOFILM INFECTIONS

As reported in several papers, that biofilm infections are difficult to

handle and are often antibiotic treatment alone inadequate. Generally,

the strategies can be divided into involving a foreign body or not. If not

involving a foreign body, long-term treatment with high doses and

often using combination of antibiotics with different killing mecha-

nisms can sometimes eliminate the infection. However, if a foreign

body is involved, removal of the material is in most cases necessary for

a successful outcome. In other cases, only reduction of the biofilm is

possible followed by chronic biofilm suppressive treatment or waiting

for the biofilm to relapse with an exacerbation. Here we would like to

share our clinical experiences with our colleagues in combination with

the latest relevant literature.

Removal of foreign bodies and abscess

It has been demonstrated that high inoculums (108 CFU?mL21; CFU,

colony forming units) of Staphylococcus aureus in animal soft tissues

could not create any abscesses in the absence of foreign body, whereas

102 CFU?mL21 of S. aureus were sufficient to induce an infection with

foreign body in 95% of the cases despite significant presence of poly-

morphonuclear leukocytes,34 and this might be associated with the fact

that the presence of foreign body significantly downregulated the pha-

gocytosis and intracellular bactericidal effects of polymorphonuclear

leukocytes.35 Obviously, foreign body provides an ideal surface for bac-

teria to attach to, whereas polymorphonuclear leukocyte functions are

injured due to the presence of foreign body. Thus, the presence of

foreign body increased significantly the possibility of biofilm infection.

According to the biofilm characters of antibiotic resistance, it is currently

difficult to eradicate biofilm infections by conventional antibiotic treat-

ments. Therefore, the removal of a foreign body becomes an important

prerequisite for the eradication of such biofilm infections. It is thus

highly recommended to remove the infected indwelling devices

implanted into patients for medical reasons or replace the infected device

with a new one, if we hope to cure the biofilm infections. In case not

possible to remove the infected foreign body, an attempt to reduce the

biofilm burden with antibiotics followed by continued suppressive anti-

biotic treatment to prevent regrowth of the biofilm could be suggested.

Table 1 Clinical signs of suspected biofilm infections

Possible biofilm infections Clinical manifestations and paraclinical changes The common pathogens

Endocarditis Patients equipping with or without prosthetic heart valves or pacemaker, who have intermittent

fever and bacteremia with an identical pathogen and without an obvious focus, but higher

C-reaction proteins and/or erythrocyte sedimentation rate with or without leukocytosis88–89

S. aureus, Streptococcus species, coagulase-

negative staphylococci, Enterococcus species

P. aeruginosa biofilm in

CF/COPD

Patients with CF or COPD, who have been detected mucoid P. aeruginosa in sputum4 P. aeruginosa

Intravenous catheter biofilm Patients with central venous catheter or hemodialysis catheter, who have recurrent

bacteraemia with an identical pathogen12,90

Coagulase-negative staphylococci

Urinary catheter biofilm Patients with urinary catheter, who have recurrent urinary tract infections

with the same pathogen12,90

Gram-negative rods, Candida species,

Enterococcus species

Biofilm infections of

orthopaedics

Patients with joint prostheses or orthopedic fixation devices, who have chronic pain

locally and sign of prostheses loosening13

S. aureus, coagulase-negative staphylococci

Wound biofilm Patients with chronic wound and recurrent wound infections25–26 S. aureus, P. aeruginosa

CF, cystic fibrosis; COPD, chronic obstructive pulmonary diseases.
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Change of the infected central venous catheter (CVC) or dialysis

catheter. When bacteria form biofilm on CVC or dialysis catheter, an

intermittent bacteraemia with an identical bacterial stain could be

expected. In addition, the positive rate of blood cultures sampled from

the infected catheter is usually higher than that from the peripheral veins

and the time to positivity is at least two hours shorter if the blood is

taken through a CVC containing a biofilm compared to a simulta-

neously blood culture taken through a peripheral vein.36–37 To cure such

catheter biofilm infections, change of the infected catheter is crucial,

followed by a short time treatment of sensitive antibiotic intravenously

to remove the bacteria released into blood stream from the infected

catheter. In case change of catheter is not possible temporarily, antibiotic

and other lock therapy may help to minimize the release of planktonic

bacterial cells from the catheter biofilm, which means instillation of high

concentrations of antibiotic with or without anti-coagulant or 70%

ethanol or hydrochloric acid (2 mol?L21 HCl) into the lumen of

CVC.38–41 In our clinical practice, vancomycin (1 mg?mL21) is used

to the catheter infection with Gram-positive bacteria and gentamicin

(2 mg?L21) is used to the Gram-negative bacteria. In alternative, 70%

ethanol or 2 mol?L21 HCl lock therapy can also be considered.

Change of the infected urinary catheter (UC). Catheter-asso-

ciated urinary tract infections are the most common nosocomial infec-

tion, which associated with the formation of microbial biofilm in UC.

In addition to intermittent urinary tract infections with the identical

pathogen, it can also result in urosepsis. Change of the infected UC is

not difficult; however, the time to change is important. It is recom-

mended to change the infected UC after 48 h of adequate and sensitive

antibiotic treatment to minimize the bacterial concentration in blad-

der and urinary tract; otherwise, the new UC would be colonized

quickly by the bacteria to form new biofilm.

Change of the infected joint prostheses. Prosthesis-related infection is a

serious complication in patients with joint replacement and it has been

demonstrated as a biofilm correlated infection with poor prognosis.13,42

In case the prosthesis infection is diagnosed, change of the infected

prosthesis in most of the cases becomes the only choice. If the prosthetic

implants are loosening due to biofilm infection, staged exchange of

prosthesis in combination with sensitive and aggressive antibiotic treat-

ment is recommended.13,42

Changes of other infected indwelling devices. Endocarditic patients

with prosthetic heart valves or cardiac pacemakers are at risk of inter-

mittent sepsis, cardiac insufficiency and infective embolic complica-

tions.43–44 Therefore, change of the infected prosthetic heart valves or

cardiac pacemakers in combination with aggressive and sensitive anti-

biotic therapy becomes necessary.44 For the patients with biofilm

infections in biliary stents, endotracheal tubes, dead bones (chronic

osteomyelitis), biliary and urinary stones (biliary and urinary tract

infections), effective antibiotic treatments and removal of the infected

foreign bodies are crucial to cure the infections.

Empty of abscesses. Abscesses are not biofilm, but they have some kinds

of connections with biofilm.45 When an abscess is formed, it becomes

difficult for antibiotic to penetrate through the wall of abscess into the

focus. Therefore empty of abscess is necessary.

Early and aggressive antibiotic treatments against biofilm infections

In vitro experiment showed that young biofilm could be easily cleared

by antibiotic treatment compared to the matured biofilm.5 Therefore

early and aggressive antibiotic treatments are recommended for bio-

film infections.4 However, early diagnosis of biofilm infection is cur-

rently difficult and most of the clinical biofilm infections are actually

matured biofilms which are usually difficult to eradicate with anti-

biotic treatment.4–6,46 It is therefore important and crucial to legiti-

mately apply currently available antibiotics in the treatment of biofilm

infections. On the basis of removing foreign bodies and combined

with the results from our previous studies,3–6,8,13,46 the following fac-

tors should be taken into account when an antibiotic treatment against

biofilm infection is to be decided:

Selection of antibiotics. Treatment of biofilm infection requires

sensitive and well-penetrating antibiotics to ensure a sufficient con-

centration of effective antibiotic at the site of biofilm infection. In

general, macrolides, lincosamides, tetracyclines, rifamycins, quino-

lones, fusidic acid, nitroimidazole, sulfonamides and oxazolidi-

nones penetrate better in tissues and cells than beta-lactam

(including penicillins, cephalosporins and carbapenems), aminogly-

cosides, glycopeptide and polymyxin. It is well known that infection

could lead to inflammation, which results in faster metabolism and

significant consumption of oxygen locally or systemically. If oxygen

supply could not meet the demand, glycolysis will be activated

leading to acidosis, and the effects of antibiotics could be affected

by pH values. It has been reported previously that low pH value

(pH 5.2) could decrease the effects of b-lactam antibiotics and

increase effects of rifamycin SV.47 Therefore antibiotic treatment

and correction of acid-base balance disorders could be important

for the treatment of biofilm infections.

Administration of antibiotics. We have previously demonstrated that

combination therapy of antibiotics against biofilm infection was sig-

nificantly better than antibiotic monotherapy.48 Antibiotic combina-

tion therapy is therefore recommended for the treatment of biofilm

infections. According to the character of antibiotic tolerance and resi-

stance in biofilm and the high MIC and MBC of biofilm cells demon-

strated in experimental studies,5–6 high dosages of antibiotics under

the safe range of renal and hepatic functions are suggested. In addition,

a proper duration of antibiotic treatment is also important. For the

patients with biofilm infections suitable for topical treatment of high

concentrations of antibiotics, systemic combined with topical anti-

biotic treatment can give better effects against biofilm infections,

such as antibiotic inhalation or direct administration for airway bio-

films 8,49 and bladder irrigation with high concentration of antibiotics

against biofilm urinary tract infections.

The pharmacokinetics (PK) and pharmacodynamics (PD) of anti-

biotics in biofilm infections. Bacteria growing in a biofilm could

become 10–1 000 times more resistant and tolerant to antibiotics

compared with their planktonic counterpart.50–51 Antimicrobials

available for the treatment of highly resistant bacterial infections

are limited;52–53 therefore, dosage optimization of currently available

antibiotics becomes extremely important to improve anti-infection

outcomes and to prevent further development of antimicrobial resis-

tance and tolerance. The PK and PD of antimicrobial agents can be

used reliably to predict the effect of antimicrobial regimens to

achieve maximum bactericidal effect against infections. Several

recent studies have shown the different PK and PD profiles of anti-

biotics between planktonic and biofilm infection.5–6,54 PK and PD

information of antimicrobial agents on biofilm-associated bacteria

can be applied to optimize the dose regimens on biofilm infections.6
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Minimum biofilm inhibitory concentration (MBIC) and minimum

biofilm eradication concentration are two PD parameters for anti-

microbials in biofilm infections.5 The application of biofilm growing

bacteria in the susceptibility tests of clinical laboratory, with MBIC

and minimum biofilm eradication concentration, is useful to obtain

a better outcome of antimicrobial chemotherapy, compared with the

traditional susceptibility test based on planktonic bacteria.5 In our

previous PK/PD study, colistin showed a concentration-dependent

killing, and imipenem showed a time-dependent killing on biofilm

bacteria in vivo.6 The elimination of P. aeruginosa biofilm bacteria in

the lungs of our experimentally infected animals was best correlated

to AUC/MBIC of colistin (AUC, the area under the concentration-

time curve), and T.MBIC of imipenem (T.MBIC, the duration of

time a drug concentration remains above the MBIC).6

SCIENTIFIC PERSPECTIVES FOR THE CONTROL OF

BIOFILM INFECTIONS

Microbes must be able to sense their surviving environments and modify

their physiological processes in order to adapt and thereby survive better.

It has been demonstrated that quorum sensing (QS) functions as one of

the most important global regulations in bacteria and fungi.55 Bacteria

use QS to coordinate gene expression according to their density, which

functions as a decision-making process to regulate the production of

virulent factors and create infection. Another popular target has been

raised in recent years, i.e., nucleotide signaling, in which nucleotides are

considered as second messengers, including cyclic diguanosine mono-

phosphate (c-di-GMP), cyclic diadenosine monophosphate (c-di-AMP),

cyclic guanosine monophosphate (cGMP), cyclic adenosine monopho-

sphate (cAMP) and guanosine tetraphosphate (ppGpp).56 Nucleotide

signaling controls several key processes required for bacterial adaptation,

and may implicate in pathogenicity as QS. Among the above several

nucleotides, c-di-GMP has attracted great attention since it is involved

closely in biofilm formation in Gram-negative bacteria.57–58 Therefore,

the control of quorum sensing and the modification of c-di-GMP

become the drug objectives for the development of new anti-biofilm

drugs. Beside of the focus on QS and c-di-GMP, bacterial amyloids have

become another popular topic. Amyloids has been identified in both

bacteria and fungi, since many types of bacterial species relay on amyloids

to stick to each other or further to host surfaces resulting in the creation

of biofilms. Damage of amyloid structures might give a new concept to

control bacterial biofilms.59

QUORUM SENSING AS TARGET TO CONTROL

BIOFILM INFECTION

QS inhibitors and anti-QS peptides

It was well demonstrated 10 years ago that target of QS with synthetic

furanones significantly attenuated the lung infections of P. aeruginosa

in vivo.60 The recent analyses of synthetic molecules by O9Loughlin

et al.61 disclosed the inhibition of the two P. aeruginosa QS receptors,

LasR and RhlR by synthetics. Their most effective compound, meta-

bromo-thiolactone, significantly inhibits the production of virulence

factor pyocyanin and biofilm formation. Caenorhabditis elegans and

human lung epithelial cells were protected from the killing of P. aeru-

ginosa by treatment with meta-bromo-thiolactone. They further

found the relevant target was RhlR, not LasR in vivo. It has been

confirmed in guinea pigs study that a novel QS inhibitor coded as

‘yd 47’, showed an effect against otitis media and biofilm formation

induced by S. pneumoniae on Cochlear implants.62 The combination

of QS inhibitor FS3 and daptomycin was investigated for the preven-

tion of prosthesis biofilm in a rat model of staphylococcal vascular

graft infection. Both values of MIC and MBC for daptomycin were

lower in the presence of FS3 at an in vitro study. The combination of

FS3 and daptomycin exhibited significant synergy efficacy when com-

pared to any single treatment.63

RNAIII-inhibiting peptide was reported to suppress staphylococcal

TRAP/agr systems and to reduce biofilm formation in vivo. The results

indicate the importance of quorum sensing in biofilm infection in the

host. The treatment with RNAIII-inhibiting peptide in rats has been

found to strongly prevent methicillin-resistant S. aureus graft infec-

tions, and suggesting that RNAIII-inhibiting peptide can be expected

as an anti-QS or/and anti-biofilm agent.64 LoVetri and Madhyastha65

reported the effects of anti-QS peptides and analogs on the growth of

biofilm formation in oral bacteria. It is interesting that a natural QS

peptide, competence-stimulating peptide, produced by Streptococcus

mutans, could kill their own cells at higher concentrations than nor-

mal. In addition to cells-killing, KBI-3221, an analog of competence-

stimulating peptide developed by various Streptococcus species, was

shown to decrease biofilm formation.

Attenuation of bacterial QS by furanones, ginseng, garlic and azi-

thromycin significantly improved the immune clearance and the

effects of antibiotics in vitro and in the animal models of P. aeruginosa

biofilm pneumonia.60,66–69 Brackman et al.70 demonstrated that QS

inhibitor increased the susceptibilities of both Gram-positive and

-negative bacterial biofilms to antibiotics in vitro and in vivo.

Azithromycin has been actually applied routinely to the CF patients

as an anti-QS treatment in several CF centers around the world inclu-

ding the Danish CF Center in Copenhagen.

Modification of c-di-GMP as target to disperse biofilm infections

C-di-GMP was discovered 25 years ago, and has been emerged as one

of the most common and important bacterial second messengers. C-

di-GMP has been shown to play key roles in lifestyle changes of many

bacteria, for example, transforming from the motile to the sessile state

to establish multicellular biofilm communities, and change from the

virulent state of acute infections to the less virulent but chronic infec-

tions. Therefore, modulating c-di-GMP signalling pathways in bac-

teria could offer a new way to manage the formation and dispersal of

biofilms in clinic situations.58

The inhibitors of diguanylate cyclase (DGC), the enzyme that

synthesizes c-di-GMP were identified by Palys group. They found

four small molecules functioning as antagonists of DGC and had

shown impairments on the biofilms formed by P. aeruginosa and

Acinetobacter baumannii. The biofilms of P. aeruginosa developed

on urinary catheters could be dispersed and inhibited by all four

molecules. Two of the four screened molecules displayed no toxic

effects on eukaryotic cells, which open a potential imagination to

control biofilm infections.71

Another discovery based on the differential radial capillary action of

ligand assay was able to identify small molecules that inhibit c-di-GMP

binding to the allosteric sites. It was found that ebselen reduced DGC

activity, and ebselen oxide, the selenone analog of ebselen, also inhi-

bited c-di-GMP binding through the same covalent mechanism. The

results confirmed that ebselen and ebselen oxide through inhibition of

DGCs limited c-di-GMP in regulation of biofilm formation in P.

aeruginosa.72

Our experimental studies demonstrated that Chinese ginseng could

inhibit the QS of P. aeruginosa, and also induce dispersal of P. aeru-

ginosa biofilm in vitro by means of activating motilities of the bac-

terium.68,73 Connolly et al.74 found that the cysteine protease SpeB

could induce dispersal in Group A streptococcal biofilm. Park et al.75
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reported that the proteases from P. aeruginosa could inhibit the bio-

film formation and result in biofilm dispersal in S. aureus.

Disruption of bacterial amyloids to control bacterial biofilms

Many bacteria can constitute functional amyloid fibers on their cell

surface. The majority of bacterial amyloids contribute to the develop-

ment of biofilm as well as other community behaviors. Curli are func-

tional extracellular amyloid fibers produced by Escherichia coli and

other Enterobacteriaceae. Two analogs of FN075 and BibC6 of ring-

fused 2-pyridones, the peptidomimetics that target essential pro-

tein–protein interactions in macromolecular assembly, inhibited curli

biogenesis in E. coli and further pre-treatment of E. coli with FN075

significantly attenuated virulence in a mouse model of urinary tract

infection. Curli and type 1 pili exhibited exclusive and independent

roles in promoting E. coli biofilms; thus, the ability of FN075 to block

the biogenesis of both curli and type 1 pili composes unique anti-

biofilm and anti-virulence activities on these compounds.76

It has been shown recently that Bacillus subtilis biofilms can be

inhibited by controlling the formation of amyloid-like fibers with

the two molecules of AA-861 (a benzoquinone derivative) and parthe-

nolide (a sesquiterpene lactone), which were screened from among a

collection of hundreds of known bioactive molecules. The findings

concluded that AA-861 prevented the TasA protein from forming

functional amyloid-like fibers. Parthenolide as a natural product

showed also an effect of disrupting pre-established biofilms. In addi-

tion, the molecules prevent the formation of biofilms of other bacterial

species that could secrete amyloid proteins.77

Sintim et al.78 summarized a group of small molecules that could

potentially attenuate bacterial virulence or inhibit biofilm formation.

However, there are no US FDA-approved molecules that have been

discovered to target these processes. Therefore, we will face with a

‘chronic and severe’ course just as the infections caused by bacterial

biofilms.

Bacteriophage therapies

Bacteriophages are viruses that infect and replicate within bacteria and

either become lysogenic or lyse (kill) the host bacteria. Bacteriophage

therapy for bacterial infections has been used for more than 50 years

and the development of antibiotic resistance, especially the multidrug-

resistant bacteria attracts more attention to the investigation of bac-

teriophages.79 Experimental and clinical studies have shown exciting

effects in not only wound biofilm infections, but also implant- and

catheter-related infections.79–84 Bacteriophages are able to infect and

kill both of the antibiotic-sensitive and -resistant bacteria.

Other new findings

Singh et al.85 reported that low concentration of lactoferrin, a com-

ponent of innate immunity blocked the development of P. aeruginosa

biofilm by stimulating the twitching movement of the bacterium.

Similarly, aqueous extract of Chinese ginseng hindered the formation

of P. aeruginosa biofilm by means of enhancing the swimming and

twitching motility and reducing the swarming motility.73 Japanese

researchers found that Esp, a serine protease secreted by Staphylococcus

epidermidis could inhibit the formation of S. aureus biofilm and des-

troy the preformed S. aureus biofilm in vitro and inhibit the nasal

colonization of S. aureus in vivo,86 indicating the potential effects of

commensal bacteria. It has been demonstrated that ultrasound-

targeted microbubble destruction could significantly improve vanco-

mycin against S. epidermidis RP62A biofilms.87 The biofilms treated

with vancomycin plus ultrasound-targeted microbubble destruction

showed significantly decreased biofilm densities and the viable counts

of S. epidermidis compared with those groups treated with vancomy-

cin or ultrasound-targeted microbubble destruction alone.87 The

combination with alternative therapies may have great potential to

enhance antibiotic treatment in bacterial biofilm infections.

CONCLUSION

Treatment of biofilm infections is currently a difficult and compli-

cated challenge for microbiologists and clinicians. Antibiotic treat-

ment alone is often inadequate to overcome biofilm infections.

However, the progresses of research provide us with more detailed

inside knowledge to better understand the nature of microbial bio-

films, which has benefited and will continue to support our efforts of

combating biofilm infections. Currently, treatment of biofilm infec-

tions needs collaboration in clinical microbiology, surgery, internal

medicine, pharmacology and basic science, i.e., a multidisciplinary

cooperation. We believe that biofilm treatment at present should

include removal of infected indwelling devices, selection of well pene-

trating and sensitive antibiotics, early administration of high dosage

antibiotics in combination and supplemented with anti-QS treatment

and/or biofilm dispersal agents.
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