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A B S T R A C T   

In this study, we address three important challenges related to disease transmissions such as the COVID-19 
pandemic, namely, (a) providing an early warning to likely exposed individuals, (b) identifying individuals 
who are asymptomatic, and (c) prescription of optimal testing when testing capacity is limited. First, we present 
a dynamic-graph based SEIR epidemiological model in order to describe the dynamics of the disease propagation. 
Our model considers a dynamic graph/network that accounts for the interactions between individuals over time, 
such as the ones obtained by manual or automated contact tracing, and uses a diffusion–reaction mechanism to 
describe the state dynamics. This dynamic graph model helps identify likely exposed/infected individuals to 
whom we can provide early warnings, even before they display any symptoms and/or are asymptomatic. 
Moreover, when the testing capacity is limited compared to the population size, reliable estimation of in
dividual’s health state and disease transmissibility using epidemiological models is extremely challenging. Thus, 
estimation of state uncertainty is paramount for both eminent risk assessment, as well as for closing the tracing- 
testing loop by optimal testing prescription. Therefore, we propose the use of arbitrary Polynomial Chaos 
Expansion, a popular technique used for uncertainty quantification, to represent the states, and quantify the 
uncertainties in the dynamic model. This design enables us to assign uncertainty of the state of each individual, 
and consequently optimize the testing as to reduce the overall uncertainty given a constrained testing budget. 
These tools can also be used to optimize vaccine distribution to curb the disease spread when limited vaccines are 
available. We present a few simulation results that illustrate the performance of the proposed framework, and 
estimate the impact of incomplete contact tracing data.   

1. Introduction 

Contact tracing is considered one of the most effective methods to 
curb the spread of transmissible diseases such as COVID-19 [14]. Con
tact tracing is a process by which the whereabouts and interactions of an 
infected individual with other individuals are carefully mapped. The key 
information that is sought is the physical proximity between individuals 
and for how long the individuals interacted. Additional information 
such as the environment where the interaction took place (for example, 
a close room with poor ventilation or an outdoor space) can also be 
recorded. 

Contact tracing can be manual or digital. Manual contact tracing is 
usually performed by a contact tracer, a trained health-care worker, who 
interviews the infected individual. Based on the infected individual’s 
recollection of events, calendar records, credit card records, etc. the 
contact tracer can build a list of exposed individuals that were in 

proximity to the infected individual and recommend action such as 
quarantine or testing of the exposed individuals. Digital contact tracing 
augments the work of a contact tracer. Individuals who participate in 
digital contact tracing typically carry a device that tracks their proximity 
to other individuals. As an example, an individual’s smart phone can be 
used to periodically transmit a unique identifier and also record trans
missions of identifiers sent by nearby devices. The signal strength of the 
recorded transmissions can be used to estimate the proximity to other 
individuals [56,17,21,46,41,5]. Digital contact tracing that relies on this 
method was recently implemented by Google and Apple [6] for COVID- 
19 and is now available in most iOS and Android based smart phones. 
Digital contact tracing such as the one provided by Google and Apple is a 
crowd-sourcing method and its efficacy depends on adoption by the 
public. Furthermore, the method which uses Bluetooth transmission 
may inaccurately estimate of proximity due to signal attenuation or 
reflections from nearby objects. However, in the workplace, on 
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university campuses, and in schools, contact tracing can be mandated. 
Active or passive devices like RFID bracelets or badges that are tracked 
by indoor sensors, can be used inside organization’s campuses to obtain 
reliable and accurate digital contact tracing data. For the purpose of this 
work we assume that contact tracing data is obtained by any of the 
methods discussed above. 

Some epidemics/pandemics, including the recent COVID-19 
pandemic have proved difficult to contain due to the large population 
of asymptomatic individuals. Asymptomatic people are individuals who 
are infected with the virus but have no symptoms. Asymptomatic people 
can be contagious to others. It is estimated that up to 40% of COVID-19 
infected individuals are asymptomatic [36,37,62]. Estimating the 
asymptomatic individuals is therefore needed to successfully curb the 
spread of the disease. Testing and vaccine distributions are the other 
important areas that have proved to be difficult and have impeded the 
efforts to contain the spread of viruses. Without a doubt, testing is likely 
the most important tool that health-care professionals have to assess the 
spread of viruses within the population, yet the lack of testing kits and 
lab resources continues to limit testing volume. Additionally the cost of 
testing may also limit testing in disadvantaged communities. Since 
testing is a limited resource, testing the entire population periodically is 
not feasible and therefore it is of great importance to optimally prescribe 
testing. Once effective vaccines are available, efficient vaccine distri
butions can curb the disease spread successfully. However, vaccine 
availability could be limited, and tools to optimize vaccine distribution 
under limited vaccination budget are necessary. 

Our contributions: In this paper we employ contact tracing data to 
infer which individuals are likely to be asymptomatic and which in
dividuals should be tested to mitigate uncertainty of the overall 
network. We prescribe an optimal testing recommendations to mitigate 
the overall risk under the constraints of limited testing resources. To 
achieve these goals we start by representing the contact tracing data as a 
dynamic graph. Each node represents an individual, and connections 
between the nodes represents the interaction between individuals, such 
as physical proximity and duration of contact. We use a compartmental 
epidemiological model to evolve the graph in time. The evolution also 
incorporates new data from contact tracing as well as new testing and 
vaccination data of individuals. 

One of the epidemiological models that has been considered suitable 
for modeling disease propagation is the SEIR model (Susceptible, 
Exposed, Infected, Recovered). This model takes into account an incu
bation period during which individuals that have been infected are not 
yet infectious themselves [31–33,18,7,12]. We note that our method is 
not tightly tied to the SEIR model and is applicable to any other models 
that describe disease transmission among populations. The SEIR model 
treats the entire population as a whole and is unaware of the connections 
and interaction between individuals. In this work we add graphical 
dependency to the SEIR model equations, so the details of how in
dividuals interact impact the model accounting for the spread of the 
disease. The modified SEIR model is now described using a set of partial 
differential equations, with a graph Laplacian operator that accounts for 
the interaction between individuals as captured by the contact tracing 
data. Both the contact network and the paramters of the model can be 
time varying. In another deviation from the original SEIR model, we 
treat the S,E, I,R populations as probabilities (similar to [59,48,22]), 
rather than compartmental populations. 

Using the aforementioned model or a similar model, it is possible to 
provide an early warning to individuals who are likely to be exposed or 
infected and also identify those individuals who are likely to be 
asymptomatic. The latter have a high probability of being infected while 
showing no symptoms. The second challenge that we addressed is how 

to prescribe optimal testing while both targeting individuals conferring 
eminent risk to their surrounding as well as dedicating precious testing 
allocation towards providing a more accurate picture of the overall risk 
by mitigating the overall model uncertainty. Given the large-scale na
ture of the problem, we propose here a Polynomial Chaos Expansion 
(PCE) framework to offer a rapid means for sampling the posterior dis
tribution of the state. Quantifiable assessment of the uncertainty asso
ciated with each node in the underlying state enables identification of 
nodes (e.g. nodes of high variance) in the graph in which point estimate 
predictions can provide spurious results. It is critical to judiciously assess 
the degree of confidence we can attribute to our predictions, and devise 
means to proactively mitigate uncertainty by testing, rather than merely 
settle with its quantification. For this, we propose optimal testing pre
scription by solving an optimization problem that accounts for (a) high 
risk individuals according to the model, (b) the uncertainty in the model, 
and (c) the testing budget available. We present simulation results that 
illustrate the models’ behavior and show how we can issue early 
warnings to likely exposed/infected individuals and prescribe optimal 
testing to control uncertainty and mitigate the disease spread. 

If effective vaccines are available, our graphical SEIR model can 
account for individuals who are vaccinated. We can either incorporate 
another state (say vaccinated V) or alternatively consolidate vaccinated 
with the recovered state, with slow temporal relaxation time (per the 
diminishing protection that a vaccine offers). We can partition the graph 
and isolate communities who are vaccinated, and can ensure that the 
individuals who are linking between communities are vaccinated to act 
as buffers. We can also modify the objective of the optimization to 
include vaccination of individuals, taking into account the expected risk 
to individual and their connectivity, the uncertainty in their state, and 
the amount of vaccines available, to optimize vaccine distribution. 

Related work: Since the last year, a plethora of works have been 
burgeoned in the literature that model the COVID-19 disease trans
mission. A number of variants of the SEIR model and other transmission 
models have been proposed, such as the SEIR models [60] used to 
analysis the spread of COVID-19 in China [45,54,15,37,52], in Europe 
[22,39,38], in India [11,49,27] and in Africa [65]. Several other works 
exist too, that model the different aspects of COVID 
[9,26,1,28,50,34,61] and others. Many machine learning and AI tech
niques have also been explored [66,40,57,35]. 

Network based models have also been studied in the literature for 
analyzing disease spread [59,25] and optimized vaccine allocation 
[48,10]. In these papers, a network based ODE model called the N- 
Intertwined model is proposed for analyzing the spread/transmission of 
COVID-19 among population. In [25], the state of the nodes is assumed 
to be in one of the predefined compartments, while in [59,48,10] the 
states are stochastic. The network is assumed to be a static random graph 
in these models. In [48,10], a (combinatorial) optimization problem 
involving a cost function of the states and constraint on the largest 
eigenvalue of the adjacency matrix of the graph is solved to optimize 
vaccination of the population in the network. 

However, to the best of our knowledge, our work is the first to 
incorporate contact tracing information into the SEIR model as dynamic 
graphs and use the graph Laplacian for state evolution, to model the 
disease propagation. This, along with with S,E, I,R states as probabili
ties, enable us to issue early warnings to individuals who are likely to be 
exposed and/or infected (are asymptomatic). We also propose the use 
Polynomial Chaos Expansion to quantify uncertainties in the model and 
the measurements (test results) and present a method to prescribe 
optimal testing in order to control these uncertainties and mitigate the 
spread of the disease. These challenges have not been addressed in a 
systematic way in the prior works. 
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2. Problem formulation 

For the sake of simplicity we assume a population of n individuals, 
yet, representation of varying population size over time can also be 
considered. We begin by defining the notation of a probabilistic indi
vidualized pandemic state tensor, its dynamics and the measurement 
operations. 

2.1. State 

Let the state of individual i ∈ N at time step t ∈ N be represented by 
the probability vector yi,t ∈ R4 = {Si,t , Ei,t , Ii,t , Ri,t}, where Si,t , Ei,t , Ii,t ,
Ri,t ∈ [0,1] and the normalization condition applies Si,t + Ei,t + Ii,t +
Ri,t = 1. Thus, we assume that at each time step, an individual carries 
probabilities of being either susceptive, exposed, infected or recovered. 
The proposed framework is not restricted to the aforementioned choice, 
and obviously other probabilistic state representations corresponding to 
alternative pandemic models can equally be considered. Assuming T 
times steps has evolved from an initial state, the state of the dynamic 
system is represented by the 3rd degree tensor 𝒴 ∈ Rn×4×T. Incorporation 
of a dynamic model (even mis-specified) offers means for the incorpo
ration of a smooth temporal prior upon the evolution of these proba
bilities implicitly. The state can enriched with stationary sites, such as 
public places, to enable transmission of disease via surface contact. Yet, 
proper representation of such sites may require a different state space 
representation as well as dedicated dynamics. 

2.2. Measurements 

Graph data: Let G t ∈ Rn×n represent weighed graph data attributed 
to each time step. The graph represents proximity interaction between 
individuals. The weights on the edges factors both proximity as well as 
exposure duration within a single time step. Such data can be acquired 
from peer-to-peer short-range communication on smart devices, such as 
Bluetooth [17,8,6,5]. Since the interactions between individuals 
changes over time, the set of weighted graphs forms a dynamic graph 
over time. We shall denote the graph Laplacian of each temporal graph 
G t , by Lt ∈ Rn×n, and is given by Lt = Dt − At , where Dt is the diagonal 
degree matrix and At is the adjacency graph obtained from the prox
imity/contact tracing data. 

Infection test data: In addition to the graph data, we shall assume 
that testing for infection are administrated at each time step. Such tests 
may include PCR (Polymerase chain reaction), antibody testing such as 
Immunoglobulin G (IgG) or Immunoglobulin M (IgM), or any other 
means to assess the definitive infection state for tested individuals with 
measurable confidence level. Specifically, here we are interested in tests 
that qualify whether an individual is actively infectious (attributed to 
the 3rd components of individual’s state at the timestep the test was 
collected). The number of such infection indicating tests (IIT) taken at 
each time steps may vary and given by mt , whereas the results of the 
tests are denoted by dt ∈ Rm

t ,mt < n. For the sake of data assimilation, 
we denote a linear projector operator Pdt ∈ Rmt×n which projects the 
state at time step t to the IIT measurement space. 

Recovery test data: Respectively, we shall denote by pt < n the 
number of recovery indicating tests (RIT) taken at time step t and by 
ht ∈ Rpt the tests results. The RIT test qualifies whether an individual has 
been recovered. Similarly, as with the IIT tests, we define a linear pro
jector Pht ∈ Rpt×n that projects the state at timestep t to the RIT mea
surement space. If and when effective vaccines are available, individuals 
who are vaccinated can be marked as recovered in the model. 

Surface test data: Transmission of viral content can be made via 
stationary surfaces, rather than merely by face-to-face interaction of 
individuals [16,47]. It is possible to incorporate into the pandemic 
transmission model tracing data representing interactions between in
dividuals and physical sites (e.g. via interaction with stationary 

Bluetooth device or RFID). Positive outcome of the test, will indicate 
that infectious particles were identified at a site. These tests can be 
treated similarly as IIT tests (attributed to the 3rd components of in
dividual’s state at the time step the test was collected) or otherwise can 
be handled differently by augmenting the SEIR model. The number of 
surface tests taken at each time steps is given by qt, whereas the results 
of the tests are denoted by gt ∈ ℝqt , qt < n. We denote a linear projector 
operator Pgt ∈ Rqt×n which projects the state at time step t to the surface 
test space. 

Cleaning/ disinfecting event data: When physical sites are incor
porated into the model, it is essential to indicate records of cleaning/ 
disinfecting events which effectively reduce/ reset the site to a state of 
having little probability of being infectious, that is annihilating the 3rd 

components of individual’s state at the time step the test was collected. 
Let the number of such recorded events be denoted by ct < n with 
respective recorded values vt ∈ Rct . The linear projector Pvt ∈ Rct×n that 
projects the state at time step t to the disinfecting events. 

2.3. Dynamics 

To describe the dynamics of the model we modify the conventional 
SEIR population model, to an individualized, probabilistic graphical 
model. While the SEIR model has been employed extensively in disease 
control simulation, in the context of this study, other dynamical models 
can be equally utilized. Provided the interaction graph data between 
individuals over time as well as individuals pathogenic testing data, we 
shall recast the model as individualized model, where each node rep
resents an individual, rather than address populations. Interactions be
tween individuals and exchange of probabilities at the tth timestep are 
represented using the graph Laplacian Lt ∈ Rn×n. The revised model is a 
stochastic diffusion–reaction1 model of the following form: 

ds
dt

= − κSLs − βe ⊙ s − γi ⊙ s+ μss (1)  

de
dt

= − κELe+ βe ⊙ s+ γi ⊙ s − αe (2)  

di
dt

= − κILi+αe − μhi − μss (3)  

dr
dt

= μhi (4)  

where {s, e, i, r} ∈ Rn are vectors containing the states {S,E, I,R} for all 
individuals, respectively, κS, κE, κI ∈ R are diffusion coefficients and α, β,
γ, μh, μs ∈ R represent reaction coefficients. The model coefficients can 
be prescribed a priori, but, whenever sufficient data is provided, these 
coefficients can be learned statistically2. The coefficients of the model 
themselves may evolve over time to reflect changes in individuals 
behaviour (e.g. masks wearing compliance, hand sanitation frequency, 
etc). Such refinements of the model can be accommodated by devising 
parametric/ non-parametric models for the coefficients themselves, that 
includes additional health-care policies and public compliance affinity 
parameters. Furthermore, structural mis-specification of the dynamical 
model can be mitigated via hybridization of first-principle and data- 
driven model learning [53,51]. Other then advocating for models that 
enables probabilistic treatment of individual state, and the incorpora
tion of graphical data, the scope of this study focuses on closure of the 
tracing-sensing loop, rather than the intricacies of any particular model. 

1 It is important to note that other than the diffusion–reaction model 
considered here, alternate transport models such as wave relaxation, etc, can be 
considered. The discussion of such models goes beyond the scope of this study.  

2 Diffusion and reaction coefficients may be set a priori differently to model 
individuals dynamics, vs. sites. 
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Thus, for the sake of expositional simplicity we shall proceed with the 
above exemplar model. 

Integration of the aforementioned continuous-time dynamical sys
tem (1) can be performed in various ways, such as implicit-explicit 
combination [30], high order Runge–Kutta integrators [13], etc. Given 
the frequent rate of the graph data, and the complexity associated with 
semi-explicit integration schemes, we shall resort here to a simple for
ward Euler integration. Obviously, when such explicit integrator is 
employed it is essential to ensure stability of the numerical solution via 
careful selection of timestep duration. Other, more complex integration 
schemes can equally be considered. Under these settings we have: 

st+1 = st − Δt⋅(κSLtst + βet ⊙ st + γit ⊙ st) (5)  

et+1 = et − Δt⋅(κELtet − βet ⊙ st − γIt ⊙ St + αEt) (6)  

it+1 = it − Δt⋅(κILtit − αet + μhit + μsst) (7)  

rt+1 = rt + Δt⋅μh⋅it (8)  

where Δt is the time step parameter. Note that the graph Laplacian Lt 
incorporated in the model is time-varying, per the dynamic interaction 
between individuals over time. The contact-tracing data and the contact 
network are typically time varying, and it is important that the model 
accounts of these time dependent variations. The initial conditions of the 
model are generally unknown a priori. In the following section, we shall 
discuss how uncertainty associated with these conditions can be quan
tified and mitigated. 

Asymptomatic individuals: The proposed model assumes proba
bilistic state y = {S,E, I,R} for individuals, and these probabilities are 
estimated using the contact tracing data and the model evolution. We 
start with an initial state t = t0, where the individuals who were tested 
positive will have Ii,t0 = 1 and the remaining individuals start with 
Si,t0 = 1. Next, the model is evolved, taking into account the contact 
tracing data (via. the dynamic graph Laplacian) to obtain the probability 
states at a given time t = T. We can then use these probabilities to (a) 
issue early warning to individuals who have a high exposed state E at the 
given time T, and (b) more importantly, identify those individuals who 
are asymptomatic to the disease. Such individuals will have a high 
infected state I, but might not have any symptoms and hence are likely 
not tested. The uncertainty quantification analysis described in the 
following section can be further used to identify such individuals (with 
uncertainty in state estimation) and prescribe testing. 

Data Assimilation In order to provide point estimate of the state 𝒴
given measurements (testing) up till t = T, we can consider a dynamic 
inverse problem that accounts for the IIT and RIT tests and the associ
ated noise in the models. For example, we can consider the following 
problem: 

Ŷ t = argminY=[s,e,i,r]∈Rn×4 R (Yt+1, ft(Y)) (9)  

s.t.
∑T

t=t0
ηt⋅(δd(Pdt i, dt) + δr(Pht r,ht)

+δg(Pgt Y, gt) + δv(Pvt Y, vt))⩽τ
(10)  

where ηt ∈ R represents a discount parameter, representing the degree to 
which one wish to factor older data (e.g. rely more heavily on recent data 
rather than old one), and δd, δr are noise models associated with IIT and RIT 
tests respectively. Similarly, δg, δv and R are error metrics, ft is the evo
lution function that takes the state Yt to the next time step via. (5)-(8), and 
Yt+1 is the updated state after including the test results. An alternative 
assimilation model would be to enforce the known testing data, rather than 

consolidate it with prior knowledge of disease propagation. 
Such a point estimator can be useful, yet they do not provide means 

for estimation of the posterior probability, and therefore, can be limiting 
when it comes to uncertainty quantification, and experimental design. 
Conventionally, one can sample the prior distribution associated with 
the state and update the posterior using methods such as Markov Chain 
Monte Carlo (MCMC) or Hamiltonian Monte Carlo. Alternatively, 
methods such as generalized and arbitrary Polynomial Chaos Expan
sions can offer more salable means to sample the posterior in large-scale 
settings [20,43,2]. 

3. Uncertainty control 

Due to limited testing capacity, in most cases testing is performed 
sparsely, where the number of tests is significantly smaller compared to 
the dimensions of the state space 

∑T
t=t0 mt <

∑T
t=t0 n, rendering the state 

inference problem ill-posed. Furthermore, the intrinsic recovery func
tion, the interaction dynamics, and the measurements are all mis- 
specified, and therefore admitting uncertainty. Assuming some form of 
regularity of the solution (primarily in the form of the dynamical 
model), we can still make substantiated inferences, yet, we must 
consciously account for the underlying uncertainty associated with each 
inference. Whenever an observation (testing) takes place, one can 
attribute relatively high degree of confidence (small uncertainty) to the 
probability assigned to the relevant node, yet, the further we traverse 
away from that node across the graph, or propagate over time, the level 
of confidence decays. 

Appropriate representation of uncertainty, is critical for making 
judicious decision as for how to prioritize best the administration of a 
limited testing budget. This overarching mission is essence of this study. 
On the one hand, it is eminent to test those identified to be under high 
risk (high probability of being infected), as such individuals confer im
mediate risk to their surrounding, yet on the other hand, acknowledging 
the limitation of the model, we wish to allocate testing as to reduce the 
degree of uncertainty associated with nodes for which uncertainty is 
high, as we otherwise, favor exploitation over exploration, and may miss 
the bigger picture altogether. 

3.1. Polynomial Chaos Expansion 

Polynomial Chaos Expansion (PCE) is a non-sampling based 
formalism used for the quantification of prediction uncertainties in 
stochastic systems [23,64,43]. The key idea is to depart from the 
traditional point-wise sampling uncertainty propagation paradigm, and 
instead represent the propagation of the underlying probability distri
bution through the stochastic process in the form of a polynomial 
expansion. In particular, the method reduces the model into a para
metric form by representing it in terms of a basis of orthonormal poly
nomials with respect to the input random variables. PCE has recently 
been used for modeling systems in a number of applications, including 
machine learning [55], sensitivity analysis of systems [19], flow simu
lations [64], geo-spatial statistics [44,42], integrated circuits [29] and 
others [3,4]. Different variants of PCE have been proposed, where the 
methods differ with respect to the polynomial considered [63,64,43], 
and the approaches used for computing the coefficients [23,20]. 

In this paper, we consider the arbitrary Polynomial Chaos Expansion 
(aPCE) approach proposed in [43], which is a data driven approach for 
analyzing the stochastic (dynamical) system. The aPCE approach gen
eralizes chaos expansion techniques to entertain arbitrary distributions 
with arbitrary probability measures (discrete, continuous, or discretized 
continuous). The expansion can be specified either analytically by virtue 
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of probability densities or cumulative distribution functions, numeri
cally via histograms or as discussed in the following, supported by raw 
data. In particular, in this study we consider the Bayesian variant of 
aPCE [42] were we only require knowledge of the moments of the input 
random variable, rather than explicit knowledge of the probability dis
tribution. Consider a stochastic system y(ξ) with multi-dimensional 
input random variable ξ = {ξ1, …, ξN}. In our case, we can consider 
the state S, E, I,R as four different stochastic PDE models (as defined by 
Eqns. (1)–(4), and the N parameters to be the state of the N-nearest 
neighbours in the graph. Note that, the model considers the state of the 
neighbouring nodes to be random variables, and does not require their 
precise state. We wish to represent y(ξ) by a multivariate polynomial 
expansion as follows: 

y(ξ) ≈
∑M

i=1
ciΦi(ξ), (11)  

where the coefficients ci quantify the dependence of the y on the input 
parameters boldxi. The number of terms in the expansion M is given as 
M =

(N+d)!
N!d! , where n is the number of parameters and d is the expansion 

order. Φi’s are the multi-variate orthogonal polynomial basis for {ξ1,…,

ξN}, and assuming the parameters to be independent, we express 

Φi(ξ) =
∏N

j=1
P
(θi

j)

j (ξ),

with 
∑

jθ
i
j⩽M (multivariate indices that contain the combinatorial in

formation). In the moment based PCE methods, the polynomials are 
defined as: 

P(k)(ξ) =
∑k

l=1
ρ(k)

l ξl, l ∈ [0, d],

where ρ(k)
l are the coefficients of P(k) for a variable ξ. 

The method in [43,42] constructs these polynomials for any arbi
trary distributions by just using the moments computed from observed/ 
sampled data. Suppose we have T0 observations of the data (y,ξ), we can 
compute the raw moments μl =

1
T0

∑T0
t=1ξl

t for l = 0,…,2k − 1. Then, the 

coefficients ρ(k)
l of the polynomials P(k) are computed by solving a linear 

system with the following square matrix of moments, see [43] for 
details. 

⎡

⎢
⎢
⎢
⎢
⎣

μ0 μ1 ⋯ μk
μ1 μ2 ⋯ μk+1
⋮ ⋮ ⋮ ⋮

μk− 1 μk ⋯ μ2k− 1
0 0 ⋯ 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ(k)
0

ρ(k)
1

⋮
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(12)  

Once the polynomials P(k) are constructed from the moments of sampled 
inputs ξ, the coefficients ci can be computed for the observed data y using 
Gram-Schmidt orthogonalization or by the Stieltjes procedure (solving a 
least squares problem). The coefficients can be then updated using a 
Bayesian approach for the additional observed/sample data, see [42]. 

In our case, PCE treats the state {S,E, I,R} evolutions as stochastic 
dynamic systems, and tries to model the probability distribution of the 
states. The measurements correspond to the testing results dt and ht . 
Once, we obtain the PCE, we can compute the posterior statistics such as 
the posterior mean μ̂ and variance σ̂ for the output model, inexpensively 

by simply constructing the response surface using the coefficients of the 
polynomial expansion. In our case, we can obtain the posterior mean 
and variance for the four states for each individual using aPCE. The 
posterior statistics can then be used to identify uncertainties in the in
dividual’s states, and optimal testing can be prescribed. 

3.2. Optimal testing prescription 

One of the main challenges related to pandemics has been the issue of 
prescribing testing optimally given limited testing resources. The aPCE 
approach described above helps us quantify uncertainty, and using the 
posterior statistics, we can prescribe optimal testing to control/mitigate 
the uncertainty. 

Suppose the probability associated with each state yt be denoted by a 
2nd moment construct accounting for both the mean probability μt and 
the variance σt , representing the state uncertainty, i.e. yt ∼ N {μt , σt I}. 
Our goal would be to figure out what is the best testing paradigm in the 
next time step, so as to (a) minimize the risk of infection propagation, 
while also (b) minimize the uncertainty associated with the state, and (c) 
account for the limited testing budget. Let, wt ∈ Rn

+ denote the recom
mended testing assignment for the time step t. Then, we propose to solve 
the following test allocation problem: 

ŵt = argminwt{U(wt, σ̂t ) + D(wt,A(μ̂t , σ̂t ), dt) + λ‖wt‖1} (13)  

s.t. 0⩽wi,t⩽1 i ∈
[
N
]

(14)  

where function U(⋅) represents the posterior uncertainty (measured 
using the posterior of variance σ̂ t computed using PCE) associated with 
performing tests per dt, and function D(⋅) captures the degree in which 
testing should be performed to those who are in the highest risk of being 
infected (a form of bias-variance balance), with A(⋅) is an acquisition 
function that quantify the discrepancy between infected symptomatic 
and asymptomatic individual. The posterior mean μ̂ and variance σ̂ are 
computed using the PCE estimate. The ℓ1 regularization is used to 
control the sparsity of wt, i..e, the number of tests to be performed at 
time t, based on the testing budget available. ℓ0 (quasi) norm cardinality 
constraint can also be used for a bounded test budget, say ‖wt‖0⩽kt, 
where kt is the maximum number of tests available at time t [58]. We can 
also split the problem into two separate minimization problems in order 
to assign predefined budget to the two criteria (risk and uncertainty). In 
our simulation experiments, Euclidean norm error function was used for 
posterior uncertainty U(wt , σ̂t ) = ‖wt − σ̂t‖2, the upper confidence bound 
A(μ̂t , σ̂t ) = |μ̂t − βσ̂t | was used as the acquisition function, and the dis
tance measure was D(wt ,a(μ̂t , σ̂t ),dt) = ‖wt − a(μ̂t , σ̂t ) ⊙ (1 − dt)‖2. 

We also wish to remark here that, when effective vaccines are 
available for distribution, we can modify the above optimization prob
lem to obtain optimal vaccine allocation, in order to curb the disease 
spread and account for the amount of vaccines available at a given time. 

Detailed Algorithm: Here, we present the detailed procedure for the 
proposed model. The overall algorithm has three main stages. In the first 
stage, for each time t, the contact tracing data (dynamic graph Lt) and 
current testing results (dt ,ht) are used to evolve the state Yt = [st , et , it , rt ]

using the dynamic graph SEIR model and Eqs. (5)–(8). In the second 
stage, using the set of T observations 𝒴, we build polynomial chaos 
expansions for the four state S,E, I,R, and the PCE estimate 𝒴̂ ∈ Rn×4×T 

(response surface) is computed. Finally, in the third stage, using the 
estimate 𝒴̂ , we compute the posterior mean and variance μ̂T, σ̂T , and 
solve the optimization problem in Eq. (13) to obtain the optimal testing 
prescription wT. 
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Algorithm 1. Dynamic graph and polynomial chaos based models for 
disease propagation and optimal testing   

Input: Test results dt ,ht, Graph Laplacians Lt for time t = 0,…,T, model parameters, N,

d  
Output: Optimal testing vector wT.  
0. Y0 = initializeStateSEIR(d0,h0).  
Stage I 
for t = 1,…,T do  

1. Yt = updateStateTestingSEIR(Yt− 1,dt ,ht).  
2. Yt = evolveGraphSEIRModel(Yt ,Lt , parameters)  
3. Issue early warnings to exposed individuals. 

end for 
Stage II 
for i = 1,…,4 do  

4. [Ξ,Z] = NeighborState(LT,𝒴(:, i, :),N).  
5. 𝒴̂(:, i, :) = Bayesian-aPCE(Ξ,Z,dT ,hT,N,d).  
5. If i = 3, estimate asymptomatic individuals.  

end for 
Stage III 
7. [μ̂T , σ̂T] = weightedMeanVariance(𝒴̂).  
8. wT = optimalTesting(μ̂T , σ̂T,dT)   

Algorithm 1 describes the procedure. The function ‘ini
tializeStateSEIR’ initialize the state based on the initial test results d0, h0 
(i.e.. set Y0(i,3) = 1 if d0(i) = 1; Y0(i,4) = 1 if h0(i) = 1; else Y0(i,1) =

1), and ‘updateStateTestingSEIR’ function updates the state Yt based on 
the test results dt ,ht (i.e.. set Yt(i,3) = 1 if dt(i) = 1; and Yt(i,4) = 1 if 
ht(i) = 1). Next, the function ‘NeighborState’ find the states of the N 
neighbors (N input variables) for each individual Ξ ∈ Rn×N given the 
current graph Laplacian LT , and the output samples Z ∈ Rn×T. Then, the 
‘Bayesian-aPCE’ function constructs arbitrary polynomial chaos expan
sion and outputs an estimate (response surface) for Z. The ‘weight
edMeanVariance’ function computes the mean and variance across time 
of the response surfaces of the four states, and then computes a weighted 
mean of the four states, where states I and E are weighted more than the 
other two states, since we are more interested in the uncertainty of these 
states. 

4. Simulation results 

In this section, we present few numerical results based on simula
tions3 to illustrate the behaviour of the different aspects of our models. 
We first show how the graphical SEIR model captures the disease dy
namics, and how we can use it to issue early warnings to individuals who 
are likely infected/exposed. We then show how aPCE and uncertainty 
quantification can be used to prescribe optimal testing, when the testing 
resources are limited. 

Graphical SEIR model: In the first set of experiments, we analyze 
the graphical SEIR model proposed in Section 2. In Fig. 1, we illustrate 
the disease transmission as modelled by the graphical SEIR model. We 
consider a small (fixed) graph of 10 individuals (for easy visualization) 
and show how the infection transmits to other nodes over time. At time 
step t = 1, we have one individual infected (red node). We note that as 
time evolves, the infection spreads to nodes who are at close proximity. 
We consider a fixed graph here for illustration, but a graph that varies 
over time (better simulation of human interactions) is considered in the 
remaining experiments. We note that the state of the nodes evolve over 
time as the virus spreads. As examples, we have magenta nodes with 
I > 0.04, and the yellow nodes with I > 0.002, and we note the change 
of states over time. Based on this model, we can issue early warnings to 
the individuals (via. text messages or app notifications) if their state I or 
E crosses certain thresholds, possibly even before the individuals show 
any symptoms. In our example, we can send out warnings to the 

individuals, when their colors change, once when blue to yellow and 
again when yellow to magenta. 

The last plot depicts the state {S,E, I,R} for the 10 individuals over 
20 time instances. We note that the model accounts for both spread of 
the virus, as well as how the infected individuals recover (and possibly 
become susceptible again). The rate of change of the states can be 
optimized by tuning the different parameters (the diffusion coefficients 
κS, κE, κI and the reaction coefficients α,β,γ,μh,μs) in the model based on 
data observations, geographical locations, and time. In our experiments, 
we chose κS = 0.1,κE = 0.1,κI = 0.25, and α = 0.02,β = 0.05,γ = 0.01,
μh = μs = 0.05. The statistical distributions for individuals and over 
time steps are discussed in the next results (see Prior distributions in 
Fig. 2). All simulations were performed on Matlab, and our code has 
been made publicly available at https://github.com/Shashankaubaru/ 
GraphSEIR_aPCE. 

PCE and optimal testing: In the next set of experiments, we study 
the different aspects of the PCE analysis and uncertainty control. We 
summarize these results in Fig. 2–4. The first (left) plot in Fig. 2 gives the 
prior and posterior distributions in the form of the mean with the 
standard deviation error band of the infection state I over time steps. We 
considered n = 1000 individuals to compute the statistics and total time 
steps T = 100. The prior distribution is the distribution of the state over 
time steps as obtained (evolved) from our graphical SEIR model. The 
posterior distribution is obtained by representing the state using 
Bayesian aPCE [42] and computing the response surface using the 
measurements (uniformly random testing results). We built our PCE 
simulation using the source code made available by the authors of [42]. 
For PCE, we chose No. of input parameters N = 5, i.e.. we consider N 
nearest neighbours (based on the edge weights), and the expansion 
order d = 3. Hence, the No. of terms (Collocation Points) was M = 56 
(the same parameters were used in all experiments). We observe that the 
prior distribution is smooth and increasing. This is because the SEIR 
model does not account for testing. The posterior distribution is random, 
due to the random testing measurements. In the second (right) plot, we 
give the prior and posterior distributions for each individuals obtained 
from the PCE analysis. We plot the statistics for 100 individuals (we 
chose fewer nodes for easy visualization) computed over 100 time in
stances. Again, the posterior distribution is estimated using the response 
surface computed using Bayesian aPCE with the above parameters. We 
observe that the state of certain individuals has high variance (high 
uncertainty). 

In Fig. 3, the left plot gives us the mean absolute error (MAE) in the 
prediction of state I by aPCE as a function of the number of neighbors N 
used to build the expansion. The error is computed as the mean absolute 
difference of the actual state I as obtained by the SEIR model (considers the 
whole Laplacian and the test measurements), and the prediction we obtain 
by aPCE. For PCE, we assume each state only depends on few neighboring 
nodes (omitting other nodes and edges), since considering more variables is 
computationally non-viable. We note that, the error reduces as we increase 
N. Increasing N makes the graph more fine-grained, but also increases the 
complexity of the PCE model. In most situations, the complete contact 
tracing information/graph will be unavailable, and this result illustrates 
how our method performs with varying amount of information about the 
contact network. Similarly, to assess contact tracing information incom
pleteness, we can drop certain edges at random, depending on the partic
ipation rate, when we conduct the PCE analysis. 

In the right plot, we give the cardinality of the optimal testing pre
scription vector wT obtained, i.e, the number of tests prescribed, as a 
function of the regularization parameter λ. The Matlab CVX package 
[24] was used to solve the optimization problem in Eq. (13) with 
functions as described before. We first observe that, as we decrease λ, the 
cardinality of wT, i.e.. the No. of prescribed tests increases. We can 
choose an optimal λ value based on the available budget. Moreover, we 
observed that the method prescribes testing for individuals with high 
uncertainty (individuals with high variance in the right plot of Fig. 2). 
These results show that we can quantify the uncertainty in our model 

3 Much of real-world contact tracing data are private and are not publicly 
available. Our simulation results show how our methods can be deployed on 
contact tracing data. 

S. Ubaru et al.                                                                                                                                                                                                                                   

https://github.com/Shashankaubaru/GraphSEIR_aPCE
https://github.com/Shashankaubaru/GraphSEIR_aPCE


Journal of Biomedical Informatics 122 (2021) 103901

7

and prescribe appropriate testing. 
In Fig. 4, the left plot in the figure presents the risk to budget trade-off 

by plotting the final value of objective function in (13) we obtained for 
the optimal wt for different values of the regularization parameter λ. We 
again chose n = 1000, T = 100, and other parameters as before. 
Decreasing λ increases the No. of prescribed tests, and in turn the testing 
budget required. The plot shows that increasing the No. of tests reduces 
the risk initially and after a point this reduction is minimal. The trade-off 
plot helps us to choose an optimal λ (lowest testing budget) for an 
acceptable risk tolerance. The right plot in the Fig. 4, presents the 

distribution of the infection state I over time steps t when testing was 
conducted randomly (in blue) and when optimal testing was prescribed 
at regular intervals (in red). We considered T = 100 time steps, and in 
the first case, we performed random testing at each time instance. In the 
second case, we ran the PCE analysis after every 10 time instances (use 
previous 10 random measurements to construct the PCE) and used the 
optimal testing prescription in the next instance. We observe that in the 
second case, the mean infection starts reducing sooner than the random 
testing. These results suggest that indeed prescribing optimal testing can 
help control uncertainty and mitigate disease transmission. 

Fig. 1. Graphical SEIR model disease transmission visualization. Sample simulation with 10 nodes at five time instances (first five images). Red nodes indicate 
infected individuals I > 0.5, magenta nodes have I > 0.04, and yellow have I > 0.002. The last plot depicts the state {S, E, I,R} for the 10 individuals over 20 
time instances. 
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Fig. 2. PCE and posterior distributions: (Left) Prior and Posterior distributions [mean with standard deviation error band] of the infection state over time steps t. 
(Right) Prior and Posterior distributions of the infection state for 100 individuals. 

Fig. 3. PCE and Optimal testing: (Left) The mean absolute error (MAE) between true state I and prediction by PCE as a function of neighbors N. (Right) Number of 
tests prescribed (cardinality of wT) as a function of the regularization parameter λ. 

Fig. 4. PCE and Optimal testing: (Left) Trade-off between the risk (objective function in (13)) versus the testing budget (regularization parameter λ i.e.. No. of tests). 
(Right) Distribution [mean with standard deviation error band] of state I over time with random and optimal testing. 
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5. Conclusions 

In this study, we introduced a probabilistic SEIR model for disease 
transmission. The model represents individual-level contact tracing in
formation via dynamic graphs, where each individual represents a node 
and interaction is described by edges. The S,E, I,R compartments are 
treated as probabilistic entities as to capture uncertainty associated with 
the stochastic process of disease propagation, sparse testing, and model 
inadequacies. As illustrated by numerical simulations, this model can 
serve healthcare professionals in issuance of early warnings to in
dividuals who are likely exposed or infected by the virus. Furthermore, 
the model identifies those individuals who are likely to be asymptom
atic. We then proposed the use of arbitrary Polynomial Chaos Expansion 
(aPCE) to quantify uncertainties in the model, while maintaining 
computational scalability. By estimating the expected risk as well as 
minimizing uncertainty we prescribe optimal testing for individuals 
under limited testing and tracing resources. The framework offers a 
decision tool for balancing between immediate disease spread threat 
intervention and informed assessment of the pandemic state. Lastly, the 
framework provides means for policy makers as to estimate the required 
testing budget for a given acceptable risk tolerance and can be easily 
adapted to optimize vaccine distribution. 
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[44] S. Oladyshkin, P. Schröder, H. Class, W. Nowak, Chaos expansion based bootstrap 
filter to calibrate co2 injection models, Energy Procedia 40 (2013) 398–407. 

[45] L. Peng, W. Yang, D. Zhang, C. Zhuge, L. Hong, Epidemic analysis of covid-19 in 
China by dynamical modeling. arXiv preprint arXiv:2002.06563, 2020. 

[46] PEPP, Pan-european privacy-preserving proximity tracing. https://pepp-pt.org/, 
2020. 

[47] D. Pradhan, P. Biswasroy, G. Ghosh, G. Rath, et al., A review of current 
interventions for covid-19 prevention, Arch. Med. Res. (2020). 

[48] V.M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, G. Pappas, Optimal vaccine 
allocation to control epidemic outbreaks in arbitrary networks, in: 52nd IEEE 
Conference on Decision and Control, IEEE, 2013, pp. 7486–7491. 

[49] T. Sardar, S.S. Nadim, J. Chattopadhyay, Assessment of 21 days lockdown effect in 
some states and overall india: a predictive mathematical study on covid-19 
outbreak, arXiv preprint arXiv:2004.03487, 2020. 

[50] I.B. Schwartz, J.H. Kaufman, K. Hu, S. Bianco, Predicting the impact of 
asymptomatic transmission, non-pharmaceutical intervention and testing on the 
spread of covid19. medRxiv, 2020. 

[51] G. Shulkind, L. Horesh, H. Avron, Experimental design for nonparametric 
correction of misspecified dynamical models, SIAM/ASA J. Uncertainty Quantif. 6 
(2) (2018) 880–906. 

[52] P.X. Song, L. Wang, Y. Zhou, J. He, B. Zhu, F. Wang, L. Tang, M. Eisenberg, An 
epidemiological forecast model and software assessing interventions on covid-19 
epidemic in China, MedRxiv (2020). 

[53] J.T. Thorson, K. Ono, S.B. Munch, A bayesian approach to identifying and 
compensating for model misspecification in population models, Ecology 95 (2) 
(2014) 329–341. 

[54] C. Tian, Q. Zhang, L. Zhang, Global stability in a networked sir epidemic model, 
Appl. Mathe. Lett. (2020) 106444. 

[55] E. Torre, S. Marelli, P. Embrechts, B. Sudret, Data-driven polynomial chaos 
expansion for machine learning regression, J. Comput. Phys. 388 (2019) 601–623. 

[56] TraceTogether, Singapore tracetogether app. https://www.tracetogether.gov.sg/, 
2020. 

[57] R. Vaishya, M. Javaid, I.H. Khan, A. Haleem, Artificial intelligence (ai) applications 
for covid-19 pandemic, Diabetes Metabolic Syndrome: Clin. Res. Rev. (2020). 

[58] E. Van Den Berg, M.P. Friedlander, Probing the pareto frontier for basis pursuit 
solutions, SIAM J. Sci. Comput. 31 (2) (2009) 890–912. 

[59] P. Van Mieghem, J. Omic, R. Kooij, Virus spread in networks, IEEE/ACM Trans. 
Networking 17 (1) (2008) 1–14. 

[60] A. Viguerie, G. Lorenzo, F. Auricchio, D. Baroli, T.J. Hughes, A. Patton, A. Reali, T. 
E. Yankeelov, A. Veneziani, Simulating the spread of covid-19 via spatially- 
resolved susceptible-exposed-infected-recovered-deceased (seird) model with 
heterogeneous diffusion. arXiv preprint arXiv:2005.05320, 2020. 

[61] A. Viguerie, A. Veneziani, G. Lorenzo, D. Baroli, N. Aretz-Nellesen, A. Patton, T. 
E. Yankeelov, A. Reali, T.J. Hughes, F. Auricchio, Diffusion–reaction 
compartmental models formulated in a continuum mechanics framework: 
application to covid-19, mathematical analysis, and numerical study, Comput. 
Mech. (2020) 1–22. 

[62] S.J. Weinstein, M.S. Holland, K.E. Rogers, N.S. Barlow, Analytic solution of the seir 
epidemic model via asymptotic approximant, Physica D 411 (2020) 132633. 

[63] D. Xiu, G.E. Karniadakis, The wiener–askey polynomial chaos for stochastic 
differential equations, SIAM J. Sci. Comput. 24 (2) (2002) 619–644. 

[64] D. Xiu, G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized 
polynomial chaos, J. Comput. Phys. 187 (1) (2003) 137–167. 

[65] Z. Zhao, X. Li, F. Liu, G. Zhu, C. Ma, L. Wang, Prediction of the covid-19 spread in 
african countries and implications for prevention and controls: A case study in 
South Africa, Egypt, Algeria, Nigeria, Senegal and Kenya, Sci. Total Environ. 
(2020) 138959. 

[66] Y. Zhou, F. Wang, J. Tang, R. Nussinov, F. Cheng, Artificial intelligence in covid-19 
drug repurposing, Lancet Digital Health (2020). 

S. Ubaru et al.                                                                                                                                                                                                                                   

https://www.nhsx.nhs.uk/covid-19-response/nhs-covid-19-app/
https://www.nhsx.nhs.uk/covid-19-response/nhs-covid-19-app/
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0210
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0210
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0210
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0210
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0215
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0215
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0220
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0220
https://pepp-pt.org/
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0235
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0235
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0255
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0255
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0255
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0260
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0260
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0260
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0265
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0265
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0265
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0270
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0270
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0275
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0275
https://www.tracetogether.gov.sg/
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0285
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0285
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0290
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0290
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0295
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0295
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0305
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0305
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0305
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0305
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0305
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0310
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0310
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0315
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0315
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0320
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0320
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0325
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0325
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0325
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0325
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0330
http://refhub.elsevier.com/S1532-0464(21)00230-6/h0330

	Dynamic graph and polynomial chaos based models for contact tracing data analysis and optimal testing prescription
	1 Introduction
	2 Problem formulation
	2.1 State
	2.2 Measurements
	2.3 Dynamics

	3 Uncertainty control
	3.1 Polynomial Chaos Expansion
	3.2 Optimal testing prescription

	4 Simulation results
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


