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The MoSeS dynamic omnigami paradigm for smart
shape and composition programmable 2D
materials
Joel Berry1,2, Simeon Ristić 1, Songsong Zhou1, Jiwoong Park 3 & David J. Srolovitz1,4,5*

The properties of 2D materials can be broadly tuned through alloying and phase and strain

engineering. Shape programmable materials offer tremendous functionality, but sub-micron

objects are typically unachievable with conventional thin films. Here we propose a new

approach, combining phase/strain engineering with shape programming, to form 3D objects

by patterned alloying of 2D transition metal dichalcogenide (TMD) monolayers. Conjugately,

monolayers can be compositionally patterned using non-flat substrates. For concreteness, we

focus on the TMD alloy MoSe2cS2ð1�cÞ; i.e., MoSeS. These 2D materials down-scale shape/

composition programming to nanoscale objects/patterns, provide control of both bending

and stretching deformations, are reversibly actuatable with electric fields, and possess the

extraordinary and diverse properties of TMDs. Utilizing a first principles-informed continuum

model, we demonstrate how a variety of shapes/composition patterns can be programmed

and reversibly modulated across length scales. The vast space of possible designs and scales

enables novel material properties and thus new applications spanning flexible electronics/

optics, catalysis, responsive coatings, and soft robotics.
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Shape-programmable materials1–3 utilize the large deforma-
tions achievable with modest internal strains in thin sheets.
The ability to spatially pattern internal strains provides a

powerful means to controllably transform 2D sheets into 3D
objects. Many biological systems exploit these underlying physical
principles4–6. Synthetic analogs are employed in soft robotics7,
drug delivery8, biomedical devices9, and biomimetic materials10.
Shape-programmable materials can be engineered to allow
dynamic and reversible shape changes (and become smart or 4D
materials) by incorporating stimuli-responsive components.

Geometrically, deformations of thin sheets can alter mean (H)
and/or Gauss (K) curvature. Mean curvature is developed by, e.g.,
constructing a bilayer (analogous to a bimetallic strip) in which
the two layers are strained in-plane relative to one another. Gauss
curvature requires gradients in in-plane strain within the sheet
and can produce a much wider variety of shapes. The ability to
independently modulate in-plane and bending strains (K and H)
enriches the palette of possible 3D shapes and increases shape
programmability.

Conceptually, strains can be programmed into sheets as
smoothly varying fields (e.g., through lateral or vertical compo-
sition/misfit gradients)11–16, arrays of topological defects17–22

(generated, for example, by conformal growth on substrates
with nonflat topographies22–24), and “quilted” patches/grains of
constant internal strain25 (generated, for example, by in-plane
heterostructure growth16,26–28 and localized phase transforma-
tions29–32). Material type and synthesis/processing conditions
dictate which of these are realizable and the length scales of the
achievable 3D shapes.

Soft shape programmable materials based on hydrogels33,
polymers34, nematic elastomers35, and other shape memory
materials36 have been extensively studied. Means to control both
bending37–39 and in-plane deformations11,33,40 have been devel-
oped, in addition to stimuli-responsive, reversibly actuatable
materials33,41. However, since film thicknesses are often large
(e.g., �10 µm), 3D objects made from such soft films typically
have large characteristic radii of curvature (�0:1 mm).

Atomically thin materials are required for atomic scale pro-
gramming. To date, 3D feature generation involving inorganic 2D
materials42, with thicknesses <1–10 nm, has largely been explored
using thicker composite bilayers or bimetallic strips43–45,
mechanical self-assembly/buckling-based approaches (e.g., pat-
terned sheets on thicker prestrained deformable substrates46–49),
and cut-and-deform/kirigami approaches50,51. Quasi-2D materi-
als with novel thermal52,53, mechanical54, optical55,56, and
electronic57,58 properties have thus been produced. However,
programmed atomic scale 3D features are not readily realized
with such approaches.

Here, we propose and theoretically investigate an approach
based on single 2D transition metal dichalcogenide (TMD) alloy
monolayers that permits composition programming to achieve
nanoscale 3D objects with exquisite shape control through both
bending and stretching (which we dub omnigami) and is rapidly
and reversibly actuatable with external electric fields. This system
also facilitates the conjugate process; using imposed shapes to
self-assemble composition patterns during synthesis or post-
processing. The resultant composition patterns imprint shape,
which may be retained when the shape control is removed (e.g.,
TMD annealing on and removal from a nonplanar substrate). We
explore the shape and composition programmable features of
TMD alloy monolayers by developing a first principles-informed
continuum model for their coupled mechanics, alloy thermo-
dynamics, and interaction with electric fields. The fundamental
relations between composition and deformation are derived for
several simple shapes and patterns. We then numerically
demonstrate the ability to program a wide variety composition

patterns and 3D shapes, from smoothly curved to purely fold-
based origami designs, with a wide variety of strain states, from
internally strain-free to patterns with designed residual strains
(e.g., to obtain target mechanical or electronic properties). We
also demonstrate how the electrically dipolar nature of Janus (see
below) TMDs enables dynamic actuation of these self-shaping 2D
materials with electric fields for smart or 4D material function-
ality. Potential applications of patterned, shaped, and responsive
TMD monolayers in optoelectronic devices, flexible electronics,
catalysis, responsive coatings, and soft robotics are discussed.
Demonstrations include designed composition patterns that can
be employed in electronic devices with spatially tailored band-
gaps, bilayers with programmed twist angles, and sheets with
corrugated/compliant, crumpled, or channeled geometries of
nearly arbitrary complexity.

Results
Physical concept. TMD monolayers (MX2) contain three cova-
lently bonded atomic layers; a transition metal atomic layer
M fMo;Wg sandwiched between chalcogen XfS; Se;Teg atomic
layers. Here, we consider binary chalcogen alloy monolayers.
Since different chalcogens have different atomic sizes, in-
plane variations in the average chalcogen concentration �c ¼
ðcþ þ c�Þ=2 (where +/− refers to the upper/lower chalcogen
layers) generate variations in in-plane strain (Fig. 1a). Similarly,
vertical variations in chalcogen concentration (quantified in
terms of Janus degree J ¼ ðcþ � c�Þ=2) generate bending strains
(Fig. 1a). A difference in concentrations between the chalcogen
layers creates a preferred radius of curvature (bending). The
minimum radii of curvature for Janus MSeS, MTeSe, and MTeS
are Rc � haX=ðaX � aYÞ � 8, 6, and 3 nm, respectively (h is the
monolayer thickness, aX and aY are the lattice constants of MX2
and MY2; see Fig. 1b). Spatially uniform Janus TMD monolayers
are novel piezoelectric materials59–63. Here, we propose using the
natural curvature of Janus TMDs60 in shape programming by
patterning lateral variations in Janus degree and thus curvature.
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Fig. 1 Coupling between composition and deformation in TMD alloy
monolayers. a The TMD hexagonal crystal structure and illustrations of
compositionally generated stretching and bending deformations in MoSeS
alloys (the z-direction is normal to the TMD monolayer). Metal and
chalcogen atoms are shown in gray and cyan/magenta, respectively. The
S/Se size difference is amplified for visual clarity. b Equilibrium geometries
of Janus MSeS, MTeSe, and MTeS patches
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The conjugate material programming processes explored here
are referred to as shape! composition programming (patterning
topography to program composition patterns) and composi-
tion ! shape programming (patterning composition to program
non-flat monolayer topographies). These can both be viewed as
forward problems; for a given input (shape or composition),
determine the output (composition or shape). Or, as inverse/
design problems; given a target output (shape or composition),
determine the input (composition or shape) required to generate
it. Our presentation is framed in terms of the forward problems
which provide a simpler framework for conveying the physical
principles and methodology behind dynamic MoSeS omnigami.
We return to the inverse/design problems in the Discussion.

First principles-informed continuum model. We consider a
single alloy TMD monolayer MX2�cY2ð1��cÞ, where �c is the com-
position of chalcogen species X averaged over both chalcogen
layers. The monolayer free energy functional is decomposed as

F ¼ F elastic þ F cþ þ F c� þ F electric; ð1Þ
where F elastic is the elastic energy of the heterogeneously alloyed
monolayer, F cþ þ F c� is the compositional free energy of the
upper and lower flat chalcogen layers in the absence of an electric
field, and F electric is the electrostatic energy of the heterogeneously
alloyed (dipolar/Janus) monolayer in an applied electric field.

Elastic energy. The mechanics of the monolayer is described
using the Föppl-von Kármán thin plate theory extended to
include heterogeneous bending eigenstrain fields associated with
the Janus nature of the monolayers and stretching eigenstrain
fields associated with in-plane misfit from variations in the
composition (averaged over the two chalcogen layers at each
position in the monolayer). The elastic free energy functional has
contributions from the in-plane strain ϵ and the mean out-of-
plane displacements w

F elastic ¼ F ϵ þ Fw ð2Þ

F ϵ ¼
~hλijkl
2

Z
A
ðϵij � ϵ�ijÞðϵkl � ϵ�klÞdA ð3Þ

Fw ¼
~h
3
λijkl
24

Z
A
ðw;ij � w�

ijÞðw;kl � w�
klÞdA; ð4Þ

where a “,” indicates partial differentiation with respect to the
subsequent variable(s). Here, ~h is the effective elastic plate thickness,
λijkl is the elastic stiffness tensor, A is the area of the monolayer,
ϵij ¼ �ϵij þ ðui;j þ uj;i þ w;iw;jÞ=2 is the local elastic stretching
deformation tensor associated with (small) in-plane displacements
ui and (potentially large) out-of-plane displacements w, �ϵij is a
(macroscopic) applied strain and i; j; k; l 2 fx; yg. The in-plane
misfit/eigenstrain is set by the average local composition within the
chalcogen layers (i.e., solutes are point sources of dilatation) as
ϵ�ij ¼ δij�ϵδ�c=ð1þ �ϵ�c0Þ, where δ�c ¼ �c� �c0 ¼ 1

2 ðcþ þ c�Þ � �c0, �c0 is
the average local composition of the eigenstrain reference state (the
zero eigenstrain state), �ϵ ¼ðaX � aYÞ=aX is the maximum eigen-
strain, and δij is the Kronecker delta. w

�
ij ¼ 2J�ϵδij=hð1þ �ϵ�cÞ is the

local spontaneous curvature tensor for a given local composition
difference between the two chalcogen layers, where h is the geo-
metric thickness of the monolayer (vertical z distance between
chalcogen atomic layer mid-planes). The interatomic layer thickness
h is a better indicator for the compositional effect on bending
eigenstrain than the (distinct, though related) ~h, proportional to the
square root of the ratio between the bending and stretching

stiffnesses. From these definitions of deformation, elastic strain is
ϵij � ϵ�ij.

Since hexagonal (H phase) TMD monolayers are elastically
isotropic, Eqs. (3) and (4) can be rewritten with the plane strain
λijkl ¼ E½2νδijδkl=ð1� νÞ þ δikδjl þ δilδjk�=2ð1þ νÞ, where E and
ν are the in-plane Young’s modulus and Poisson’s ratio,
respectively.

Compositional energy. The alloy free energies of TMD mono-
layers with alloyed metal64/chalcogen65 layer(s) have previously
been calculated within a regular solution model. Here, we gen-
eralize the regular solution model for each chalcogen layer in
MoSeS-type alloys by inclusion of coupling between layers

Fc±
¼ 1
2

Z
A

~kBT c± lnðc± Þ þ ð1� c± Þlnð1� c± Þ½ �
n

þ fmixðc± Þ þ γ2j∇c± j2 þ
Λ

2
ðc± � c�Þ2 � μ0c± gdA;

ð5Þ

where ~kBT is the usual thermal energy, fmixðc± Þ is the enthalpy of
mixing within a given chalcogen layer, γ scales the interface
energy between regions of different composition in-plane, and the
constant Λ characterizes the strength of the local interaction
between the two chalcogen layers. μ0 is a chemical potential that
controls the relative X–Y composition (e.g., set by the partial
pressure of the different species in the monolayer environment).

Electrical potential energy. Since the electronegativity of species
X and Y are different, a Janus region of a monolayer is electrically
polar, with local dipole moment density p ¼ 2p0J n̂, where p0 is
the saturated dipole moment density (J ¼ 1=2) and n̂ is the local
normal vector of the monolayer. The interaction energy between
dipoles and with an applied electric field EA is

Felectric ¼
Z

pðrÞ � 1
4πϵ0

∇
Z

∇ � pðr0Þ
jr� r0j dr

0 þ EAðrÞ
� �

dr: ð6Þ

The first term (dipole–dipole interaction) is higher order than the
second term and is typically negligible compared to composi-
tional and elastic energies in MoSeS (see Methods, Supplementary
Fig. 1, and Supplementary Note 1 for details); hence, it is
omitted below.

Physical parameters. All physical parameters describing MoSeS
in F have been computed from first principles calculations and
are listed in Supplementary Table 1. The parameters aX , aY , h, ~h,
E, ν, κ, and p0 were determined from previous DFT
calculations60,65–67; alleviating the need to determine continuum
plate theory parameters based on assumptions such as, e.g.,
effective plate thickness. Comparisons of plate theory with DFT
calculations show that the two are in reasonable agreement (e.g.,
for the stiffness κ)67. Thus, the primary assumption in the con-
tinuum plate theory is to only include the lowest order defor-
mation terms in the elastic energy, consistent with the small
strains encountered here (	0:1). Since the elastic moduli of
MoS2 and MoSe2 are similar (15–20% variation), we neglect the
elastic inhomogeneity associated with compositional variations
within the monolayer and use overall composition-weighted
averages of E, ν, κ, and h for the entire monolayer. The (T ¼ 0 K)
enthalpy of mixing was parameterized as an asymmetric regular
solution, fmixðc± Þ ¼ χc± ð1� c± Þ þ c±UXþð1� c± ÞUY . The reg-
ular solution constants (χ, UX , UY ) and Λ (characterizing com-
positional interactions between chalcogen layers) were computed
from first principles as described in Methods. The constant γ in
Eq. (5) characterizes interfaces between domains of different
composition—not encountered in these TMD solid solutions.
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Here, it should be viewed as a regularization parameter that
prevents excessively sharp concentration gradients from forming;
it is chosen large enough to facilitate numerical stability but small
enough to have a negligible effect on composition patterns.

Simulation schemes. Shape ! composition programming was
simulated by numerically evolving the cþ and c� fields to the state
of minimum F at fixed ui and w. This constraint on ui and w
corresponds to (nonslipping) adhesion between the monolayer
and a rigid substrate. Imperfect adhesion/conformation and/or
slipping will result in somewhat less compositional variation than
predicted here.

Composition ! shape programming was simulated by
evolving the elastic state fields (ui;w) to the state of minimum
F at fixed c± . The equilibrium ui were calculated analytically. w
was determined by numerical solution of a damped wave
equation that approximates flexural acoustic phonon dynamics
(vibrational effects are not considered in our free energy F ).
Imposing no constraints on ui and w corresponds to a freely-
suspended sheet. However, the simulations reported here were
performed on a square or rectangular unit cell with periodic
boundary conditions to represent large sheets within a manage-
able computational domain. See Methods for further details.

Shape ! composition programming. In the following subsec-
tions we examine how patterned monolayer shape (topography)
can be used to generate composition patterns.

Programmed Janus monolayers. Consider first the simple case of
a small patch of the surface of a sphere of radius R. For a suffi-
ciently small patch, the stretching energy makes higher order
contributions than the first-order bending energy and can be
neglected. The composition profile that minimizes the bending
energy Fw (in the absence of an applied electric field) is a
homogeneous Janus monolayer of degree J � h=2R�ϵ. For
example, a patch of R ¼ 8, 80, and 800 nm in MoSeS corresponds
to J � 0:5, 0.05, 0.005.

However, the total energy also includes compositional
contributions. Minimization of the bending and compositional
energies with respect to J for a spherical patch of radius R (with
mixing entropy expanded to third order about J ¼ 0) gives

J � h
2R�ϵ 1þ Δwð Þ ð7Þ

where

Δw ¼ 2Λ� χ þ ~kBT=2�cð1� �cÞ
4κð1þ νÞ�ϵ2=h2 : ð8Þ

The chemo-bending ratio Δw, a ratio of chemical to elastic
bending energies, quantifies how compositional energy sup-
presses/enhances inhomogeneous spatial Janus patterns (depend-
ing on χ and Λ) relative to the Fc±

¼ 0 prediction, J ¼ h=2R�ϵ. For
MoSeS, 1þ Δw � 5:6 at T ¼ 0 K and 7:6 at a reasonable
growth/annealing temperature T ¼ 1023 K. Therefore, generating
a Janus MoSeS spherical patch with J ¼ 0:5, 0.05, 0.005 at
T ¼ 1023 K requires monolayer patches with radii of curvature
R � 1, 10, and 100 nm, respectively. Simulations including all
terms in Eqs. (2) and (5) confirm the predictions of Eq. (7) as
shown in Figs. 2a and 3.

Eq. (7) demonstrates that the ease with which large composi-
tional variations can be programmed into a monolayer depends
on the competition between compositional and elastic energies.
While composition rearrangement relaxes the strain energy
associated with monolayer topography, the resulting inhomoge-
neous compositions have relative compositional energy costs
proportional to Δw. Large compositional variations are most
readily programmed in monolayers with small Δw, but similar
results can be obtained in materials with relatively large Δw, such
as MoSeS, provided that sufficiently large topography amplitudes
(large curvature in this case) can be realized. We now examine
this and related issues for a series of different compositional
patterns.
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Fig. 2 Shape ! composition programming with MoSeS monolayers. Simulated equilibrium composition patterns (J and �c) generated at 1023 K by the
topographies shown at the top of each column. a Simple patterns (see the first column of Table 1 for expressions), b AMiura-ori pattern that employs P2 as
a building-block structure, c An elaborate pattern obtained via our numerical programming approach. In a and b, the J scale is set to the predicted
maximum J0 of each topography (second column of Table 1), while the �c scale varies from 0:25 to 0:75. The last column in a shows a large amplitude P1
template (large stretching) that generates an in-plane MoS2/MoSe2 heterostructure. Regions in gray in the Janus degree maps represent J ¼ 0. d Maps of
electronic bandgap Eg (in eV) for the five patterns shown in a and the Miura-ori pattern in b, based on DFT calculations of the composition and strain
dependent bandgaps in refs. 60,68,69. See Supplementary Note 2 for more details
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Programmed alloy enrichment. We next consider uniform
changes in alloy concentration by exchange of species with a
reservoir; e.g., by annealing in atmospheres with different chal-
cogen chemical potentials μ0 (partial pressures) and/or under
homogeneous isotropic in-plane strain �ϵ ¼ �ϵxx ¼ �ϵyy . Minimiza-
tion of the stretching and compositional energies with respect to �c
for a flat monolayer under tension �ϵ (with mixing entropy
expanded to second order about �c ¼ 1=2) gives a linear relation
between �c and strain,

�c � �ϵ

βð1þ ΔϵÞ
þ �ceq; ð9Þ

where

Δϵ ¼
�χ þ 2~kBT

2αβ2
ð10Þ

and

�ceq ¼
χ þ UX � UY � μ0 � 4αβ2�c0 � 2~kBT

2ðχ � 2αβ2 � 2~kBTÞ
: ð11Þ

Δϵ is the chemo-stretching ratio, �ceq is the equilibrium compo-

sition at zero strain, α ¼ ~hE=2ð1� νÞ, and β ¼ �ϵ=ð1þ �ϵ�c0Þ.
Analogous to Δw, Δϵ quantifies the degree to which composi-

tional thermodynamics alters the Fc±
¼ 0 result �c � �ϵ=βþ �ceq.

For MoSeS, Δϵ � 1:2 at T ¼ 0 K and Δϵ � 2:6 at T ¼ 1023 K;
this indicates that the compositional energy has a significantly
weaker effect on shape-programmed alloy composition (domi-
nated by stretching) than on shape-programmed Janus composi-
tion (dominated by bending, Eq. (7)). This difference is associated
with the vast difference in the stretching and bending stiffnesses
of TMD monolayers.

Simple patterns. We now focus on some simple monolayer
topographies wðx; yÞ and the Janus composition patterns Jðx; yÞ
they produce. Results for various topographies, obtained by
minimizing Fw þ Fc±

with respect to Jðx; yÞ at fixed wðx; yÞ, are
given in Table 1. To retain the analytical nature of these pre-
dictions, we ignore the relatively small contributions of the in-
plane strain associated with the substrate topography. This
approximation is typically valid for monolayer islands with free
edges and/or slowly varying topographies.

The results demonstrate that Janus patterns can be directly
obtained by annealing on substrates with patterned topographies
and that compositional energy introduces a factor of ð1þ ΔwÞ�1

into the programmed Janus degree for each topography. For
MoSeS monolayers, this effect suppresses J by a factor of �5.6 to
8. Simulation results are consistent with these predictions, as
shown in Fig. 3 for spherical cap (P1), 1D bend (P2), 1D sine
(P3), and 2D sine (P4) patterns. The simulation configurations
shown in Fig. 2a demonstrate further how bending-dominated
topographies (e.g., small amplitude as in P1-left or unidirectional
patterns as in P2 and P3) generate weak spatial �c variations, while
topographies that impose significant stretching (e.g., large
amplitude as in P1-right or bidirectional patterns as in P4)
generate pronounced spatial �c variations. More precisely, we find
that �c pattern magnitude � A2 while J pattern magnitude � A
(Table 1), which leads to the observed J prominence at small
A and �c prominence at large A. It is also seen that �c pattern
periods are half that of the corresponding J pattern. This is
associated with the different symmetries of the in-plane
strains and curvatures with respect to w; �c � ϵij � w;iw;j while

Table 1 Equilibrium mappings for shape ! composition programming and composition ! shape programming

Shape ! Composition Composition ! Shape

Shape wðx; yÞ �! Composition Jðx; yÞ Composition Jðx; yÞ �! Shape Amplitude

w dominant w dominant ϵ dominant

P1:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2 � y2

p
h

2R�ϵ 1þΔwð Þ J0Hðr0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ r20

R ¼ 2�ϵJ0r
2
0

h
9hJ0r

2
0

2Eϵ

� �1=3

P2: 1
2 Bx

2 hB
4�ϵ 1þΔwð Þ J0rectðx=LÞ BL2 ¼ ~ν�ϵJ0L

2

h
16hJ0L

3

Eϵd

� �1=3

P3: A sinðkxÞ �hk2wðxÞ
4�ϵ 1þΔwð Þ J0 sinðkxÞ A ¼ ~ν�ϵJ0

k2h
hJ0~ν

2

2Eϵk
2

� �1=3

P4: A2 sinðkxÞ þ sinðkyÞ½ � �hk2wðx;yÞ
4�ϵ 1þΔwð Þ

J0
2 sinðkxÞ þ sinðkyÞ½ � A ¼ ~ν�ϵJ0

k2h
hJ0~ν
2Eϵk

2

� �1=3

P5: C
ffiffi
π
2

p
xerf

ffiffi
2

p
x

2σ

� �
þ Cσe

�x2

2σ2 hCe�x2=2σ2

4σ�ϵ 1þΔwð Þ J0e
�x2=2σ2 Cσ ¼ ~ν�ϵJ0σ

2

h
4hJ0σ

2

π3=2Eϵ

� �1=3

Strain ϵij �! Composition c Composition c �! Strain ϵ –

ϵ ¼ ϵxx ¼ ϵyy ϵ
βð1þΔϵÞ þ ceq c βðc� c0Þ –

Analytical mappings in limits where the elastic energy is dominated by bending or stretching (i.e., w or ϵ dominant). All shapes w refer back to the equations for the patterns P1-P4 (Fig. 2a) on the left side of
the table (Shape column) and their amplitude parameters (1=R, B, A, and Cσ). Eϵ ¼ Eh2~h=2κð1� ν2Þ~ν�ϵ, ~ν ¼ 2ð1þ νÞ, and d is the in-plane distance between quadratic folds in P2
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programming. Simulation results validating analytic predictions for bending-
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J � w;ij. For example, for P3 w;iw;j � cos2ðkxÞ � cosð2kxÞ, while
w;ij � sinðkxÞ.

Complex patterns and scale dependence. More complex com-
position patterns can be constructed by combining these rela-
tively simple patterning elements as building blocks. One example
is the Miura-ori paper folding pattern shown in Fig. 2b. For
patterns less amenable to analytic approximations, numerical
simulations provide the necessary deformation-composition
mappings. Our numerical approach to forward shape ! compo-
sition programming simply requires equilibrating the composi-
tion of a monolayer while it is held in contact with the shape-
patterned substrate template.

Figure 2c shows a complex composition pattern (the reverse of
the US Franklin half dollar) programmed into a �c ¼ 1=2 MoSeS
monolayer using this approach. Distinct J and �c patterns are
obtained from this topography, with J localizing to the most
highly curved regions and �c localizing to the most highly
stretched or compressed regions.

While the spatial dimensions of programmed composition
patterns can be varied from the nano- to macro-scale, not all
terms in the total free energy F scale with spatial dimensions in
the same manner. Topographies scaled equally in each dimension
by a dimensionless scaling factor L, ðLx; Ly;wÞ ! ðLx; Ly;wÞL,
produce nearly self-similar �c patterns while the amplitude of the J
pattern scales � 1=L. This may be traced to the fact that �c
redistribution is driven by in-plane strains ϵij � w;iw;j which are
invariant under such a transformation, while J redistribution is
driven by curvature w;ij which scales as 1=L. As the overall size
scale of a pattern L decreases, ϵ�ij � δ�c remains constant while
w�
ij � J must increase by the same proportion to satisfy the

increasing curvature w;ij. Conversely, the amplitude of the J
pattern is invariant under curvature-conserving topography
transformations, e.g., ðLx; Ly;wÞ ! ðLx; Ly;wLÞL, while the
amplitude of the �c pattern � L. It is therefore possible (within
the limit of strains that may be produced in a particular alloy
system) to vary the spatial dimensions of composition patterns
such that either �c or J (but not both) remains nearly fixed while
the other varies as 1=L or L.

Functional patterns. Having demonstrated and quantified how
to induce composition patterns based on patterned in-plane
strain/topography, we apply the same approach to designing
composition patterns with targeted functional properties (elec-
tronic, photonic, etc.). For example, in-plane J and/or �c hetero-
structures and superlattices can be self-assembled by annealing
alloy monolayers on substrates with prescribed topographies and/
or in-plane strain patterns. Spatial patterns in J can be con-
structed that, for example, correspond to spatial variations in
direct versus indirect band gap for uses in photonic
applications62.

Functional spatial patterns in �c could be realized, for example,
by pressing a monolayer onto a substrate with patterned wells
(e.g., by drawing a vacuum to pull the regions suspended over the
wells into a conformal state). This approach has been used to
locally engineer strain and thus the band gap in WSe2, resulting
in arrays of photoluminescent quantum dots70. Here, we propose
using such localized strains to drive high T composition evolution
and self-assembly of in-plane X–Y composition gradients and
MX2/MY2 heterostructures such as those shown in Fig. 2a (P1-
right). Since spatial variations in both composition (�c and J) and
residual in-plane strains produce spatially varying bandgaps (see

Fig. 2d), this approach can be used to create novel quantum
structures, electronic heterojunctions, conductive interconnects,
etc. Additionally, applying the same approach to the WTeS
system, where variations in composition may produce a
semiconductor to metal phase transformation64, a pattern of
metallic “wires” can be created in a semiconducting sheet. This
post-growth, self-assembly-based patterning approach is simpler
and more spatially controllable than typical direct synthesis
methods in which each material component of the heterostruc-
ture or superlattice is sequentially grown.

Composition ! shape programming. Now we examine how
patterned compositions can be used to generate 3D structures
from 2D sheets. Equilibrium composition ! shape mappings are
obtained by minimizing F with respect to wðx; yÞ for fixed
cþðx; yÞ and c�ðx; yÞ.

Simple shapes. Analytical predictions of 3D shapes generated by
different Janus composition patterns are reported in Table 1.
Asymptotic results with respect to J0 for the bending- and
stretching-dominant regimes are provided; the latter are most
relevant when the edges of the monolayer are clamped. The full
expressions for wðx; yÞ (rather than the asymptotic results) and
the Janus degree at which the transition between bending and
stretching-dominance occurs, Jc, are provided in Methods and
Supplementary Notes 3 and 4. Simulation results verifying the
accuracy of these predictions and the fidelity of the resulting
shapes are shown in Fig. 4a–c (also see Supplementary Movies 1–
5). The minimum radius of curvature Rmin

c (¼1=wmax
xx ¼ 1=Ak2)

for the sinusoidal pattern P3 are shown in Figs. 4b, c. The results
demonstrate that small-radius of curvature and/or large-amplitude
features are most readily programmed when bending (A � J0),

rather than stretching (A � J1=30 ), dominates.

Scale dependence of shapes. As in shape ! composition pro-
gramming, the spatial dimensions of programmed topographies
can be varied from the nano- to macro-scale, but features asso-
ciated with �c patterns and J patterns scale differently with size.
For a topography scaled equally in each dimension by a factor L,
ðLx; Ly;wÞ ! ðLx; Ly;wÞL, the required bending eigenstrains (the
product of the bending curvature and the length scale) are
directly proportional to L; w�

ijL � 2JL�ϵδij=h. A decrease in the
scale of the pattern L thus requires an increase in J and therefore
energy density by the same proportion to maintain a given
bending eigenstrain (i.e., shape). On the other hand, the
stretching eigenstrain, ϵ�ij � δij�ϵδ�c, has no such scale dependence;
the size of a composition pattern containing only ϵ�ij can be varied
with no change in energy density. Decreasing the scale L of a
topographical pattern containing both bending and stretching
eigenstrains requires no change in the �c pattern but an increase in
the Janus degree by a factor of 1=L.

Programmed folds. Consider the case of 1D folds or bends; i.e.,
origami. The angle θ of a fold (i.e., the jump in the surface normal
across the fold) programmed along y is set by the bending
eigenstrain profile w�

xx

θ ¼
Z L=2

�L=2
w�
xxdx; ð12Þ

where L is the width of the eigenbending profile. The fold angle
produced by a strip of uniform Janus degree J0 is θ ¼ w�

xxL ¼
2J0�ϵL=h (see Fig. 4f). Other J profiles can similarly produce folds;
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e.g., a Gaussian profile w�
xx ¼ 2J0�ϵe

�x2=2σ2=h can be used to create
a fold of θ ¼ ffiffiffiffiffi

8π
p

J0σ�ϵ=h. If the fold width (L or σ in the
examples) is fixed in a particular material, design, or composition
pattern, the required value of J0 is uniquely determined.

The minimum fold width is physically constrained by the
smallest L that can be patterned, and the maximum fold angle for
a given L is constrained by the material-specific bound jJ0j � 1=2.
The smallest conceivable fold width is L � a, and the sharpest
folds that can be realized at this scale (jJ0j ¼ 1=2) are θ � 2:5�,
3:9�, and 6:7� for MSeS, MTeSe, and MTeS, respectively. On the
other hand, the smallest fold widths capable of producing a 45�
fold are L � 6, 4, and 2 nm for the same TMDs. We take these
as proxies for the smallest feature sizes achievable with this
approach, which implies that 3D objects as small as tens of
nanometers are realizable.

Complex shapes. As with shape! composition programming, in
composition ! shape programming, analytical predictions for
simple shapes can be combined to create more complex shapes or
numerical simulations can be employed to equilibrate the shape
of a monolayer with fixed c± . An example of the numerical
approach is presented in the Discussion section.

Uniformization theorem. In shape programming of sheets, the
stretching and bending eigenstrains are general rank two tensors.
However, in the TMDs considered here, the stretching and
bending eigenstrain tensors are isotropic (i.e., changes in com-
position yield a distribution of point sources of dilatation and no
shear). While this would seem to impose a restriction on the
possible shapes that can be programmed, the Uniformization
Theorem71 (an exact, geometric result that implies that any
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surface can be coordinatized with an isotropic metric) implies
that there is no such restriction (in the limit that bending stiffness
tends to zero). For this result to hold exactly, the system must
admit arbitrarily large stretching eigenstrain (e.g., approaching
infinity or �1 at discrete points). There is thus a restriction
emerging from the maximum programmable stretching eigen-
strain. 1D shapes such as P2 and P3, for example, cannot be
isotropically coordinatized without extremely large stretching
eigenstrains and in MoSeS must therefore contain unwanted
misfit strain and shape distortion. The consequences of finite
bending stiffness for achieving an exact target shape is higher
order and can be at least partially resolved with programmed
bending eigenstrain. This problem has been extensively studied in
the computer graphics literature where algorithms have been
developed to efficiently compute the required stretching eigen-
strain field for a particular target shape72.

Functional shapes. Building on the fundamental features of
composition ! shape programming in TMD monolayers out-
lined here, designs for shapes with targeted electronic, photonic,
mechanical, and chemical properties can be created. These may
include compliant corrugated designs for use in flexible
electronics46,49,73, self-enclosing designs for storage and delivery
of pharmaceuticals, soft robotics44, high surface area corrugated/
crumpled monolayers for use in optical metasurfaces, light har-
vesting, and catalysis24,74, monolayers with geometric features
designed for hydrophobic, hydrophilic, or omniphobic proper-
ties74, nanoplasmonic devices and sensors47,55, photodetectors48,
and templates for selective self-assembly of molecules and
nanoclusters75.

Patterned and shaped monolayers may also be used to program
the relative twist between stacked monolayers. When stacked, the
crystallographic preference is to align the two monolayers with
relative twist angle ϕ ¼ 0. However, consider the stacking of two
MoSeS monolayers with sinusoidal Janus patterns generated
along different crystallographic directions an angle ψ apart (see
Fig. 5a). In this case, the Janus patterns introduce sinusoidal
corrugations whose bending energy is minimized when the

monolayers twist to ϕ ¼ ψ and the corrugations align. Addition-
ally, the electric dipoles created by the Janus stripes give rise to an
electrostatic interaction that is also minimized when like dipole
moments align between monolayers, again, at ϕ ¼ ψ. The relative
twist angle can therefore be programmed to ϕ ¼ ψ (see Fig. 5b)
when the latter two effects outweigh the crystallographic
preference for ϕ ¼ 0.

Estimates of the energies involved (see Methods) suggest that
twisted configurations may, indeed, be stable, particularly in
MTeS. Janus stabilized twist would enable controlled study of the
many interesting phenomena that emerge when 2D materials are
stacked with particular twist angles, including unconventionally
superconducting magic-angle superlattices76 and chiral stacks
with plasmonic and other applications.

Dynamic actuation with electric fields. Thin elastic sheets whose
internal strains, and thus shape, can be altered using external
stimuli (smart materials) are broadly useful in emerging tech-
nologies such as MEM/NEM actuation and soft robotics77,78.
TMD alloy monolayers with nonzero Janus degree may be
dynamically and reversibly reconfigured using external electric
fields. Since Janus regions within a monolayer are electrically
dipolar60, an applied electric field will exert local torques
(τ ¼ p ´EA) on Janus regions not aligned with the field. This
produces local sheet reorientation, flattening, or bending,
depending on the local electric polarity relative to that of the field
(Fig. 6a).

Actuation of patterned Janus monolayers. Janus patterns can be
designed to exploit these effects and induce systematic, reversible,
and dramatic shape changes with controlled application of elec-
tric fields. Examples of actuated shape change are shown in
Fig. 6b–j. Embedded uniform Janus domains (Fig. 6b) follow in-
plane fields Ex and Ey in a “sunflower” fashion and either pucker
or flatten in response to Ez (Supplementary Movies 6 and 7). The
realized shapes reflect a balance between the forces exerted by
the electric field and induced elastic forces that tend to oppose the
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Fig. 5 Programming the twist between TMD alloy monolayers with Janus patterns. a Atomic representations of two monolayers compositionally patterned
along different crystallographic directions separated by an angle ψ. b When stacked, the twist angle ϕ is stabilized at ψ by the preference to align the
programmed out-of-plane deformations and electric dipole patterns of the two monolayers
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deformation (particularly in periodic monolayers). Embedded
Janus domains with an axis of mirror symmetry, such as the
elastically dipolar Janus-Janus circles shown in Fig. 6c, fold under
Ex and distort into saddle-like shapes under Ey (Supplementary
Movies 8–10). This folding effect can be implemented into
mechanically anisotropic lamellar patterns that fold under one in-
plane field direction (Fig. 6d, Supplementary Movie 11) or ani-
sotropic 2D patterns that can fold in more than one direction but
are geometrically frustrated from folding in certain directions
(Fig. 6e, f, Supplementary Movies 12–18). Other examples include
radial patterns of different symmetries (Fig. 6g, h, Supplementary
Movies 19–24), lattices with randomly selected Janus polarity
leading to quasi-random crumpling (Fig. 6i, Supplementary
Movies 25 and 26), and actuatable multiscale or hierarchical
patterns (Fig. 6j, Supplementary Movie 27). More complicated
actuation effects can be achieved with nonuniform electric fields.

Applications with actuation. Designs based on these dynamically
configurable and reversible smart materials have potential uses in
mechanical actuation of MEMS/NEMS and in dynamically con-
trollable and tunable implementations of the applications noted
in the previous section for designed static shapes. Properties of
the materials and devices described therein can be rapidly and
reversibly enabled, disabled, and tuned.

Potential applications based on the structures shown in Fig. 6
include unidirectional or multidirectional electromechanical actua-
tors and force sensors (Fig. 6d, e, i), surfaces with dynamically
variable multiscale features for tunable wettability (Fig. 6j), and
dynamically reconfigurable surfaces for microfluidics and self-
assembly templates (Fig. 6d–h, j)79. Additional uses include
generating heterogeneous in-plane strains with E-fields (see, e.g.,
Fig. 6c) to dynamically and locally tune electronic structure,
introducing Janus patterns and E-fields as degrees of freedom in
design optimization for targeted mechanical and other properties,
and employing E-field application protocols to guide sequential self-
assembly of elaborate 3D shapes.

The forces generated during actuation can also be translated into
propulsion mechanisms for nano/micro devices. For example, the
flapping mode of Janus–Janus domains (Fig. 6c) could be
incorporated into driven swimmers by adhering each half-circle
onto a stiffer backing material. The force exerted by a perpendicular
electric field on a Janus domain with one edge of width ‘ pinned in
place is roughly F � jpjjEj‘. A 1MVm�1 electric field will
therefore generate �10 pN of force over a ‘ ¼ 1 µm domain,
comparable to the locomotive forces generated by bacteria on
similar length scales80. F can be increased by stacking several
monolayers.

Discussion
We have demonstrated that shape and composition program-
mable TMD alloy monolayers are capable of self-assembling a
wide variety of patterns and shapes with nano- to macro-scale
features and that these shapes can be reversibly actuated with
applied electric fields.

The forward shape ! composition and composition ! shape
programming processes examined above can be reposed as inverse
or design problems; given a target shape or composition, determine
the input composition or shape required to generate it. It is
straightforward to invert our analytic solutions to the forward
problems (see Table 1) to obtain solutions to the inverse problems
for simple shapes/patterns. Our numerical solution approaches for
complex shapes/patterns can also be adapted to these tasks by
additionally optimizing shape amplitude with respect to target
composition patterns (designed shape ! composition) or compo-
sition magnitude with respect to target shape/topography (designed
composition ! shape). This optimization is accomplished in both
cases by combining the two types of forward programming pro-
cesses, as described in Methods and shown in Fig. 7 for a complex
shape (the obverse of the US Franklin half dollar).

The relative bending and stretching strains (or J and �c pattern
magnitudes) associated with a target shape can significantly affect
programmed shape accuracy. The accuracy with which complex
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Fig. 6 Using applied electric fields EA to actuate TMD alloy monolayers with composition-programmed shapes. a Schematics of how Janus regions in
monolayers with clamped edges reorient, bend, or flatten according to their electric polarity relative to that of the field. Gray, magenta, and cyan spheres
represent Mo, S, and Se atoms, respectively. Gray (black) arrows indicate atomic dipole moment (applied electric field) direction. The first column shows
equilibrium shapes of seven Janus-patterned free standing sheets in the absence of an applied electric field (EA ¼ 0). b–h Simulated shapes of Janus-
patterned MoSeS monolayers under uniform fields with directions shown in (a). i±Ex-induced crumpling of a monolayer containing circular Janus domains
arranged on a square lattice with randomly assigned polarity. j Ex-induced two-scale buckling/folding of a patterned monolayer containing zigzag Janus
domains on two length scales. Also see Supplementary Movies 6–26
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shapes such as the Benjamin MoSeS Franklin example shown in
Fig. 7 can be programmed increases as the amplitude of the target
shape decreases. Equilibrium composition patterns become
J-dominated at small amplitude. However, the topographical
amplification factor simultaneously approaches its maximum value
(bending-dominant 1þ Δw � 7:6 at T ¼ 1023 K), such that the
realized free-standing shapes become increasingly flattened relative
to their templates. On the other hand, the composition patterns that
produce large amplitude complex shapes tend to be �c-dominated,
which results in less flattening upon removal from the template
substrate but less overall shape accuracy.

Our numerical procedures for designed programming can be
combined to enable physical realization in the laboratory. For
example, once a composition pattern that will program a target
shape has been determined by our designed composition ! shape
programming procedure, this composition pattern must be phy-
sically realized. A substrate template topography that will produce
the desired pattern can be computed using the designed
shape ! composition programming procedure described above.

Recent experimental results demonstrate that the fundamental
mechanisms behind our approach are operable and observable. A
link between composition and shape has been established, e.g., in
defect-free WS2/WSe2 superlattice crystals26 and coherent MoS2/
MoTe2 monolayer heterostructures27, where compositional misfit
strain created by S/Se and S/Te gradients induces periodic out-of-
plane ripple patterns. The production of stable Janus MoSeS
monolayers61–63 further indicates that Janus degree can be spatially
controlled. The viability of the topographic annealing approach that
we propose for this purpose (shape ! composition programming)
is supported by experimental results which demonstrate that tran-
sition metal diffusivities are sufficiently large (at TMD growth
temperatures) to redistribute transition metal composition profiles
under relatively small driving forces81. Since chalcogen diffusivities
are generally larger than metal diffusivities, this suggests that sig-
nificant chalcogen redistribution will also be achievable.

Nanopatterned TMD growth substrate topographies have been
demonstrated using ion-beam-projection lithography23. TMD
synthesis on these topographically anisotropic substrates resulted
in conformal, isomorphic nanosheet growth. This demonstrates
that TMD properties can be tailored via topography-based strain
engineering and potentially provides a means to spatially control
Janus degree in TMD alloys.

The model presented in this work describes single crystal
monolayers without grain boundaries or other topological

defects. This limits its validity to single grains, which can cur-
rently be grown over �10 µm in size. The presence of toplogical
defects will couple to and alter strains and compositions. For
example, during monolayer growth on non-flat surfaces, shape
strain can be accommodated by building topological defects into
the lattice. This suppresses the mechanism of shape ! composi-
tion programming, indicating that high T annealing rather than
synthesis on non-flat surfaces should be the more effective
approach for topographical shape ! composition programming.
If monolayers containing grain boundaries or domain walls are
used, we expect our description to remain valid when strains are
sufficiently small and/or grain sizes are sufficiently large relative
to topographical or compositional feature sizes. When these
conditions are not met, local compositional heterogeneities
associated with grain boundaries may become more significant
than those created by topographic patterns, and strain-driven
defect migration during transfer and annealing may plastically
relieve some topographic strain and partially suppress compo-
sition patterning. The effects of topological defects can however
be built into our model, e.g., as additional contributions to the
eigenstrain fields ϵ�ij and w�

ij. Effects associated with finite sub-
strate/monolayer interaction strengths (e.g., slipping and dela-
mination) and free sheet edges can also be treated with
appropriate modifications.

The crux of the shape/composition programming paradigm is
the determination of the fundamental relations between compo-
sition and deformation. We derived these relations for our pro-
posed atomically thin smart shape/composition programming
platform and have also presented a physical model with which the
relations can be numerically computed for complicated shapes
and patterns. Our modeling approach is sufficiently general for
application to other TMD alloy systems, other 2D materials, and
other shape/composition programmable materials. While our
focus here has largely been on shape and composition pro-
gramming, the ultimate goal is physical property programming -
optimization of patterns and shapes with respect to target
material properties. We have provided examples of spatial
bandgap modulation and have suggested several other possibi-
lities involving designed mechanical, catalytic, chemical, thermal,
and optical properties. Combination of the utility of smart shape
programmables with the diversity of intrinsic TMD properties
and designed composition patterns, all tunable across length
scales, suggest a broad set of potential applications for this 2D
material platform.
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Fig. 7 Benjamin MoSeS Franklin: a complex shape produced by numerical designed composition ! shape programming. The target shape (left—a 1.4 µm
version of the obverse of the Franklin half dollar) is used as a substrate template (1) upon which an initially homogeneous MoSeS monolayer is annealed at
1023 K (shape ! composition programming, yellow arrow). (2) The resulting uncompensated composition state (“Uncompens.” J and �c), upon release
from the template yields an uncompensated shape with features very similar to the target but with smaller shape amplitude (composition ! shape
programming, green arrow). (3) The composition patterns obtained from (1) are multiplied by the ratio of target (10 nm) to uncompensated (6.7 nm)
shape amplitude (compensation, blue arrow). (4) A monolayer assigned the compensated composition state, upon shape equilibration yields a shape with
features and amplitude very similar to the target (composition ! shape programming, green arrow)
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Methods
Plate theory formalism. Here we outline the derivation of the modified Föppl-von
Kármán equations used in this work, Eq. (2). These equations include the effects of
general eigenstretching and eigenbending fields.

We describe material deformation mathematically as two embeddings of the 2D
(with small thickness) material in 3D space (Table 2). One embedding represents
the undeformed geometry and gives the Lagrangian, or material, coordinates
(notated in upper case). The other represents the deformed geometry and gives the
Eulerian, or spatial, coordinates (notated in lower case). The indices a; b; c; ¼
range over f1; 2; 3g, describing the full three dimensional coordinates, while the
indices i; j; k; ¼ range over f1; 2g, describing the approximation of the plate as
two dimensional. We use the Lagrangian convention, where deformation is said to
take a point Xa to xaðXaÞ.

To describe stretching, we consider first the in-plane stretching deformation in
the ðX1;X2Þ coordinate basis. The displacement vector in 3D Lagrangian
coordinates is defined uaðXiÞ ¼ xaðXiÞ � ðXi; 0Þ. The full Lagrangian stretching
deformation tensor is

ϵijðXiÞ ¼
1
2
ðui;j þ uj;i þ ua;iua;jÞ: ð13Þ

For bending, we consider the small but finite thickness of the plate to find the
moments that give the bending deformation. We use the Kirchoff-Love hypothesis
and other approximations to give that strains ϵ3a are small and that the gradient
xa;3ðXiÞ is parallel to the normal vector of the plate, naðXiÞ. Thus, the full
deformation is xaðXaÞ ¼ xaðXiÞ þ X3niðXiÞ. The full in-plane stretching
deformation is ϵijðXaÞ ¼ ϵijðXiÞ � X3wij. The term wij ¼ xa;ijna is the bending
deformation tensor, commonly known as the curvature tensor or the second
fundamental form of the surface.

The approximation of the Föppl-von Kármán equations is that the plate
undergoes small deformations and small rotations out of plane. Thus, we ignore the
higher order terms Oðu2i;jÞ and the normal vector na is nearly entirely in the out-of-
pane direction Xa;3. For convenience, we notate the out-of-plane component u3 as
wðXiÞ ¼ u3ðXiÞ ¼ x3ðXiÞ. With this, the stretching and bending deformation
tensors become

ϵijðXiÞ ¼
1
2
ðui;j þ uj;i þ w;iw;j þ Oðu2i;jÞÞ �

1
2
ðui;j þ uj;i þ w;iw;jÞ ð14Þ

and

wij ¼ xa;ijna � x3;ij ¼ w;ij: ð15Þ

The following definitions are employed for strain. Strain is the deformation
from the state that has strain zero. Eigenstrain u�ij=w

�
ij is the deformation from the

reference state to the state with strain zero. Deformation uij=wij is the deformation
from the reference state.

Thus, the strain tensor at a point Xi is

ϵijðXiÞ � ϵ�ijðXiÞ � X3ðwijðXiÞ � w�
ijðXiÞÞ: ð16Þ

The usual elastic energy functional F ¼ R R
1
2 λijklϵijϵkl is replaced by

substituting ϵij for our full expression for the strain with eigenstrain to obtain

F ¼
Z Z

1
2
~λijkl hðu� u�Þijðu� u�Þkl þ

h3

12
ðw� w�Þijðw� w�Þkl

� �
: ð17Þ

Electric dipoles. We examine the importance of the dipole-dipole interaction
energy in MoSeS monolayers by examining its effect on pattern P2, a 1D quadratic
bend (w ¼ Bx2=2) created by a thin homogeneous Janus strip, in this case within a
monolayer with free edges. As can clearly be seen in Supplementary Fig. 1, the
effect of dipole–dipole interactions is not found to qualitatively alter the results
obtained in the absence of these electrostatic effects. We therefore neglect
dipole–dipole interactions in this work, which significantly simplifies the analysis
and simulations.

Employing this approximation, the thermodynamic (dipolar) potential that
dictates the monolayer’s topography in electrostatic equilibrium under an applied

electric field EA is

δF electric

δw
¼� 2p0

Z5=2

X
i¼x;y

Xj≠i
j¼x;y

Ei Z J ;iðZjj þ 1Þ � J ;jZij

h i
� J 2w;jw;ijð1� 2Zii þ ZjjÞ

h�h

þw;i 3w;iiðZjj þ 1Þ þ w;jjð1� 2Zjj þ ZiiÞ
� �i�

þ Ez ZJ ;iw;i � J w;iið2Zii þ Zjj � 1Þ þ 3w;ijZij

h i� �i
ð18Þ

where Z ¼ ðw;xÞ2 þ ðw;yÞ2 þ 1, Zii ¼ ðw;iÞ2, Zjj ¼ ðw;jÞ2, and Zij ¼ w;iw;j.

DFT calculations. Here, we detail the DFT calculations performed to determine
fmixðc± Þ and Λ for MoSeS. All DFT calculations were performed with the Vienna
Ab Initio Simulation Package (VASP)82,83 using a plane-wave basis set and the
projector augmented wave method84,85. The Perdew-Burke-Ernzerhof generalized
gradient approximation was employed to treat exchange-correlation effects86. The
plane wave kinetic energy cutoff was set to 420 eV, and a 12 ´ 12 ´ 1Γ-centered k-
point grid was employed for Brillouin zone integration. All atomic structures were
fully relaxed until the total force on each atom was <0:01 eVÅ�1. A vacuum layer
of minimum thickness 20Å perpendicular to the monolayer was employed to
minimize interactions between the monolayer and its periodic images.

The total energies of MX2 and MY2 (UX and UY ) appearing in the enthalpy of
mixing were directly computed (Supplementary Table 1). Their derivatives at
�c ¼ 0 and 1 were evaluated from the change in total energy density upon
substituting one Se (S) atom into large supercells containing 150 atoms (5 ´ 5
conventional unit cells). Results of these calculations are shown in Supplementary
Fig. 2a. We obtained dU=d�cj�c¼0 ¼ ðU�c¼0:01 � U�c¼0Þ=0:01 ¼ 1:666 eV per Mo and
dU=d�cj�c¼1 ¼ ðU�c¼1 � U�c¼0:99Þ=0:01 ¼ 1:951 eV per Mo. Using these values, we
determined the regular solution parameter;
χ ¼ ðdU=d�cj�c¼0 � dU=d�cj�c¼1Þ=2 ¼ �0:1425 eV per Mo.

The constant that describes the compositional interactions between chalcogen
layers, Λ, was determined by considering monolayers with only S atoms in one
chalcogen layer and random mixtures of S and Se atoms at different average
compositions in the other chalcogen layer. Λ was quantified from the difference in
total energy between such asymmetric monolayers Ua and symmetric monolayers
with equal compositions in both chalcogen layers Us. We fit these data to a
quadratic form Ua � Us � ðUa

2 � Us
2Þð�cþ � �c�Þ2 (see Supplementary Fig. 2b).

Comparison with Eq. (5) shows that Λ ¼ 2ðUa
2 � Us

2Þ � 0:13 eV per Mo-atom.

Mechanical and chemical relaxation. Out-of-plane displacements are evolved
toward equilibrium using a physically-motivated damped wave equation that
approximates flexural acoustic phonons

w;tt þ β0 � β1∇
2

	 

w;t ¼ �α2w

δF
δw

: ð19Þ

β0 and β1 are damping parameters that operate uniformly and preferentially on
large wavenumber oscillations, respectively, and αw is the propagation speed of
bending waves.

For conditions in which chalcogen composition is not conserved, cþ and c� are
dissipatively relaxed to equilibrium

c± ;t ¼ �M±
δF
δc±

� λ0

� �
: ð20Þ

Here, M± is the diffusional mobility of chalcogens and λ0 is the environmental
chemical potential. This choice assumes substitutional diffusion between species X
and Y (MX ¼ MY ¼ M± ).

For conditions in which chalcogen composition is conserved but only
equilibrium states are of interest (physical kinetics are not necessary), a Lagrange
multiplier is added to enforce conservation without the need for slower diffusive
kinetics

c± ;t ¼ �M±
δF
δc±

� λ ±

� �
: ð21Þ

Here, λ± ¼ A�1
R
AðδF=δc± Þdr is the Lagrange multiplier that enforces global

conservation of species in each XY-layer.
Conserved composition and physical kinetics are treated with generalized

diffusion equations

c± ;t ¼ M±∇ � c±∇
δF
δc±

� �
� M±∇

2 δF
δc±

: ð22Þ

Composition-to-twist programming. An example of Janus-stabilized twist, ϕ,
between two MoSeS monolayers with sinusoidal Janus patterns programmed along
crystallographic directions separated by ψ ¼ 15� is shown in Fig. 5. The energy increase
between ϕ ¼ 0 (untwisted) and large ϕ (twisted) states has been calculated for MoS2
bilayers from first principles87 to be � 0:02 Jm�2. For Janus patterned bilayers with
ψ ≠ 0, the dipole anti-alignment imposed by Janus-misaligned states (ϕ≠ψ) leads to an

Table 2 Geometric embeddings

2D
Coordinates

3D Coordinates

Lagrangian Xi ¼ ðX1;X2Þ Xa ¼ ðX1;X2;X3Þ
Eulerian xa ¼ ðx1; x2; x3Þ
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electrostatic energy decrease in the twisted, Janus-aligned state (ϕ ¼ ψ) of �
ð2p0J0Þ2=2πϵ0d3b � 6 ´ 10�4 Jm�2 for J0 ¼ 1=2 (ϵ0 ¼ 8:85 ´ 10�12 Fm�1 is the
permittivity of air or vacuum and db � 0:63 nm is the distance between stacked MoSeS
monolayers). This energy decrease is not sufficient to stabilize large twist angles.
However, our estimates indicate that the bending energy decrease between Janus-
misaligned and twisted, Janus-aligned MoSeS states is ≳0:023 Jm�2 for monolayers
much larger than the Janus wavelength, which may be sufficient to stabilize twisted
configurations. Our calculations also indicate that this twist-stabilizing bending energy
decrease is linearly proportional to both κ and �ϵ. This suggests that Janus pattern-
induced twist-stabilization will be most effective inMTeS, which has�10% larger κ and
�100% larger �ϵ than MSeS.

The bending energy estimates above are obtained from Eq. (4) as the difference
between the bending energy minimum of both monolayers in their respective bending-
relaxed states (when ϕ ¼ ψ) and the bending energy maximum of one monolayer in its
bending-relaxed state and the other forced to conform to the first (against its
programming, when ϕ≠ψ). More detailed calculations are required to fully address the
question of under exactly which conditions such twisted structures will be stable.

Inverse/designed shape ! composition programming. Designed
shape ! composition programming begins with (1) a forward composi-
tion ! shape step; the target composition pattern is assigned to a flat monolayer
and its shape wðx; yÞ is equilibrated. Then (2) a forward shape ! composition step
is performed by fixing a compositionally homogeneous monolayer in the shape
obtained in (1) and equilibrating composition. The magnitude of the resulting
composition pattern will differ from that of the target by a factor of �ð1þ ΔÞ�1,
where Δ is the chemo-elastic ratio of the shape obtained in (1). Multiplying the
shape amplitude obtained in (1) by the value of 1þ Δ obtained in (2) gives the
compensated substrate template amplitude. While only one iteration of this pro-
cedure is typically required to obtain high fidelity substrate amplitudes, the pro-
cedure can be iterated to the required degree of convergence.

Inverse/designed composition ! shape programming. Analogously, designed
composition ! shape programming begins with (1) a forward shape ! composi-
tion step; a monolayer is fixed into the target shape and its composition is equi-
librated. Then (2) a forward composition ! shape step is performed by assigning
the composition pattern obtained in (1) to a flat monolayer and equilibrating its
shape. The amplitude of the resulting shape will differ from that of the target by a
factor of � ð1þ ΔÞ�1, where Δ is the chemo-elastic ratio of the target shape.
Multiplying the pattern magnitudes obtained in (1) by the value of 1þ Δ obtained
in (2) gives (3) the compensated composition pattern magnitudes, which (4) upon
shape equilibration produce an improved programmed shape. This procedure can
be iterated until the required shape amplitude accuracy is achieved. Figure 7 shows
a complex shape (the obverse of the US Franklin half dollar—i.e., Benjamin MoSeS
Franklin) programmed into a �c ¼ 1=2 MoSeS monolayer using this approach.

Data availability
The data supporting the findings of this study are available within the paper and its
Supplementary files, and are available from the corresponding author upon request.

Code availability
The custom C/MPI code used in numerical simulations is available from the
corresponding author upon reasonable request.
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